Supporting Information

Colorimetric chemosensor for multiple targets, Cu²⁺, CN⁻ and S²⁻

Ka Young Ryu, Jae Jun Lee, Jin Ah Kim, Dae Yul Park, Cheal Kim*

Department of Fine Chemistry and Department of Interdisciplinary Bio IT Materials, Seoul National University of Science and Technology, Seoul 139-743, Korea. Fax: +82-2-973-9149; Tel: +82-2-970-6693; E-mail: <u>chealkim@seoultech.ac.kr</u>

Figure S1. Job plot for the reaction of **1** with Cu^{2+} . Absorbance at 412 nm was plotted as a function of the molar ratio $[Cu^{2+}]/([1+Cu^{2+}])$. The total concentrations of Cu^{2+} with **1** were 100 μ M.

Figure S2. Positive-ion electrospray ionization mass spectrum of 1 (0.1 mM) upon addition of Cu^{2+} (0.1 mM).

Figure S3. Benesi-Hidebrand equation plot (absorbance at 412 nm) of **1** (20 μ M), assuming 1:1 stoichiometry for association between **1** and Cu²⁺.

Figure S4. Determination of the detection limit based on change in the ratio (absorbance at 412 nm) of 1 (20 μ M) with Cu²⁺.

Figure S5. Absorbance of **1** and **1**-Cu²⁺ complex (412 nm) at different pH values (2-12) in a mixture of bis-tris buffer/DMSO (1:1, v/v).

Figure S6. Absorption (at 412 nm) of **1** as a function of Cu(II) concentration. $[1] = 20 \ \mu mol/L$ and $[Cu(II)] = 0.36.0 \ \mu mol/L$.

(a)

(b)

Excited State 3	Wavelength	Percent (%)	Main character	Oscillator strength
H - 1 \rightarrow L	403.53 nm	93%	ICT	0.0747
$H \rightarrow L + 1$		5%		

Figure S7. (a) The theoretical excitation energies and the experimental UV-vis spectrum of 1. (b) The major electronic transition energies and molecular orbital contributions for 1 (H = HOMO and L = LUMO).

$H \rightarrow L+2 \ (\beta)$	40%	ICT	

Figure S8. (a) The theoretical excitation energies and the experimental UV-vis spectrum of 1-Cu²⁺. (b) The major electronic transition energies and molecular orbital contributions for 1-Cu²⁺ (H = HOMO and L = LUMO / (α): α spin MO and (β): β spin MO).

(a)

Figure S9. Molecular orbital diagrams and excitation energies of 1 and 1-Cu²⁺.

Figure S10. (a) Absorption spectra and (b) color changes of 1, $1-Cu^{2+}$ complex, $1-Cu^{2+}$ complex + CN^{-} and $1-Cu^{2+}$ complex + S^{2-} in a mixture of bis-tris buffer/DMSO (1:1, v/v). Conditions; $1 = 20 \mu M$, $Cu^{2+} = 8$ equiv, $CN^{-} = 70$ equiv, and $S^{2-} = 80$ equiv.

Figure S11. Absorption changes of **1** (10 μ M) in the presence of TBAOH (10 equiv) and TBACN (100 equiv), respectively, in bis-tris buffer/DMSO (v/v=1:9).

Figure S12. Positive-ion electrospray ionization mass spectrum of 1 (0.1 mM) upon addition of $CN^{-}(0.1 \text{ mM})$.

Figure S13. Job plot for the reaction of 1 with CN⁻. Absorbance at 500 nm was plotted as a function of the molar ratio [CN⁻]/[1+CN⁻]. The total concentrations of CN⁻ with receptor 1 were 100 μ M.

Figure S14. UV-vis absorbance of 1 (10 μ M) after addition of increasing different concentration of CN⁻. The red line is the non-linear fitting curve between 1 and CN⁻.

Figure S15. Determination of the detection limit based on change in the ratio (absorbance at 500 nm) of 1 (10 μ M) with CN⁻.

Figure S16. ¹H NMR titration of receptor 1 with CN⁻.

Figure S17. Absorbance of **1** and **1**-CN⁻ (500 nm) at different pH values (2-12) in a mixture of bis-tris buffer/DMSO (1:9, v/v).

(b)

Figure S18. (a) Absorption spectral changes of 1 (10 μ M) in the presence of different concentrations of S²⁻ (from 0 to 88 equiv) at room temperature. (b) Absorption spectral changes of 1 (10 μ M), extracted from the range of 0-60 equiv of S²⁻ in (a). (c) Absorption spectral changes of 1 (10 μ M), extracted from the range of 65-75 equiv of S²⁻ in (a). (d) Absorption spectral changes of 1 (10 μ M), extracted from the range of 75-88 equiv of S²⁻ in

(d)

Figure S19. Absorption spectra of **1** (10 μ M), and **1** (10 μ M) in the presence of TBAOH (14 equiv) and Na₂S (88 equiv), respectively, in bis-tris buffer/DMSO (v/v=1:9).

Figure S20. Job plot for the reaction of **1** with S²⁻. Absorbance at 427 nm was plotted as a function of the molar ratio $[S^{2-}]/[1+S^{2-}]$. The total concentrations of S²⁻ with receptor **1** were 100 μ M.

Figure S21. Negative-ion electrospray ionization mass spectrum of 1 (0.1 mM) upon addition of S^{2-} (0.1 mM).

Figure S22. Benesi-Hidebrand equation plot (absorbance at 427 nm) of **1** (10 μ M), assuming 1:1 stoichiometry for association between **1** and S²⁻.

Figure S23. Determination of the detection limit based on change in the ratio (absorbance at 427 nm) of 1 (10 μ M) with S²⁻.

Figure S24. Absorbance (427 nm) of **1** and $1-S^{2-}$ at different pH values (2-12) in a mixture of bis-tris buffer/DMSO (1:9, v/v).

Figure S25. (a) Absorption spectra and (b) color changes of 1, 1-CN⁻, 1-CN⁻ + Al³⁺ and 1-CN⁻ + Al³⁺ + CN⁻ in a mixture of bis-tris buffer/DMSO (1:9, v/v). Conditions: $1 = 10 \mu M$, CN⁻ = 260 equiv, and Al³⁺ = 30 equiv.

(a)

Figure S26. (a) Absorption spectra and (b) color changes of 1, $1-S^{2-}$, $1-S^{2-} + Al^{3+}$ and $1-S^{2-} + Al^{3+} + S^{2-}$ in a mixture of bis-tris buffer/DMSO (1:9, v/v). Conditions: $1 = 10 \mu M$, $S^{2-} 88 equiv$, and $Al^{3+} 30 equiv$.