Synthesis of Sensitizers

Fig. 1 Synthesis of the PDPP sensitizers: i) DMF, $\mathrm{K}_{2} \mathrm{CO}_{3}, 125^{\circ} \mathrm{C}$ for 50 min ; ii) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$, THF, $90^{\circ} \mathrm{C}$ for 16 h ; iii) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$, THF, $90^{\circ} \mathrm{C}$ for 16 h ; iv) $\mathrm{CH}_{3} \mathrm{COONH}_{4}, \mathrm{CH}_{3} \mathrm{COOH} / \mathrm{THF}(1: 1, \mathrm{v} / \mathrm{v})$, reflux for 2.5 h .

3,6-bis(5-bromopyridin-2-yl)-2,5-dioctylpyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione (2):
3,6-bis(5-bromopyridin-2-yl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione (2) (500mg, $1.12 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(770 \mathrm{mg})$ were dispersed in 30 mL dry DMF at $90^{\circ} \mathrm{C}$ for 30 min under a argon atmosphere. 1-bromooctane ($860 \mathrm{mg}, 4.48 \mathrm{mmol}$) was added by a
syringe, and then the mixture was stirring at $125^{\circ} \mathrm{C}$ for 50 min . After stirring, the reactant was poured into 500 mL deionized water. The precipitate was filtered and washed with water, then dried overnight in a vacuum desiccator. The residue was purified by a column chromatography on silica gel with eluent (petroleum ether/dichloromethane $=1: 2, \mathrm{v} / \mathrm{v}$) to yield a red solid ($365 \mathrm{mg}, 48.5 \%$). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, d_{1}-\mathrm{CDCl}_{3}\right): \delta 9.01(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.77(\mathrm{~s}, 2 \mathrm{H}), 8.02(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, $4.30(\mathrm{~s}, 4 \mathrm{H}), 1.35-1.21(\mathrm{~m}, 24 \mathrm{H}), 0.87(\mathrm{~d}, \mathrm{~J}=4.7 \mathrm{~Hz}, 6 \mathrm{H})$.

3,6-bis(5-bromopyridin-2-yl)-2,5-bis(2-ethylhexyl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)dione (2'): The synthetic method of compound $\mathbf{2}^{\mathbf{\prime}}$ was resembled that of compound $\mathbf{2}$, with 3-(bromomethyl)heptane replacing 1-bromooctane. The compound was purified by column chromatography using eluent (petroleum ether/dichloromethane $=1: 2, \mathrm{v} / \mathrm{v}$) to afford a red solid ($265 \mathrm{mg}, 35.2 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.95(\mathrm{~d}, J=6.7$ $\mathrm{Hz}, 2 \mathrm{H}), 8.75(\mathrm{~s}, 2 \mathrm{H}), 8.03(\mathrm{~s}, 2 \mathrm{H}), 4.30(\mathrm{~m}, 4 \mathrm{H}), 1.40 \sim 1.13(\mathrm{~m}, 18 \mathrm{H}), 0.84(\mathrm{~m}, 12 \mathrm{H})$.

5-(6-(4-(5-bromopyridin-2-yl)-2,5-dioctyl-3,6-dioxo-2,3,5,6-tetrahydropyrrolo[3,4-c]pyrrol-1-yl)pyridin-3-yl)thiophene-2-carbaldehyde (5): The compound 2 (100mg, $0.15 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(400 \mathrm{mg})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(10 \mathrm{mg})$ was added in 20 ml THF and 0.5 mL deionized water. The mixture was heated to $60^{\circ} \mathrm{C}$ under argon atmosphere for 30 min . A solution of 5-formylthiophen-2-ylboronic acid ($23.4 \mathrm{mg}, 0.15 \mathrm{mmol}$) in 10 mL THF was dropped within 30 min . the mixture was stirring at $90^{\circ} \mathrm{C}$ for 16 h . After cooling to room temperature, the reactant was poured into 500 mL deionized water
and extracted with dichloromethane. The combine organic layers were dried by anhydrous MgSO_{4}, and then concentrated by a rotate evaporator. The residue was purified by column chromatography with petroleum ether/dichloromethane mixture (3:1, v/v) as a gradient eluent to get compound $\mathbf{5}$ (dark red solid, 27.7 mg , yield: 26.2\%). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{d}-\mathrm{CDCl}_{3}\right): 9.98(\mathrm{~s}, 1 \mathrm{H}), 9.22(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.02 \mathrm{~Hz}), 9.05(\mathrm{~d}, 2 \mathrm{H}$, $\mathrm{J}=8.24 \mathrm{~Hz}), 8.80(\mathrm{~s}, 1 \mathrm{H}), 8.14(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.82 \mathrm{~Hz}), 8.03(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.29 \mathrm{~Hz}), 7.84(\mathrm{~d}, 1 \mathrm{H}$, $\mathrm{J}=2.87 \mathrm{~Hz}), 7.60(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.89 \mathrm{~Hz}), 4.36(\mathrm{~m}, 4 \mathrm{H}), 1.66(\mathrm{~s}, 4 \mathrm{H}), 1.49 \sim 1.21(\mathrm{~m}, 20 \mathrm{H})$, $0.89(\mathrm{~m}, 6 \mathrm{H})$

