Supporting Information

BiOBr nanoplate-wrapped ZnO nanorod arrays for high performance photoelectrocatalytic application

Zhao-Qing Liu*, Pan-Yong Kuang, Ren-Bin Wei, Nan Li, Yi-Bo Chen and Yu-Zhi Su*

School of Chemistry and Chemical Engineering/Guangzhou Key Laboratory for Environmentally Functional Materials and Technology Guangzhou University; Guangzhou Higher Education Mega Center, Waihuan Xi Road No. 230, China 510006 Fax: 86-20-39366908; Tel: 86-20-39366908; E-mail:<u>lzqgzu@gzhu.edu.cn (Z. Q. Liu); syzbox@gzhu.edu.cn (Y. Z. Su)</u>

Fig. S1 SEM images of the ZnO NRAs.

Fig. S2 EDS spectrum of the ZnO/BiOBr heterostructure.

Fig. S3 XPS survey spectrum of the ZnO/BiOBr heterostructure.

Fig. S4 Raman spectra of pure ZnO and ZnO/BiOBr heterostructure.

Fig. S4 exhibits the Raman spectra of pure ZnO and ZnO/BiOBr heterostructure. The strong peak at 438 cm⁻¹ and other four weak peaks at 332, 380, 408 and 586 cm⁻¹ are correspondent to the $E_2(high)$, $A_1(TO)$, $A_1(TO)$, $E_1(TO)$ and $E_1(LO)$ mode in wurtzite structured ZnO.^[S1,S2] The strong band observed at 110 cm⁻¹ for ZnO/BiOBr could be attributed to A_{1g} internal Bi-Br stretching mode, and the band at 158 cm⁻¹ could be ascribed to E_g internal Bi-Br stretching mode.^[S3] Moreover, the weak band at 384 cm⁻¹ that generated by the motion of oxygen atoms is belongs to the B_{1g} mode.^[S4] The above results can be regarded as the combination of ZnO and BiOBr in the products.

Fig. S5 Plots of $(\alpha hv)^{1/2}$ versus energy (hv) for the band gap energy of the (a) ZnO and (b) BiOBr.

Fig. S6 (a) Current-potential (*I-V*) curves of ZnO/BiOBr samples with different BiOBr NPs content, (b) optimization curve.

Fig. S7 SEM images of ZnO/BiOBr samples with different BiOBr NPs content: (a-b) $0.025 \text{ mM} [\text{KBr} + \text{Bi}(\text{NO}_3)_3]$, (c-d) $0.05 \text{ mM} [\text{KBr} + \text{Bi}(\text{NO}_3)_3]$, and (e-f) $0.075 \text{ mM} [\text{KBr} + \text{Bi}(\text{NO}_3)_3]$.

Fig. S8 Current density versus applied potential curves for the pure ZnO, BiOBr and ZnO/BiOBr photoanodes in dark condition.

Fig. S9 Photocurrent density stability test of the as-prepared photoanodes under visible light illumination for 1 h with the applied bias of 0.5 V.

Fig. S10. Mott-Schottky plots of the ZnO, BiOBr and ZnO/BiOBr heterostructure in dark at a frequency of 10 KHz and a current of 5 mV with a three-electrode system.

Fig. S11. Degradation rates for RhB solution by different catalysis type of ZnO, BiOBr and ZnO/BiOBr photoelectrodes.

Fig. S12. ESI-MS spectra of the RhB solution in the degradation process (a) before and (b) after the light illumiantion for 100 min.

These peaks may be ascribed to the following decomposition products:

peaks at 443 ~ 445, 448: characteristic of RhB molecule.

- peaks at 331, 356: fragments which resulted from severing ethyl group from RhB molecule.
- peaks at 349, 431: fragments which resulted from de-ethylation and hydroxylation process.
- peaks at 399: fragments which resulted from severing one carboxyl group from RhB molecule.
- peaks at 475: fragments which resulted from hydroxylation process by two hydroxyl radicals.

Moreover, these above degradation processes can be conclued to the following two aspects:

Fig. S13. The band structures variation of the two semiconductors before and after contact.

Serie		Catalysis type	The first order Kinetic equation	k(min ⁻¹)	<i>R</i> ²
1		ZnO	$-\ln(C_t/C_0)=0.0021 t$	0.0021	0.9812
2	EC	BiOBr	$-\ln(C_t/C_0)=0.0030 t$	0.0030	0.9876
3		ZnO/BiOBr	$-\ln(C_t/C_0)=0.0038 t$	0.0038	0.9877
4		ZnO	$-\ln(C_t/C_0)=0.0070 t$	0.0070	0.9782
5	PC	BiOBr	$-\ln(C_t/C_0)=0.0089 t$	0.0089	0.9885
6		ZnO/BiOBr	$-\ln(C_t/C_0)=0.0112 t$	0.0112	0.9899
7		ZnO	$-\ln(C_t/C_0)=0.0166 t$	0.0166	0.9951
8	PEC	BiOBr	$-\ln(C_t/C_0)=0.0197$ t	0.0197	0.9985
9		ZnO/BiOBr	$-\ln(C_t/C_0)=0.0290 t$	0.0290	0.9641

Table S1 Pseudo-first-order rate constants of RhB solution degradation by different catalysis types.

References

- [S1] K. Kim, K. L. Kim and K. S. Shin, Phys. Chem. Chem. Phys., 2013, 15, 9288-9294.
- [S2] X. D. Xue, T. Wang, X. D. Jiang, J. Jiang, C. X. Pan and Y. C. Wu, *CrystEngComm*, 2014, 16, 1207-1216.
- [S3] D. Zhang, J. Li, Q. G. Wang and Q. S. Wu, J. Mater. Chem. A, 2013, 1, 8622-8629.
- [S4] Y. Lei, G. Wang, S. Song, W. Fan and H. Zhang, CrystEngComm, 2009, 11, 1857-1862.