# Oxyonium phosphobetaines – unusually stable nucleophilic catalyst-phosphate complexes formed from *H*-phosphonates and *N*-oxides

Magdalena Materna, Jacek Stawinski, Agnieszka Kiliszek, Wojciech Rypniewski, and Michal Sobkowski\*

Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland \*Corresponding Author, e-mail: msob@ibch.poznan.pl

# **Supporting information**

# Contents

| 1. General experimental information                 | 2  |
|-----------------------------------------------------|----|
| 2. Experimental procedures                          | 2  |
| 2.1. Aliphatic phosphobetaines                      | 2  |
| 2.2. Aromatic phosphobetaines                       | 3  |
| 2.3. Nucleoside phosphobetaine                      | 4  |
| 2.4. X-ray diffraction measurements                 | 4  |
| 2.5. References                                     | 4  |
| 3. Figures and schemes                              | 5  |
| 4. <sup>31</sup> P NMR spectra of reaction mixtures | 8  |
| 5. NMR and MS spectra of the isolated products      | 20 |
| 5.1. Betaine <b>5a</b>                              | 20 |
| 5.2. Betaine <b>5b</b>                              | 26 |
| 5.3. Betaine <b>5d</b>                              | 33 |
| 5.4. Betaine <b>5e</b>                              | 39 |
| 5.5. Betaine <b>5f</b>                              | 46 |

# 1. General experimental information

NMR spectra were recorded on Bruker Avance II 400 MHz machine. All reagents were of analytical grade, obtained from commercial suppliers and used without further purification. Anhydrous solvents used for reactions were stored over molecular sieves 4 Å and the content of water was controlled by Karl Fischer coulometric titration, (Metrohm 684 KF coulometer). TLC analyses were carried out on Merck silica gel 60 F 254 precoated plates using DCM–MeOH 7:3 v/v solvent system.

Powdered molecular sieves were activated by heating for 24 h at 150 °C under vacuum (<0.1 Torr). Pivaloyl chloride was distilled and used within one month. Aliphatic *N*-oxides were rendered anhydrous using the method by Soderquist and Anderson.<sup>1</sup>

Immediately prior to reactions, all solid reactants were dissolved in pyridine and evaporated to dryness to evacuate any residual moisture (2x). The procedure was repeated with toluene (1x) to remove remains of pyridine. Insufficient removal of water leads to formation of increased amounts of phenyl *H*-phosphonate **2a** (the main or sole by-product) in the reaction mixtures.

The rates and yields of formation of phosphobetaines were higher in polar solvents (DMF, acetonitrile) than in DCM; however, precipitation was more effective in DCM and this solvent was used typically for preparative purposes. For *in situ* generation of phosphobetaines, DMF or acetonitrile are recommended.

Caution! The reactions of *N*-oxides with aryl *H*-phosphonate diesters are highly exothermic and dichloromethane (DCM) used as a solvent may boil violently upon mixing the reactants.

# 2. Experimental procedures

# 2.1. Aliphatic phosphobetaines

# General procedure

*N*-Oxide **3** (1.5 mmol) was dissolved in anhydrous DCM (5 mL). Diphenyl *H*-phosphonate **1a** (96  $\mu$ l, 0.5 mmol) was added while stirring and the stirring was continued for 20 min at room temperature. White microcrystalline precipitate was collected by filtration, washed with DCM, and dried under vacuum.

# *N-methylmorpholino-4-ium phenyl phosphate* (5b)

Yield: 80 mg (60%). M.p. 103–105 °C; R<sub>f</sub> 0.25;

<sup>1</sup>H NMR (400 MHz, D<sub>2</sub>O):  $\delta_{\rm H}$  3.94 (s, 3H), 3.98 (d, *J*= 11.9 Hz, 2H), 4.16 (quint, *J*= 12.2 Hz, 4H), 4.35 (d, *J*= 13.6 Hz, 2H), 7.31 (d, <sup>3</sup>*J*= 8.1 Hz, 2H), 7.35 (t, <sup>3</sup>*J*= 7.4 Hz, 1H), 7.52 (t, <sup>3</sup>*J*= 7.9 Hz, 2H);

<sup>13</sup>C NMR (100 MHz, D<sub>2</sub>O):  $\delta_{\rm C}$  55.7, 61.0, 65.2, 120.0 (d, <sup>3</sup> $J_{\rm CP}$ = 3.8 Hz), 125.4, 130.0, 150.8 (d, <sup>2</sup> $J_{\rm CP}$ = 8.0 Hz);

<sup>31</sup>P NMR (162 MHz, H<sub>2</sub>O):  $\delta_P$  – 9.4 (s);

HRMS ESI (m/z calcd. for C<sub>11</sub>H<sub>16</sub>NO<sub>5</sub>P: 273.0766), negative ion mode, found 272.0667 [M–H]<sup>-</sup>; positive ion mode, found 296.0662 [M+Na]<sup>+</sup>.