5-(6-(4-(5-bromopyridin-2-yl)-2,5-bis(2-ethylheptyl)-3,6-dioxo-2,3,5,6-tetrahydropyrrolo[3,4-c]pyrrol-1-yl)pyridin-3-yl)thiophene-2-carbaldehyde (6): The synthetic method of compound $\mathbf{6}$ was resembled that of compound $\mathbf{5}$, with compound $\mathbf{2}^{\prime}$ replacing compound 2 to afford a dark red solid ($26.4 \mathrm{mg}, 25 \%$). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.96(\mathrm{~s}, 1 \mathrm{H}), 9.12(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 9.08-8.92(\mathrm{~m}, 2 \mathrm{H}), 8.75(\mathrm{~s}$, $1 \mathrm{H}), 8.14(\mathrm{~s}, 1 \mathrm{H}), 8.03(\mathrm{~s}, 1 \mathrm{H}), 7.82(\mathrm{~s}, 1 \mathrm{H}), 7.58(\mathrm{~s}, 1 \mathrm{H}), 4.33(\mathrm{~m}, 4 \mathrm{H}), 1.32 \sim 1.10(\mathrm{~m}$, $18 \mathrm{H}), 0.84(\mathrm{~m}, 12 \mathrm{H})$

5-(6-(4-(5-(4-(diphenylamino)phenyl)pyridin-2-yl)-2,5-dioctyl-3,6-dioxo-2,3,5,6-tetrahydropyrrolo[3,4-c]pyrrol-1-yl)pyridin-3-yl)thiophene-2-carbaldehyde

Compound 5 ($27.7 \mathrm{mg}, 0.039 \mathrm{mmol}$), 4-(diphenylamino)phenylboronic acid (3) (30mg, $0.10 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(400 \mathrm{mg})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(10 \mathrm{mg})$ was added into 30 mL THF and 0.5 mL deionized water, and then heated to $90^{\circ} \mathrm{C}$, stirring for 16 h under argon
atmosphere. After cooling, the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ water twice. The combine organic layers was dried by anhydrous MgSO_{4}, and then concentrated by a rotate evaporator. The residue was purified by column chromatography using ethyl acetate/dichloromethane mixture ($1: 10, \mathrm{v} / \mathrm{v}$) as an eluent to yield a dark red powder ($25.0 \mathrm{mg}, 73.2 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , THF) $\delta 9.81$ (s, 1H), $9.26(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), $9.04(\mathrm{~s}, 1 \mathrm{H}), 8.94(\mathrm{~s}, 1 \mathrm{H}), 8.23(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.10(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~s}$, $1 \mathrm{H}), 7.72(\mathrm{~s}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{t}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.03(\mathrm{t}, J=7.7 \mathrm{~Hz}$, $6 \mathrm{H}), 6.96(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.34(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 4 \mathrm{H}), 1.24-1.16(\mathrm{~m}, 24 \mathrm{H}), 0.76(\mathrm{~s}$, $6 \mathrm{H})$.

5-(6-(4-(5-(4-(bis(4-methoxyphenyl)amino)phenyl)pyridin-2-yl)-2,5-dioctyl-3,6-dioxo-2,3,5,6-tetrahydropyrrolo[3,4-c]pyrrol-1-yl)pyridin-3-yl)thiophene-2-carbaldehyde
(8): The synthetic method of compound $\mathbf{8}$ was resembled that of compound 7, with compound $\mathbf{4}$ replacing compound $\mathbf{3}$ to afford a dark red solid ($27.6 \mathrm{mg}, 71.1 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz, THF): $\delta 9.89$ (s, 1H), 9.32 (s, 2H), 9.10 (s, 1H), 8.98 ($\mathrm{s}, 1 \mathrm{H}$), 8.29 (s, $1 \mathrm{H}), 8.13(\mathrm{~s}, 1 \mathrm{H}), 7.89(\mathrm{~s}, 1 \mathrm{H}), 7.78(\mathrm{~s}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.08(\mathrm{~m}, 4 \mathrm{H})$, $6.97(\mathrm{~m}, 2 \mathrm{H}), 6.88(\mathrm{~m}, 4 \mathrm{H}), 4.44(\mathrm{~s}, 4 \mathrm{H}), 3.77(\mathrm{~s}, 6 \mathrm{H}), 1.28(\mathrm{~m}, 24 \mathrm{H}), 0.86(\mathrm{~m}, 6 \mathrm{H})$.

