Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

## **Supplementary Material**

## Insight into the origin of photoreactivity of various well-defined Bi<sub>2</sub>WO<sub>6</sub> crystals:

## exposed heterojunction-like surface and oxygen defect

Yongchao Ma<sup>a</sup>, Qingzhi Liu<sup>a</sup>, Qi Wang<sup>a</sup>, Dan Qu<sup>a</sup>, Jinsheng Shi<sup>a</sup>\*

<sup>a</sup>Qingdao Agricultural University, Qingdao 266109, People's Republic of China

\* Corresponding author:

Tel: +86-532-88030161; Fax: +86-532-86080213

E-mail address: jsshiqn@aliyun.com

| Sample                              | Х    | $E_{g}(eV)$ | $E_{CB} (eV)$ | $E_{VB} (eV)$ |
|-------------------------------------|------|-------------|---------------|---------------|
| Nanosheet-assembled<br>microspheres | 6.36 | 2.51        | 0.61          | 3.12          |
| Nanoparticle-assembled microspheres | 6.36 | 2.41        | 0.66          | 3.07          |
| Single-crystalline nanosheets       | 6.36 | 2.51        | 0.61          | 3.12          |

**Table S1** The valence band (VB) edge and the conduction band (CB) edge positions of  $Bi_2WO_6$ .

The valence band (VB) edge and the conduction band (CB) edge positions of the prepared  $Bi_2WO_6$  can be calculated from the following formula:

$$E_{VB} = X - E^e + 0.5E_g \qquad (1)$$

$$E_{CB} = E_{VB} - E_g \qquad (2)$$

where  $E_{VB}$  is the VB edge potential,  $E_{CB}$  is the CB edge potential,  $E_g$  is the band gap energy of the semiconductor, X is the electronegativity of the semiconductor that is the geometric mean of the electroegativity of the constituent atoms,  $E^e$  is the energy of free electrons on the hydrogen scale ( about 4.5 eV). The X values of  $Bi_2WO_6$  is 6.36 eV<sup>1</sup>.



Fig. S1 Emission spectrum of the 300W Xe lamp with a 420 nm cutoff filter.



Fig. S2 TEM images of as-prepared  $Bi_2WO_6$  samples: (a-b) nanosheet-assembled microspheres, (c-d) nanoparticle-assembled microspheres and (e) single-crystalline nanosheets.



Fig. S3 (a) Schematic illustration of the crystal orientation of the nanosheets with exposed (020) facets. (b) The crystal structure of orthorhombic  $Bi_2WO_6$ . Atomic structure of the (020) facets: (c) side view and (d) top view. W, O and Bi atoms are represented as blue, red and yarrow spheres, respectively.



Fig. S4 Enlarged profile of the XRD patterns of the prepared  $Bi_2WO_6$  samples between angles 10-30 °: (a) nanosheet-assembled microspheres, (b) nanoparticleassembled microspheres and (c) single-crystalline nanosheets.



**Fig. S5** Photocatalytic degradation of MO under visible light irradiation over various Bi<sub>2</sub>WO<sub>6</sub> samples: (a) nanosheet-assembled microspheres, (b) nanoparticle-assembled microspheres and (c) single-crystalline nanosheets.



**Fig. S6** N<sub>2</sub> absorption-desorption isotherms of the prepared Bi<sub>2</sub>WO<sub>6</sub> samples: (a) nanosheet-assembled microspheres, (b) nanoparticle-assembled microspheres and (c) single-crystalline nanosheets.

Fig. S6 describes typical N<sub>2</sub> adsorption-desorption isotherms of the prepared samples. Both  $Bi_2WO_6$  nanosheet-built microspheres and nanosheets showed a typical II adsorption-desoprtion isotherms. In addition, the weak adsorption-desoprtion hysteresis demonstrated monolayer absorption. However, the nanoparticle-assembled microspheres displayed IV-type isotherm character, indicating the existence of mesopores. The specific surface areas of nanosheet-assembled microspheres, nanoparticle-assembled micropsheres and single-crystalline nanosheets are 26.97±1, 40.72±1 and 13.56±1 m<sup>2</sup> g<sup>-1</sup>, respectively.

## Supplementary reference

1. L. Chen, H. Hua, Q. Yang and C. Hu, Appl. Surf. Sci., 2015, 327, 62-67.