In order to obtain crystals suitable for X-ray analysis, the reaction was carried out in 15 ml of DCM without stirring and left for a few hours at room temperature in an open flask protected with a soft paper towel to allow slow evaporation of the solvent. The crystals were collected, washed briefly with DCM, dried under vacuum, and kept under nitrogen in a refrigerator.

# *Trimethylammonium phenyl phosphate* (5e)

Yield: 58 mg (50%). M.p. 112–114 °C; *R*<sub>f</sub> 0.22;

<sup>1</sup>H NMR (400 MHz, D<sub>2</sub>O):  $\delta_{\rm H}$  3.87 (s, 9H), 7.30 (d, <sup>3</sup>J= 8.2 Hz, 2H), 7.34 (t, <sup>3</sup>J= 7.5 Hz, 1H), 7.51 (t,  ${}^{3}J=7.9$  Hz, 2H);

<sup>13</sup>C NMR (100 MHz, D<sub>2</sub>O):  $\delta_{\rm C}$  58.1, 119.9 (d, <sup>3</sup>J<sub>CP</sub>= 3.8 Hz), 125.2, 130.0, 150.9 (d, <sup>2</sup>J<sub>CP</sub>= 7.9 Hz):

<sup>31</sup>P NMR (162 MHz, H<sub>2</sub>O):  $\delta_P$  –9.4 (s);

HRMS ESI (m/z calcd. for C<sub>9</sub>H<sub>14</sub>NO<sub>4</sub>P: 231.0660), negative ion mode, found 230.0565 [M–H]<sup>-</sup>; positive ion mode, found 254.0544 [M+Na]<sup>+</sup>.

In order to obtain crystals suitable for X-ray analysis, the reaction was carried out in 5 ml of DCM without stirring and left overnight at 4 °C in an open flask protected with a soft paper towel to allow slow evaporation of the solvent. The crystals were collected, washed briefly with DCM, dried under vacuum, and kept under nitrogen in a refrigerator.

# 2.2. Aromatic phosphobetaines

# 4-methoxypyridin-1-ium-1-yl phenyl phosphate (5a)

4-Methoxypyridine N-oxide 3a (188 mg, 1.5 mmol) was dissolved in anhydrous acetonitrile (4 mL). Diphenyl H-phosphonate 1a (96 µl, 0.5 mmol) was added while stirring and the stirring was continued for 10 min at 40 °C. Then, the reaction mixture was diluted with diethyl ether (8 mL) and left at 4 °C overnight. Yellowish precipitate was collected by filtration, washed with ether, and dried under vacuum.

Yield: 93 mg (66%). M.p. 150–153 °C; R<sub>f</sub> 0.74;

<sup>1</sup>H NMR (400 MHz, DMF- $d_7$ )  $\delta_{\rm H}$  4.22 (s, 3H), 7.09 (m, 1H), 7.30 (m, 4H), 7.70 (d, <sup>3</sup>J= 7.8 Hz, 2H), 9.02 (d,  ${}^{3}J=7.3$  Hz, 2H);

<sup>13</sup>C NMR (100 MHz, DMF- $d_7$ )  $\delta_C$  58.8, 113.9, 120.6 (d, <sup>3</sup> $J_{CP}$ = 4.4 Hz), 123.8, 129.9, 144.3, 153.9  $(d, {}^{2}J_{CP} = 7.3 \text{ Hz}), 170.6;$ 

 $^{31}$ P NMR (162 MHz, DMF)  $\delta_{\rm P}$  -5.5 (s);

HRMS ESI (*m/z* calcd. for C<sub>13</sub>H<sub>15</sub>N<sub>2</sub>O<sub>4</sub>P: 281.0453) positive ion mode, found 304.0355 [M+Na]<sup>+</sup>. No expected molecular ion was found in the negative ion mode.

