Supporting Information for Publication

Salt-induced formation of hollow and mesoporous CoO_x/SiO₂ spheres

and their catalytic behaviors in toluene oxidation

Liang-Yi Lin^{1,2*} and Hsunling Bai²

¹Department of Energy, Environmental and Chemical Engineering, Washington

University in St. Louis, MO, United States

²Institute of Environmental Engineering, National Chiao Tung University,

Hsinchu 300, Taiwan

E-mail: *liangyi1102@gmail.com.tw*

* Corresponding author

Supporting Information includes:

7 pages

2 tables

5 figures

Results

Table S1. Elemental analysis of raw waste powder and silicate supernatant analyzed

 by the SEM-EDS and ICP-MS.

Table S2. Catalytic activity and structural properties of fresh and used catalysts.

Fig. S1 Pore size distributions of CoO_x/hSiO₂, CoO_x/mSiO₂ and CoO_x/HMSP particles.

Fig. S2 SEM images and elemental mapping of Co species of CoO_x/hSiO₂ (A, B) and

 $CoO_x/mSiO_2$ (C, D) samples.

Fig. S3 TG/DTA profiles of as-prepared $CoO_x/hSiO_2$ and as-prepared $CoO_x/mSiO_2$.

Fig. S4 XRD patterns of fresh and used catalysts.

Fig. S5 Co 2p XPS spectra of fresh and used CoO_x/mSiO₂ catalysts.

Table S1

Elemental analysis of raw waste powder and silicate supernatant analyzed by the SEM-EDS and ICP-MS

Sample	Si	F	0	N	Na
Raw waste powder (wt%) ^a	28.82	47.82	17.54	5.82	-
Supernatant (ppm) ^b	32750	-	_c	-	84220

a: sample analyzed by the SEM-EDS analysis

b: sample analyzed by the ICP-MS analysis

c: non-detected.

Table S2

Catalytic activity and structural properties of fresh and used catalysts.

Catalysts	Toluene conversion (%)	$S_{BET}(m^2/g)$	$V_P(cm^{3/g})$
CoO _x /mSiO ₂ -Fresh	-	471	0.47
CoO _x /mSiO ₂ -250 °C-33 h	94	419	0.46
Co ₃ O ₄ -Fresh	-	13	0.03
Co ₃ O ₄ -250 °C-29 h	5	5	0.01

Fig. S1 Pore size distributions of CoO_x/hSiO₂, CoO_x/mSiO₂ and CoO_x/HMSP particles.

Fig. S2 SEM images and elemental mapping of Co species of $CoO_x/hSiO_2$ (A, B) and $CoO_x/mSiO_2$ (C, D) samples.

Fig. S3 TG/DTA profiles of as-prepared CoO_x/hSiO₂ and as-prepared CoO_x/mSiO₂.

Fig. S4 XRD patterns of fresh and used catalysts.

Fig. S5 Co 2p XPS spectra of fresh and used $CoO_x/mSiO_2$ catalysts.