5-(6-(4-(5-(4-(diphenylamino)phenyl)pyridin-2-yl)-2,5-bis(2-ethylhexyl)-3,6-dioxo-2,3,5,6-tetrahydropyrrolo[3,4-c]pyrrol-1-yl)pyridin-3-yl)thiophene-2-carbaldehyde (9): The synthetic method of compound 9 was resembled that of compound 7, with compound $\mathbf{6}$ replacing compound 5 to afford a dark red solid ($29.5 \mathrm{mg}, 70.6 \%$). ${ }^{1} \mathrm{H}$

NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 9.96(\mathrm{~s}, 1 \mathrm{H}), 9.12(\mathrm{~m}, 1 \mathrm{H}), 9.05(\mathrm{~m}, 1 \mathrm{H}), 9.01(\mathrm{~s}, 1 \mathrm{H}), 8.94$ $(\mathrm{s}, 1 \mathrm{H}), 8.14(\mathrm{~s}, 1 \mathrm{H}), 8.07(\mathrm{~s}, 1 \mathrm{H}), 7.82(\mathrm{~s}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.31(\mathrm{~m}, 2 \mathrm{H})$, 7.18 (m, 7H), $7.10(\mathrm{~m}, 2 \mathrm{H}), 4.39(\mathrm{~s}, 4 \mathrm{H}), 1.32 \sim 1.09(\mathrm{~m}, 18 \mathrm{H}), 0.84(\mathrm{~m}, 12 \mathrm{H})$.

5-(6-(4-(5-(4-(bis(4-methoxyphenyl)amino)phenyl)pyridin-2-yl)-2,5-bis(2-ethylhexyl)-3,6-dioxo-2,3,5,6-tetrahydropyrrolo[3,4-c]pyrrol-1-yl)pyridin-3-yl)thiophene-2-
carbaldehyde (10): The synthetic method of compound $\mathbf{1 0}$ was resembled that of compound 8, with compound $\mathbf{4}$ replacing compound $\mathbf{3}$ to afford a dark red solid (26.8 $\mathrm{mg}, 72.5 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, d_{1}-\mathrm{CDCl}_{3}$): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.95(\mathrm{~s}$, $1 \mathrm{H}), 9.14(\mathrm{~s}, 1 \mathrm{H}), 9.02(\mathrm{~m}, 2 \mathrm{H}), 8.93(\mathrm{~s}, 1 \mathrm{H}), 8.14(\mathrm{~m}, 1 \mathrm{H}), 8.06(\mathrm{~m}, 1 \mathrm{H}), 7.82(\mathrm{~s}, 1 \mathrm{H})$, $7.57(\mathrm{~s}, 1 \mathrm{H}), 7.50(\mathrm{~m}, 2 \mathrm{H}), 7.12(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.02(\mathrm{~m}, 2 \mathrm{H}), 6.89(\mathrm{~m}, 4 \mathrm{H}), 4.39$ $(\mathrm{s}, 4 \mathrm{H}), 3.82(\mathrm{~s}, 6 \mathrm{H}), 1.35 \sim 1.07(\mathrm{~m}, 18 \mathrm{H}), 0.84(\mathrm{~m}, 12 \mathrm{H})$.