# 4-methylpyridin-1-ium-1-yl phenyl phosphate (5c)

4-Methylpyridine N-oxide 3c (164 mg, 1.5 mmol) was dissolved in anhydrous acetonitrile (4 mL). Diphenyl H-phosphonate 1a (96 µl, 0.5 mmol) was added while stirring. Compound 5c  $(\delta_{\rm P}$  -5.6 ppm) was formed in ca. 40% yield (<sup>31</sup>P NMR; Figs. S7a/b). Attempts to isolate it were unsuccessful.

# 4-(Dimethylamino)pyridin-1-ium-1-yl phenyl phosphate (5d)

4-(N,N-Dimethylamino)pyridine N-oxide 3d (218 mg, 1.5 mmol) was dissolved in anhydrous DCM/diethyl ether (1:1 v/v, 20 mL) solvent system. Diphenyl H-phosphonate 1a (96 µl, 0.5 mmol) was added while stirring and the stirring was continued for 30 min at room temperature (last 20 min in an open flask). White microcrystalline precipitate was collected by filtration, washed with ether and dried under vacuum.

Yield: 120 mg (81%). M.p. 185–188 °C; R<sub>f</sub> 0.38;

<sup>1</sup>H NMR (400 MHz, D<sub>2</sub>O):  $\delta_{\rm H}$  3.22 (s, 6H), 6.86 (d, <sup>3</sup>*J*= 7.3 Hz, 2H), 7.20 (d, <sup>3</sup>*J*= 7.7 Hz, 2H), 7.27 (t, <sup>3</sup>*J*= 7.4 Hz, 1H), 7.43 (t, <sup>3</sup>*J*= 7.9 Hz, 2H), 8.19 (d, <sup>3</sup>*J*= 8.0 Hz, 2H); <sup>13</sup>C NMR (100 MHz, D<sub>2</sub>O):  $\delta_{\rm C}$  39.3, 106.5, 119.3 (d, <sup>3</sup>*J*<sub>CP</sub>= 4.1 Hz), 124.7, 129.6, 138.1, 150.5

 $(d, {}^{2}J_{CP}=7.7 \text{ Hz}), 155.3;$ 

 $^{31}$ P NMR (162 MHz, H<sub>2</sub>O):  $\delta_P$  –4.8 (s);

HRMS ESI (m/z calcd. for C13H15N2O4P: 294.0769), positive ion mode, found 317.0723 [M+Na]<sup>+</sup>. No expected molecular ion was found in the negative ion mode.

## 2.3. Nucleoside phosphobetaine

## N-methylmorpholino-4-ium 5'-O-dimethoxytritylthymidin-3'-yl phosphate (5f)

5'-O-(4,4'-Dimethoxytrityl)thymidine (272 mg, 0.5 mmol) was dissolved in anhydrous dimethylformamide/pyridine (7:3, v/v) solvent system (5 mL) in the presence of activated powdered molecular sieves 4 Å. Diphenyl *H*-phosphonate **1a** (239  $\mu$ l, 1.25 mmol) was added while stirring and the stirring was continued for 20 min at room temperature. *N*-Methylmorpholine *N*-oxide **3b** (352 mg, 3.0 mmol) was dissolved in the same solvent system over activated powdered molecular sieves 4 Å (5 mL), added to the reaction mixture and left stirred for 10 min at room temperature. Molecular sieves were removed by filtration and washed with toluene (ca. 25 ml). Combined solutions were concentrated to *ca* 10–15 ml in a rotary evaporator. Cold diethyl ether (50 ml) was added dropwise while stirring and the mixture was left at 0 °C for 1 h. The solution was decanted, the precipitate was dissolved in DCM and washed twice with freshly prepared saturated aqueous solution of sodium bicarbonate. The organic layer was dried with cold diethyl ether. The white solid obtained was dried under vacuum. Yield: 159 mg (44%). *R*<sub>f</sub> 0.85;

<sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ )  $\delta_{\rm H}$  1.40 (s, 3H), 2.40 (m, 2H), 3.25 (dd, *J*= 9.0 and 9.6 Hz, 2H), 3.39 ( br, 4H), 3.69 (s, 3H), 3.74 (s, 6H), 3.91 (t, *J*= 7.7 Hz, 2H), 4.09 (t, *J*= 9.9 Hz, 2H), 4.17 (br, 1H), 4.88 (br, 1H), 6.21 (t, *J*= 7.1 Hz, 1H), 6.89 (d, *J*= 8.9 Hz, 4H), 7.24 (t, 1H), 7.25 (d, *J*= 8.8 Hz, 4H), 7.31 (t, *J*= 7.5 Hz, 2H), 7.38 (d, *J*= 7.6 Hz, 2H), 7.51 (s, 1H), 11.38 (br, 1H);

<sup>13</sup>C NMR (100 MHz, DMSO- $d_6$ ) δ<sub>C</sub> 11.5, 38.1, 55.0, 56.5, 60.5, 62.8, 63.8, 74.4, 83.7, 84.4, 85.9, 109.6, 113.2, 126.8, 127.6, 127.9, 129.7, 135.1, 135.4, 144.6, 150.3, 158.1, 163.6;

<sup>31</sup>P NMR (162 MHz, DMSO)  $\delta_P$  – 3.7 (d, <sup>3</sup>*J*= 7.0 Hz);

HRMS ESI (m/z calcd. for C<sub>9</sub>H<sub>14</sub>NO<sub>4</sub>P: 723.2556), negative ion mode, found 722.2450 [M–H]<sup>-</sup>; positive ion mode, found 746.2413 [M+Na]<sup>+</sup>.

#### 2.4. X-ray diffraction measurements

The X-ray diffraction measurements on monocrystals were performed at 100 K on beamline 14.2 at the BESSY synchrotron in Berlin using a Mar Research MX-225 detector. The resolution range of the reflections for both compounds was 20-0.81 Å and the X-ray wavelength was 0.88561 Å. The data were integrated and scaled using the HKL200 software.<sup>2</sup> The structures were solved by direct methods using SHELXT<sup>3</sup> and refined using SHELXL.<sup>4</sup> The R-factor for the final model of **5b** and for all data was 0.0475, and for **5e** it was 0.0256. The crystallographic data have been deposited at the Cambridge Crystallographic Data Centre and allocated with the deposition numbers: CCDC 1425902 for **5b** and 1425903 for **5e**.

## 2.5. References

1 J. A. Soderquist, C. L. Anderson, Tetrahedron Lett., 1986, 27, 3961.

2 Z. Otwinowski, W. Minor, Processing of X-Ray Diffraction Data Collected in Oscillation Mode, in *Methods in Enzymology*, vol. **276**: *Macromolecular Crystallography Part A*; Academic Press: 1997, pp 307-326.

(3) G. M. Sheldrick, Acta Crystallographica Section A, 2015, 71, 3.

(4) G. M. Sheldrick, Acta Crystallographica Section A, 2008, 64, 112.

# 3. Figures and schemes



Scheme S1 Reactions of aryl nucleoside *H*-phosphonate diesters with *N*-methylmorpholine *N*-oxide (**3b**). For <sup>31</sup>P NMR spectra of crude **5f**, see Figs. S9a/b.



**Fig. S1a** Crystal structure of betaine **5b**. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.



**Fig. S1b** The unit cell of betaine **5b**. Weak C–H…O interactions found are shown with dotted lines.



**Fig. S2a** Crystal structure of betaine **5e**. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.



Fig. S2b The unit cell of betaine 5e. Weak C–H…O interactions found are shown with dotted lines.

# 4. <sup>31</sup>P NMR spectra of the reaction mixtures





Proton-decoupled <sup>31</sup>P NMR spectrum of the reaction mixture after ca. 10 min.





Proton-decoupled <sup>31</sup>P NMR spectrum of the reaction mixture after ca. 5 min.







<sup>31</sup>P NMR spectrum of the reaction mixture after ca. 10 min.

13



Proton-decoupled <sup>31</sup>P NMR spectrum of the reaction mixture after ca. 2 min.



<sup>&</sup>lt;sup>31</sup>P NMR spectrum of the reaction mixture after ca. 2 min.





**Fig. S7a** Reaction of  $(PhO)_2P(H)O$  **1a** with Me<sub>3</sub>N *N*-oxide **3e** in acetonitrile. Proton-decoupled <sup>31</sup>P NMR spectrum of the reaction mixture after ca. 2 min.





