Supplemental Material

Synthesis, structure, and properties of a 3D porous Zn(II) MOF constructed from a terpyridine-based ligand

Wen Wang, Zhenyu Xiao, Huan Lin, Rongming Wang,* Liangliang Zhang, Daofeng Sun*

State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), College of Science, China University of Petroleum (East China), Qingdao Shandong 266580, P. R. China.

E-mail: <u>rmwang@upc.edu.cn</u>.

dfsun@upc.edu.cn

The 4'-(furan-2-yl)-[2,2':6',2"-terpyridine]-4,4"-dicarboxylic acid was prepared according to the reported procedures.^[1]

Fig. S1 The H^1 NMR of H_2L ligand.

Table S1 Selected bond lengths (Å) and angles (°) f	or 1	
---	------	--

Zn1-O5	2.256 (9)	Zn1-O6	2.235 (6)	Zn1-O7	1.955 (4)
Zn1-N1	2.175 (4)	Zn1-N2	2.071 (4)	Zn1-N3	2.159 (4)
Zn2-O3	1.973 (3)	Zn2-O1	1.945 (3)	Zn2-N4	2.176 (4)
Zn2-N5	2.082(4)	Zn2-N6	2.224(4)		
O3-Zn2-N5	109.88(14)	O3-Zn2-N4	93.93 (16)	O3-Zn2-N6	99.57 (16)
O1-Zn2-O3	124.10(17)	O1-Zn2-N5	125.44 (16)	O1-Zn2-N4	106.16 (16)
O1-Zn2-N6	88.26 (17)	N5-Zn2-N4	75.30 (16)	N5-Zn2-N6	74.87 (16)
N4-Zn2-N6	149.93(17)	N3-Zn1-N1	150.00 (18)	N3-Zn1-O5	104.5 (2)
N3-Zn1-O6	93.03 (18)	O7-Zn1-N3	94.96 (16)	O7-Zn1-N2	132.84 (16)
07-Zn1-N1	99.44 (16)	O7-Zn1-O5	87.17 (2)	O7-Zn1-O6	142.3 (3)
N2-Zn1-N3	75.11 (15)	N2-Zn1-N1	75.79 (16)	N2-Zn1-O5	139.97 (18)
N2-Zn1-O6	84.8 (3)	N1-Zn1-O5	102.4 (2)	N1-Zn1-O6	91.47 (17)
O6-Zn1-O5	55.2 (3)				

_

Fig. S2 The powder XRD pattern and the simulated one from the single-crystal diffraction data for complex 1.

Fig. S3 The PXRD patterns of complex 1 treated in DMF.

Fig. S4 TG curve of complex 1.

Fig. S5 IR spectrum of complex 1.

Fig. S6 Room-temperature emission spectra of free ligand and complex 1.

Fig. S7 The emission spectra for H_2L dissolved in DMF and complex 1 dispersed in DMF at room temperature.

Fig. S8 Emission intensity of complex **1** dispersed in DMF upon incremental addition of a M(NO₃)_x (M= Cu²⁺, Na⁺, Al³⁺, Ag⁺, Cd²⁺, Li⁺, Zn²⁺, Pb²⁺,) solution (1mM) in DMF.

Fig. S9 Corresponding Stern-Volmer plots of analytes. Insert: Stern–Volmer plot of I_0/I -1 versus the Fe³⁺ concentration in DMF.

Fig. S10 Effect on the emission spectra of complex 1 dispersed in DMF upon incremental addition of different analyte solutions (1,3-DNB, 2,4-DNT, 1,4-DNB, NB, 1-M-4-NB) solution (1 mM) in DMF

References:

[1] J. Dehaudt, J. Husson, Laurent Guyard, Green Chem., 2011, 13, 3337 .