2-cyano-3-(5-(6-(4-(5-(4-(diphenylamino)phenyl)pyridin-2-yl)-2,5-dioctyl-3,6-dioxo-2,3,5,6-tetrahydropyrrolo[3,4-c]pyrrol-1-yl)pyridin-3-yl)thiophen-2-yl)acrylic acid (PDPP-I): Compound 7 ($48.3 \mathrm{mg}, 0.056 \mathrm{mmol}$), cyanoacetic acid $(47.5 \mathrm{mg}, 0.56 \mathrm{mmol})$, ammonium acetate $(60 \mathrm{mg})$ dissolved in THF $(4 \mathrm{~mL})$ and acetic acid $(4 \mathrm{~mL})$ at refluxing for 2.5 h . After cooling to room temperature, the mixture was poured into 100 mL ice water. The precipitate was filtered and washed with water, ethanol and nhexane to afford a black-red powder (20mg, 38.4\%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{THF}$) δ $9.27(\mathrm{~s}, 2 \mathrm{H}), 9.07(\mathrm{~s}, 1 \mathrm{H}), 8.95(\mathrm{~s}, 1 \mathrm{H}), 8.31(\mathrm{~s}, 2 \mathrm{H}), 8.13(\mathrm{~s}, 1 \mathrm{H}), 7.85(\mathrm{~s}, 1 \mathrm{H}), 7.75(\mathrm{~s}$, $1 \mathrm{H}), 7.62(\mathrm{~s}, 2 \mathrm{H}), 7.18(\mathrm{~s}, 4 \mathrm{H}), 7.04(\mathrm{~s}, 6 \mathrm{H}), 6.96(\mathrm{~s}, 2 \mathrm{H}), 4.36(\mathrm{~s}, 4 \mathrm{H}), 1.25 \sim 1.05(\mathrm{~m}$,
$24 \mathrm{H}), 0.76$ (m, 6H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{THF}$): $\delta 162.54,162.33,155.43,149.52$, $148.14,147.46,146.93,146.41,143.91,139.44,137.96,137.38,134.34,134.20$, 130.03, 129.97, 128.44, 128.08, 127.20, 125.65, 124.22, 123.65, 112.70, 111.79, $111.29,91.95,43.21,32.62,30.78,30.70,30.02,27.58,23.33,14.22$. HRMS (MALDI-TOF, m / z): $[\mathrm{M}+\mathrm{H}]$ calcd for $\left(\mathrm{C}_{58} \mathrm{H}_{59} \mathrm{~N}_{6} \mathrm{O}_{4} \mathrm{~S}\right.$, $)$, 935.4319; found, 935.4252.

2-cyano-3-(5-(6-(4-(5-(4-(diphenylamino)phenyl)pyridin-2-yl)-2,5-bis(2-ethylhexyl)-3,6-dioxo-2,3,5,6-tetrahydropyrrolo[3,4-c]pyrrol-1-yl)pyridin-3-yl)thiophen-2yl)acrylic acid (PDPP-II): PDPP-II was obtained as black-red powder using similar synthetic method of PDPP-I (12.5mg, 32\%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{THF}$) $\delta 9.34$ (s, 2H), $9.15(\mathrm{~s}, 1 \mathrm{H}), 9.03(\mathrm{~s}, 1 \mathrm{H}), 8.41(\mathrm{~s}, 2 \mathrm{H}), 8.23(\mathrm{~s}, 1 \mathrm{H}), 7.96(\mathrm{~s}, 1 \mathrm{H}), 7.84(\mathrm{~s}, 1 \mathrm{H})$, $7.70(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.31-7.25(\mathrm{~m}, 4 \mathrm{H}), 7.14(\mathrm{t}, J=8.2 \mathrm{~Hz}, 6 \mathrm{H}), 7.08-7.02(\mathrm{~m}$, 2H), $4.44(\mathrm{~s}, 4 \mathrm{H}), 1.58-1.27(\mathrm{~m}, 18 \mathrm{H}), 0.87(\mathrm{~m}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{THF}$): δ $162.78,162.72,157.37,150.21,149.57,149.39,148.15,147.29,146.05,139.35$, 138.02, 137.20, 135.82, 134.51, 134.30, 130.70, 130.56, 129.98, 128.45, 127.20, $125.65,125.41,124.23,123.69,112.72,112.40,111.80,96.88,46.47,40.52,31.27$, 30.53, 29.32, 23.74, 14.19, 10.83. HRMS (MALDI-TOF, m / z) $[\mathrm{M}+\mathrm{H}]$ calcd for $\left(\mathrm{C}_{58} \mathrm{H}_{59} \mathrm{~N}_{6} \mathrm{O}_{4} \mathrm{~S},\right), 935.4319$; found, 935.4606.

