ESI to accompany:

## Improved light absorbance does not lead to better DSC performance: studies on a ruthenium porphyrin-terpyridine conjugate

Angelo Lanzilotto,<sup>*a*</sup> Laura A. Büldt,<sup>*b*</sup> Hauke Schmidt,<sup>*b*</sup> Alessandro Prescimone,<sup>*a*</sup> Oliver S. Wenger,<sup>*b*</sup> Edwin C. Constable<sup>*a*</sup> and Catherine E. Housecroft<sup>\**a*</sup>

<sup>*a*</sup>Department of Chemistry, University of Basel, Spitalstrasse 51, CH-4056 Basel, Switzerland; email: <u>catherine.housecroft@unibas.ch</u> <sup>*b*</sup>Department of Chemistry, University of Basel, St. Johanns-Ring 19, CH-4056 Basel, Switzerland.



Fig. S1. HMQC spectrum (<sup>1</sup>H, 500 MHz; <sup>13</sup>C, 126 MHz) of a CDCl<sub>3</sub> solution of compound **3** (295 K). \* = residual CHCl<sub>3</sub>. Chemical shifts in  $\delta$ /ppm.



Fig. S2. HMBC spectrum (<sup>1</sup>H, 500 MHz; <sup>13</sup>C, 126 MHz) of a CDCl<sub>3</sub> solution of compound **3** (295 K). \* = residual CHCl<sub>3</sub>. Chemical shifts in  $\delta$ /ppm.



Fig. S3. Reductive processes in the cyclic voltammogram of **3** (CH<sub>2</sub>Cl<sub>2</sub>, 0.1 M  $[^{n}Bu_{4}][PF_{6}]$  as supporting electrolyte, scan rate of 0.1 V s<sup>-1</sup>).



Fig. S4. Spectroelectrochemistry data for the reductive cycle of **3** ( $\approx$ 1 mM in CH<sub>2</sub>Cl<sub>2</sub>, [<sup>*n*</sup>Bu<sub>4</sub>N][PF<sub>6</sub>] supporting electrolyte). (a) Absorption spectra before (blue line) and after (red line) the reductive cycle. (b) A spectrum was recorded every 0.1 V, starting from 0 V (first blue line at the front) to –1.8 V (last blue line) and back from –1.8 V (first red line) to 0 V (last red line). See caption to Fig. 6 for referencing to Fc/Fc<sup>+</sup>.