Efficient Fluoride Adsorption by mesoporous Hierarchical Alumina microspheres

Sara Gràcia Lanas,^a Manuel Valiente,^b, Eleonora Aneggi,^a Alessandro Trovarelli,^a Marilena Tolazzi^a and Andrea Melchior^a*

^aDipartimento Politecnico, Laboratori di Tecnologie Chimiche, Università di Udine, via del Cotonificio 108, 33100 Udine, Italy

^bDepartamento de Quimica, Centre GTS, Universitat Autònoma de Barcelona, Campus Bellaterra Edificio CN, Barcelona, Spain

Electronic Supplementary Material

Adsorbent	Particle size distribution (DLS) (µm)	Surface area (m ² g ⁻¹)	Pore size (nm)	Pore volume (cm ³ g ⁻¹)	pH _{zpc}
HAM type A	0.6 – 1.0	254.09	12.96	1.07	9.0
HAM type B	1.5 – 2.6	241.62	25.55	2.32	9.0

Table S1. Characteristics of HAM of type A and B

Temperature		Langmui	r equation		Freundlich equation			
(K)	$Q_{max} \pmod{\mathrm{g}^{-1}} \qquad b(\mathrm{M}^{-1})$		log b	$\log b$ R ²		K_f (L mmol ⁻¹ g ⁻¹)	$\log K_f$	R ²
298.15	0.022 ± 0.001	3308 ±646	3.52 ± 0.02	0.997	4 ±1	15 ±2	1.18 ± 0.13	0.883

Table S2. Langmuir and Freundlich isotherm parameters for fluoride adsorption by HAM type A obtained by using the batch method with 1h as contact time.

Mono-exponential model			Bi-exponential model					
<i>a</i> ₁ (M)	k_1 (h ⁻¹)	R ²	$a_1(M)$	k_1 (h ⁻¹)	<i>a</i> ₂ (M)	$k_2(h^{-1})$	R ²	
7.0	0.17	0.905	9.5	129.99	6.4	0.15	0.982	

Table S3. Mono and bi-exponential parameters for the first-order kinetic model

Adsorbent	Particle size	Initial F ⁻ (mM)	Adsorbent dosage (g L ⁻¹)	pН	Temperature (K)	Contact time (h)	Adsorption capacity (mmol g ⁻¹)	<i>b</i> (M ⁻¹)	$\Delta H (kJ mol^{-1})$	Ref.
Nanomagnetite graphite –La	-	0.1 – 12.9 (1.97 - 244.6 mg L ⁻¹)	0.2	7.0	298	24	4.1 (77.12 mg g ⁻¹)	718.2 (0.038 L mg ⁻¹)	21.13	20
Mixed-phase nano iron oxides	50-200nm	0.5 - 5.3 (10 - 100 mg L ⁻¹)	1.2	7.0	298	8	2.8 (53.19 mg g ⁻¹)	1.1 (0.06 L g ⁻¹)	-94.67	68
Bone char	-	0.1 – 1.1 (1 - 20 mg L ⁻¹)	1.0	5.0	298	120-168	0.4 (7.74 mg g ⁻¹)	29447.4 (1.55 L mg ⁻¹)	-	69
MgO microspheres	-	-	1.0	7.0	298	12	6.1 (115.5 mg g ⁻¹)	$\frac{1481.9}{(0.078 \ L \ mg^{-1})}$	-	70
Magnetic cationic hydrogel - La	-	0-4.2 (0 - 80 mg L ⁻¹)	0.3	7.0	298	0.17	7.9 (149.99 mg g ⁻¹)	7219.4 (0.38 L mg ⁻¹)	-	71
UiO-66-NH ₂	100nm	0.5 - 3.7 (10 - 70 mg L ⁻¹)	0.5	-	293	2	3.1 (58.82 mg g ⁻¹)	$\begin{array}{c} 6725.4 \\ (0.354 \ \mathrm{L} \ \mathrm{mg}^{\text{-1}}) \end{array}$	-28.21	72
HAM type A	900nm	2.0 - 16.0	0.5	5.5	298.15	12ª	55.0 (1.0 g g ⁻¹)	4820	-	Present work
HAM type A	900nm	2.0 - 16.0	0.5	5.5	298.15	1ª	26.0 (491.4 mg g ⁻¹)	4563	-17.7 ± 0.6	Present work
HAM type B	900nm	2.0 - 16.0	0.5	5.5	298.15	1ª	20.4 (385.6 mg g ⁻¹)	598	-13.3 ±0.9	Present work

Table S4. Fluoride removal parameters for several absorbing materials (data relative to the HAM prepared in this work are also recalled for comparison). In parentheses the original values reported in the references. ^a Delay time between fluoride solution additions.

Figure S1. SEM (i) TEM (ii) images of synthesized type B HAM, before calcination process.

Figure S2. Experimental fluoride adsorption data (batch method) fitted with Langmuir (green line) and Freundlich (dashed red line) models with 1h of contact time (type A sample).

Figure S3. Fluoride adsorption data fitted with Langmuir (green line) and Freundlich (dashed red line) models with 12h delay between injections (type A sample).