3-(5-(6-(4-(5-(4-(bis(4-methoxyphenyl)amino)phenyl)pyridin-2-yl)-2,5-dioctyl-3,6-dioxo-2,3,5,6-tetrahydropyrrolo[3,4-c]pyrrol-1-yl)pyridin-3-yl)thiophen-2-yl)-2cyanoacrylic acid(PDPP-III): PDPP-III was obtained as black-red powder using
similar synthetic method of PDPP-I ($23 \mathrm{mg}, 36 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{THF}$) $\delta 9.37$ (s, 2H), $9.17(\mathrm{~s}, 1 \mathrm{H}), 9.02(\mathrm{~s}, 1 \mathrm{H}), 8.41(\mathrm{~s}, 2 \mathrm{H}), 8.18(\mathrm{~s}, 1 \mathrm{H}), 7.95(\mathrm{~s}, 1 \mathrm{H}), 7.85(\mathrm{~s}, 1 \mathrm{H})$, $7.62(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 4 \mathrm{H}), 6.97(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J$ $=8.1 \mathrm{~Hz}, 4 \mathrm{H}), 4.46(\mathrm{~s}, 4 \mathrm{H}), 3.77(\mathrm{~s}, 6 \mathrm{H}), 1.39 \sim 1.28(\mathrm{~m}, 24 \mathrm{H}), 0.86(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, THF) $\delta 163.52,162.62,157.59,148.46,147.23,146.96,145.92,144.61$, 140.90, 139.44, 135.96, 134.04, 133.77, 128.45, 128.14, 128.05, 127.81, 125.04, $123.69,120.35,116.18,115.41,111.65,110.81,91.01,55.41,43.17,32.60,31.85$, 30.40, 30.00, 27.55, 23.32, 14.20. HRMS (MALDI-TOF, m/z) [M + H] calcd for $\left(\mathrm{C}_{60} \mathrm{H}_{63} \mathrm{~N}_{6} \mathrm{O}_{6} \mathrm{~S}\right.$)), 995.4530; found, 995.4554.

3-(5-(6-(4-(5-(4-(bis(4-methoxyphenyl)amino)phenyl)pyridin-2-yl)-2,5-bis(2-ethylhexyl)-3,6-dioxo-2,3,5,6-tetrahydropyrrolo[3,4-c]pyrrol-1-yl)pyridin-3-yl)thiophen-2-yl)-2-cyanoacrylic acid(PDPP-IV): PDPP-IV was obtained as blackred powder using similar synthetic method of PDPP-I (31mg, 42.1\%). ${ }^{1} \mathrm{H}$ NMR (400 MHz, THF) $\delta 9.32$ (m, 2H), 9.14 (s, 1H), $9.00(\mathrm{~s}, 1 \mathrm{H}), 8.39(\mathrm{~m}, 2 \mathrm{H}), 8.18(\mathrm{~s}, 1 \mathrm{H})$, $7.95(\mathrm{~s}, 1 \mathrm{H}), 7.83(\mathrm{~s}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 4 \mathrm{H}), 6.97(\mathrm{~d}, J$ $=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 4 \mathrm{H}), 4.44(\mathrm{~s}, 4 \mathrm{H}), 3.77(\mathrm{~s}, 6 \mathrm{H}), 1.43 \sim 1.25(\mathrm{~m}$, 18 H), 0.87 (s, 12H). ${ }^{13} \mathrm{C}$ NMR (100 MHz, THF) δ 163.58, 162.95, 162.66, 157.57, $150.53,148.92,148.49,146.99,146.68,146.14,146.01,145.89,144.04,140.85$, 139.44, 137.92, 137.64, 134.44, 133.80, 130.23, 128.46, 128.29, 128.13, 127.82, $127.16,125.04,123.70,120.30,116.22,115.39,112.74,111.62,101.42,85.53,55.41$, 46.50, 40.49, 31.26, 30.41, 29.32, 23.76, 14.23, 10.83. HRMS (MALDI-TOF, m/z)
$[\mathrm{M}+\mathrm{H}]$ calcd for $\left(\mathrm{C}_{60} \mathrm{H}_{63} \mathrm{~N}_{6} \mathrm{O}_{6} \mathrm{~S}\right.$, $)$, 995.4530; found, 995.5020.

Figure S1 Photocurrent-voltage curve of PDPP-II based DSSC under standard global AM 1.5 illumination ($100 \mathrm{~mW} \mathrm{~cm}{ }^{-2}$) with solvent-free ionic liquid electrolyte

Figure S2 Stability test photovoltaic parameter $\left(J_{s c}, V_{o c}, f f\right.$, and η) variations with aging time for the DSSCs based on PDPP-II-sensitized TiO_{2} film with solvent-free ionic liquid electrolyte under visible-light soaking.