## 5f.II-10min



with NMM *N*-oxide **3b** (3 mmol) in DMF-pyridine 7:3 (v/v). Proton-decoupled <sup>31</sup>P NMR spectrum of the reaction mixture after ca. 10 min.

18

ppm

## 5f.II-10min



with NMM *N*-oxide **3b** (3 mmol) in DMF-pyridine 7:3 (v/v). <sup>31</sup>P NMR spectrum of the reaction mixture after ca. 10 min.

# 5. <sup>1</sup>H, <sup>13</sup>C, <sup>31</sup>P, <sup>1</sup>H-<sup>1</sup>H COSY, <sup>1</sup>H-<sup>13</sup>C HSQC NMR and MS spectra of the isolated products





### 







0.001







### *N*-methylmorpholino-4-ium phenyl phosphate **5b**



|  |   | 1 |  |  |  | 1 |  |  |  |
|--|---|---|--|--|--|---|--|--|--|
|  | 1 |   |  |  |  |   |  |  |  |



*N*-methylmorpholino-4-ium phenyl phosphate **5b** 



— 65.188 — 60.965 — 55.738 *N*-methylmorpholino-4-ium phenyl phosphate **5b**  $^{31}\text{P}\{^1\text{H}\}$  NMR (H<sub>2</sub>O; H<sub>3</sub>PO<sub>4</sub> as external reference)

O n ۰O

15



Ó

000.0

| ppm |
|-----|
|     |

-9.377

-10





# Mass Spectrum SmartFormula Report

| Analysis Info<br>Analysis Name<br>Method<br>Sample Name<br>Comment           | D:\Data\Basia<br>ewelina.m                          | \zlecone\15_02_23_A1neg.                                                    | d                                                | Acquisition Date<br>Operator<br>Instrument / Ser        | <ul> <li>2/23/2015 <sup>2</sup></li> <li>Bruker Cus</li> <li>micrOTOF-</li> </ul> | 11:12:55 AM<br>tomer<br>Q 128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|------------------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Acquisition Par<br>Source Type<br>Focus<br>Scan Begin<br>Scan End            | rameter<br>ESI<br>Not active<br>100 m/z<br>1200 m/z | lon Polarity<br>Set Capillary<br>Set End Plate Offs<br>Set Collision Cell F | Negative<br>3200 V<br>set -500 V<br>RF 200.0 Vpp | Set Nebuliz<br>Set Dry He<br>Set Dry Ga<br>Set Divert V | zer 0.4<br>ater 22<br>s 4.0<br>Valve Sc                                           | 4 Bar<br>0 °C<br>) I/min<br>ource                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| Intens.<br>x10 <sup>4</sup> -<br>1.0-<br>0.8-<br>0.6-<br>172<br>0.4-<br>0.2- | 272.0667                                            | <sup>370.0329</sup> 446.0742 545.1414                                       | 4 730.6639                                       | N-m                                                     | -MS, 2.7-<br>ethylmorpholino-4-iur<br>1003.7373                                   | 3.0min #(323-354)<br>n phenyl phosphate <b>5b</b><br>$\int_{\mathcal{N}} \int_{\mathcal{N}} \int_{\mathcal$ |  |
| 0.0-4,                                                                       | 200                                                 | 400                                                                         | 600                                              | 800                                                     | 1000                                                                              | m/z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| Meas<br>. m/z                                                                | # Form<br>ula                                       | m/z err Mean ro<br>[ppm] err<br>[ppm]                                       | db N-Ru e <sup>—</sup><br>Ie Conf                | mSig Std I<br>ma                                        | Std Std I<br>Mean VarN<br>m/z orm                                                 | Std Std<br>m/z Com<br>Diff b<br>Dev                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |

# Mass Spectrum SmartFormula Report



#### 4-(dimethylamino)pyridin-1-ium-1-yl phenyl phosphate 5d



### 4-(dimethylamino)pyridin-1-ium-1-yl phenyl phosphate 5d







|               |                |                         |                                                            | I                                                 | I     |                                          | I                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |             |       |                           |                        | 1           |                                         |                                                                                                                  |                                                        |                |
|---------------|----------------|-------------------------|------------------------------------------------------------|---------------------------------------------------|-------|------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-------------|-------|---------------------------|------------------------|-------------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|----------------|
|               |                |                         |                                                            |                                                   | 1     |                                          |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |             |       |                           |                        | 1           |                                         |                                                                                                                  |                                                        |                |
|               |                |                         |                                                            |                                                   |       |                                          |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |             |       |                           |                        |             |                                         |                                                                                                                  |                                                        |                |
|               |                |                         |                                                            |                                                   |       |                                          |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |             |       |                           |                        |             |                                         |                                                                                                                  |                                                        |                |
|               |                |                         |                                                            |                                                   |       | I                                        |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |             |       |                           |                        |             |                                         |                                                                                                                  |                                                        |                |
|               |                | 1                       |                                                            |                                                   |       |                                          |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |             |       |                           |                        |             |                                         |                                                                                                                  |                                                        |                |
|               |                | 1                       |                                                            |                                                   |       |                                          |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |             |       |                           |                        |             |                                         |                                                                                                                  |                                                        |                |
|               |                |                         |                                                            |                                                   |       |                                          |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |             |       |                           |                        |             |                                         |                                                                                                                  |                                                        |                |
| manyhalamahan | www.howwala.Mo | mainmeterrymeterryterry | how when have been how | arnyr/w <sup>a</sup> linwally <sup>i y</sup> lyry | water | han lana nana hana hana hana hana hana h | extractional solar large la | warder warder of the states of | nhilehannan pulliphalanan | productions | ppppp | and the second second for | hlanger and the states | WWWWWWWWWWW | while the property of the second second | ephyphelyperestationshipperestationshipperestationshipperestationshipperestationshipperestationshipperestationsh | w <sup>all</sup> hat gates in partice light physically | MAPPAPPAPALANA |
|               |                |                         |                                                            |                                                   |       |                                          |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |             |       |                           |                        |             |                                         |                                                                                                                  |                                                        |                |
| 180           | 170            | 160                     | 150                                                        | 140                                               | 130   | 120                                      | 110                                                                                                             | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 90                        | 80          | 70    | 60                        | 50                     | 40          | 30                                      | 20                                                                                                               | 10                                                     | 0 ppm          |

-106.478

4-(dimethylamino)pyridin-1-ium-1-yl phenyl phosphate 5d

<sup>31</sup>P{<sup>1</sup>H} NMR (H<sub>2</sub>O; H<sub>3</sub>PO<sub>4</sub> as external reference)





-4.828



# 4-(dimethylamino)pyridin-1-ium-1-yl phenyl phosphate ${\bf 5d}$ $^1\text{H-}^{13}\text{C}$ HSQC (D20)



# Mass Spectrum SmartFormula Report

| Analysis Info<br>Analysis Name<br>Method<br>Sample Name<br>Comment          | e D:\Data\Basia\<br>ewelina.m<br>NO2                 | zlecone\15_08            | 3_31_a3_pos2_k                                                 | al.d                                      | Acquisition<br>Operator<br>Instrument | Date 8/3<br>Bru<br>/ Ser# mic               | 1/2015 1:37<br>ker Custom<br>rOTOF-Q | 7:30 PM<br>ner<br>128               |
|-----------------------------------------------------------------------------|------------------------------------------------------|--------------------------|----------------------------------------------------------------|-------------------------------------------|---------------------------------------|---------------------------------------------|--------------------------------------|-------------------------------------|
| Acquisition Pa<br>Source Type<br>Focus<br>Scan Begin<br>Scan End            | arameter<br>ESI<br>Not active<br>100 m/z<br>1200 m/z | lon<br>Set<br>Set<br>Set | Polarity<br>Capillary<br>End Plate Offset<br>Collision Cell RF | Positive<br>4500 V<br>-500 V<br>200.0 Vpp | Set Ne<br>Set Dr<br>Set Dr<br>Set Di  | ebulizer<br>y Heater<br>y Gas<br>vert Valve | 0.4 Ba<br>220 °C<br>4.0 I/n<br>Waste | ar<br>C<br>nin<br>Ə                 |
| Intens.<br>x10 <sup>6-</sup><br>1.0-<br>0.8-<br>0.6-<br>0.4-<br>161<br>0.2- | .0697 295.0859                                       | 723                      |                                                                |                                           | 4-(dime                               | ethylamino)pyrid                            | +M:                                  | S, 3.6min #431<br>enyl phosphate 5d |
| 0.0-                                                                        | 215.1179                                             | 400                      | 611.<br><br>600                                                | 1450                                      | 800                                   | -,1                                         | 000                                  | m/z                                 |
| Meas<br>. m/z                                                               | # Form<br>ula                                        | m/z err<br>[ppm]         | Mean rdb<br>err<br>[ppm]                                       | N-Ru e<br>le Conf                         | mSig Std<br>ma                        | II Std<br>Mean<br>m/z                       | Std I<br>VarN<br>orm                 | Std Std<br>m/z Com<br>Diff b<br>Dev |

