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Fig. S1 SEM images of the ZnO NRAs.

Fig. S2 EDS spectrum of the ZnO/BiOBr heterostructure.



Fig. S3 XPS survey spectrum of the ZnO/BiOBr heterostructure.



Fig. S4 Raman spectra of pure ZnO and ZnO/BiOBr heterostructure.

Fig. S4 exhibits the Raman spectra of pure ZnO and ZnO/BiOBr heterostructure. The 

strong peak at 438 cm-1 and other four weak peaks at 332, 380, 408 and 586 cm-1 are 

correspondent to the E2(high), A1(TO), A1(TO), E1(TO) and E1(LO) mode in wurtzite 

structured ZnO.[S1,S2] The strong band observed at 110 cm-1 for ZnO/BiOBr could be 

attributed to A1g internal Bi-Br stretching mode, and the band at 158 cm-1 could be 

ascribed to Eg internal Bi-Br stretching mode.[S3] Moreover, the weak band at 384 cm-

1 that generated by the motion of oxygen atoms is belongs to the B1g mode.[S4] The 

above results can be regarded as the combination of ZnO and BiOBr in the products.



Fig. S5 Plots of (αhv)1/2 versus energy (hv) for the band gap energy of the (a) ZnO and 

(b) BiOBr.



Fig. S6 (a) Current-potential (I-V) curves of ZnO/BiOBr samples with different 

BiOBr NPs content, (b) optimization curve.



Fig. S7 SEM images of ZnO/BiOBr samples with different BiOBr NPs content: (a-b) 

0.025 mM [KBr + Bi(NO3)3], (c-d) 0.05 mM [KBr + Bi(NO3)3], and (e-f) 0.075 mM 

[KBr + Bi(NO3)3].



Fig. S8 Current density versus applied potential curves for the pure ZnO, BiOBr and 

ZnO/BiOBr photoanodes in dark condition.

Fig. S9 Photocurrent density stability test of the as-prepared photoanodes under 

visible light illumination for 1 h with the applied bias of 0.5 V.



Fig. S10. Mott-Schottky plots of the ZnO, BiOBr and ZnO/BiOBr heterostructure in 

dark at a frequency of 10 KHz and a current of 5 mV with a three-electrode system.

Fig. S11. Degradation rates for RhB solution by different catalysis type of ZnO, 

BiOBr and ZnO/BiOBr photoelectrodes.



Fig. S12. ESI-MS spectra of the RhB solution in the degradation process (a) before 

and (b) after the light illumiantion for 100 min.

These peaks may be ascribed to the following decomposition products:

peaks at 443 ~ 445, 448: characteristic of RhB molecule. 

peaks at 331, 356: fragments which resulted from severing ethyl group from RhB 

molecule. 

peaks at 349, 431: fragments which resulted from de-ethylation and hydroxylation 

process. 

peaks at 399: fragments which resulted from severing one carboxyl group from RhB 

molecule.

peaks at 475: fragments which resulted from hydroxylation process by two hydroxyl 

radicals.

Moreover, these above degradation processes can be conclued to the following two 

aspects:



Fig. S13. The band structures variation of the two semiconductors before and after 

contact.



Table S1 Pseudo-first-order rate constants of RhB solution degradation by different 

catalysis types.

Serie Catalysis type 
The first order 

Kinetic equation 
k(min-1) R2 

1 ZnO -ln(Ct/C0)=0.0021 t 0.0021 0.9812 

2 BiOBr -ln(Ct/C0)=0.0030 t 0.0030 0.9876 

3 

EC 

ZnO/BiOBr -ln(Ct/C0)=0.0038 t 0.0038 0.9877 

4 ZnO -ln(Ct/C0)=0.0070 t 0.0070 0.9782 

5 BiOBr -ln(Ct/C0)=0.0089 t 0.0089 0.9885 

6 

PC 

ZnO/BiOBr -ln(Ct/C0)=0.0112 t 0.0112 0.9899 

7 ZnO -ln(Ct/C0)=0.0166 t 0.0166 0.9951 

8 BiOBr -ln(Ct/C0)=0.0197 t 0.0197 0.9985 

9 

PEC 

ZnO/BiOBr  -ln(Ct/C0)=0.0290 t 0.0290 0.9641 
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