### Trimethylammonium phenyl phosphate 5e



| <br> | <br> <br> | ***** | www. | <br>, , , , , , , , , , , , , , , , , , , | <br>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | <br> | <br> | <br>nator for the state of the stat | <br>antoy |  |
|------|-----------|-------|------|-------------------------------------------|--------------------------------------------|------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--|



Trimethylammonium phenyl phosphate 5e



-58.138

# Trimethylammonium phenyl phosphate **5e** <sup>31</sup>P{<sup>1</sup>H} NMR (H<sub>2</sub>O; H<sub>3</sub>PO<sub>4</sub> as external reference)





-0.000

-9.387



Trimethylammonium phenyl phosphate **5e**  ${}^{1}$ H- ${}^{13}$ C HSQC (D<sub>2</sub>O)



# Mass Spectrum SmartFormula Report

| Analysis Info<br>Analysis Name<br>Method<br>Sample Name<br>Comment        | D:\Data\Basia\zlecone<br>ewelina.m       | e\15_02_24_A2_neg.d                                                            |                                           | Acquisition Date<br>Operator<br>Instrument / Ser#          | 15 12:57:13 PM<br>Customer<br>DF-Q 128 |                                                   |
|---------------------------------------------------------------------------|------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------|------------------------------------------------------------|----------------------------------------|---------------------------------------------------|
| Acquisition Para<br>Source Type<br>Focus<br>Scan Begin<br>Scan End        | ESI<br>Not active<br>100 m/z<br>1200 m/z | lon Polarity<br>Set Capillary<br>Set End Plate Offset<br>Set Collision Cell RF | Negative<br>3200 V<br>-500 V<br>200.0 Vpp | Set Nebulize<br>Set Dry Hea<br>Set Dry Gas<br>Set Divert V | er<br>ater<br>S<br>/alve               | 0.4 Bar<br>220 °C<br>4.0 I/min<br>Source          |
| Intens.<br>x10 <sup>4</sup><br>1.25<br>1.00 172.9<br>0.75<br>0.50<br>0.25 | 230.0565                                 | 510.5923 626                                                                   | 6.1259 741.65                             | 73 857.1892                                                | -MS,<br>Trimethylammo                  | 4.7-5.0min #(555-598)<br>mium phenyl phosphate 5e |
| 0.00-4                                                                    | 200 200                                  | 600                                                                            |                                           | 800                                                        | 1000                                   | m/z                                               |
| Meas<br>. m/z                                                             | # Form m/z<br>ula                        | err Mean rdb<br>[ppm] err<br>[ppm]                                             | N-Ru e<br>le Conf                         | mSig Std I<br>ma N                                         | Std St<br>Mean Va<br>m/z o             | d I Std Std<br>IrN m/z Com<br>rm Diff b<br>Dev    |

# Mass Spectrum SmartFormula Report



#### *N*-methylmorpholino-4-ium 5'-*O*-dimethoxytritylthymidin-3'-yl phosphate **5f**

#### <sup>1</sup>H NMR (DMSO- $d_6$ )



# *N*-methylmorpholino-4-ium 5'-*O*-dimethoxytritylthymidin-3'-yl phosphate **5f** $^{13}$ C NMR (DMSO- $d_b$ )









-3.665



| 2.0 | 1.5 | 1.0 | 0.5 | 0.0 | -0.5 | -1.0 | -1.5 | -2.0 | -2.5 | -3.0 | -3.5 | -4.0 | ppm |
|-----|-----|-----|-----|-----|------|------|------|------|------|------|------|------|-----|



*N*-methylmorpholino-4-ium 5'-*O*-dimethoxytritylthymidin-3'-yl phosphate **5f** 



# Mass Spectrum SmartFormula Report

| Analysis Info<br>Analysis Name<br>Method<br>Sample Name<br>Comment | D:\Data\Basia\zleco<br>ewelina.m                    | ne\15_02_23_A6neg.d                                                            |                                           | Acquisition Date2/23/2015 11:37:44 AMOperatorBruker CustomerInstrument / Ser#micrOTOF-Q |                                                         |  |  |  |
|--------------------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------|--|--|--|
| Acquisition Par<br>Source Type<br>Focus<br>Scan Begin<br>Scan End  | rameter<br>ESI<br>Not active<br>100 m/z<br>1200 m/z | Ion Polarity<br>Set Capillary<br>Set End Plate Offset<br>Set Collision Cell RF | Negative<br>3200 V<br>-500 V<br>200.0 Vpp | Set Nebulizer<br>Set Dry Heater<br>Set Dry Gas<br>Set Divert Valve                      | 0.4 Bar<br>220 °C<br>4.0 l/min<br>Source                |  |  |  |
| Intens<br>3000-<br>2000-<br>1000-<br>1000-                         | 95.0051 321.0460                                    | 607.1                                                                          | N-n<br>808<br>722.2450                    | nethylmorpholino-4-ium 5'- <i>O</i> -dimeth                                             | -MS, 0.3min #41<br>oxytritylthymidin-3'-yl phosphate 5f |  |  |  |
| 0-4                                                                | 200                                                 | 400 600                                                                        | )<br>)                                    | 800                                                                                     | 1000 m/z                                                |  |  |  |
| Meas<br>. m/z                                                      | # Form m/z<br>ula                                   | err Mean rdb<br>[ppm] err<br>[ppm]                                             | N-Ru e<br>le Conf                         | mSig Std I Std<br>ma Mean<br>m/z                                                        | Std I Std Std<br>VarN m/z Com<br>orm Diff b<br>Dev      |  |  |  |

# Mass Spectrum SmartFormula Report

| Analysis Info<br>Analysis Name<br>Method<br>Sample Name<br>Comment | D:\Data\Bas<br>ewelina.m<br>blank                  | ia\zlecone\1 | 5_02_23_A6.d                                                         |                  | Acquisi<br>Operate<br>Instrum           | tion Dat<br>or<br>ient / Se | e 2/23<br>Brul<br>er# mic | 3/2015 10<br>ker Custo<br>rOTOF-G                  | 0:31:52 /<br>omer<br>Q 128   | AM                          |                              |                        |
|--------------------------------------------------------------------|----------------------------------------------------|--------------|----------------------------------------------------------------------|------------------|-----------------------------------------|-----------------------------|---------------------------|----------------------------------------------------|------------------------------|-----------------------------|------------------------------|------------------------|
| Acquisition Para<br>Source Type<br>Focus<br>Scan Begin<br>Scan End | ameter<br>ESI<br>Not active<br>100 m/z<br>1200 m/z | )            | lon Polarity<br>Set Capillary<br>Set End Plate C<br>Set Collision Ce | Offset<br>ell RF | Positive<br>4500 V<br>-500 V<br>200.0 V | ор                          |                           | Set Nebul<br>Set Dry He<br>Set Dry G<br>Set Divert | izer<br>eater<br>as<br>Valve | 0.4<br>220<br>4.0<br>Sou    | Bar<br>) °C<br>I/min<br>urce |                        |
| Intens.<br>2000<br>1500<br>1000                                    | 303.                                               | 1382         |                                                                      |                  |                                         | <i>N-</i> me                | ethylmorpholi             | no-4-ium 5'-                                       | +<br>·O-dimethox             | MS, 1.1-1<br>sytritylthymid | .6min #(1<br>lin-3'-yl phos  | 35-186)<br>phate 5f    |
| 500                                                                |                                                    | 409.1        | 635                                                                  |                  |                                         | 746.24                      | 13                        |                                                    |                              |                             |                              |                        |
| 0 <sup>-1</sup> ,                                                  | 200                                                | 400          | 506.0849                                                             | 600              | 653.1615<br>)                           |                             | 800                       |                                                    | 1                            | 000                         | r                            | m/z                    |
| Meas<br>. m/z                                                      | # Form<br>ula                                      | m/z<br>[pj   | err Mean<br>om] err<br>[ppm]                                         | rdb              | N-Ru<br>Ie                              | e<br>Conf                   | mSig<br>ma                | Std I                                              | Stď<br>Mean<br>m/z           | Std I<br>VarN<br>orm        | Std<br>m/z<br>Diff           | Std<br>Com<br>b<br>Dev |