Self-induced organic guest packed in three dimensional architecture based on hetero-alkali metallic sulfonatothiacalix[4]arene

Kunda Uma Maheswara Rao,^a Manabu Yamada,^b Hiroshi Katagiri,^c and Fumio Hamada^{*d}.

^aVenture Business Laboratory, Akita University, 1-1 Tegatagakuen-machi, Akita, 010-8502, Japan.

^bResearch Center for Engineering Science, Graduate School of Engineering and Resource Science, Akita University, 1-1 Tegatagakuen-machi, Akita, 010-8502, Japan.

^cGraduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan.

^{*d}Department of Applied Chemistry for Environments, Graduate School of Engineering and Resource Science, Akita University, 1-1 Tegatagakuenmachi, Akita, 010-8502, Japan.Tel/Fax: +81 18 889 2714. E-mail: hamada@gipc.akita-u.ac.jp.

Supplementary Information Comprises of

Experimental Section

Fig. S1: Asymmetric unit **3** showing CH- π interactions, intramolecular hydrogen bonding

Fig. S2: Coordination environment of Na ions.

Fig. S3: Coordination environment of K1.

Fig. S4: Coordination environment of K2.

Fig. S5: Coordination environment of K3.

- Fig. S6: Coordination environment of K4.
- Fig. S7: Dipole moment and energy gap of frontier orbitals of **3** and **2**.
- Fig. S8: ¹H-NMR spectrum of **3**

Experimental Section

Materials and instrumentations

All solvents were purchased from commercial sources, and used as received.*p*-^{*t*}Bu-thiacalix[4]arene was prepared according to our previously reported procedures.^{S1} Fourier transform infrared (FT-IR) spectra were measured using Thermo Fisher Scientific Nicolet iS5 spectrophotometer (attenuated total reflection (ATR) method). NMR data were recorded on JEOL 600SSS ECA-600 instrument. Chemical shifts are quoted as parts per million (ppm) relative to tetrametylsilane (CDCl₃). Thermogravimetric analysis (TGA) was recorded on Thermoplus TG8120 (Rigaku Corp.) thermogravimetric analyzer under argon atmosphere. The temperature was raised at 10 °C/min. to 800 °C.Elemental analysis was performed using CE-440 elemental analyzer (System Engineering Inc)

References

(S1) (a) Y. Kondo, K. Endo, N. Iki, S. Miyano and F. Hamada, *J. Incl. Phenom. Macrocycl. Chem.*, **2005**, *52*, 45; (b) Y. Kondo and F. Hamada, *J. Incl. Phenom. Macrocycl. Chem.*, **2007**, *58*, 123. (c) T. Kimuro, M. Yamada, F. Hamada, *J. Incl. Phenom. Macrocycl. Chem.*, DOI: 10.1007/s10847.014.0435.1

Theoretical calculations

Spartan 10^{TM} software was used for the single-point energy calculations for the X-ray structure of **2 & 3**. The molecular frontier orbital energy calculations were carried out as Hatree-Fock calculations at the 6-31G* level.

Fig. S1: Asymmetric unit **3** showing CH- π interactions between host and guest molecules (black dotted lines), intramolecular hydrogen bonding between sulfonate oxygens and water molecules (blue dotted lines). Each atom is depicted as follows: K = violet; Na = light blue; S = yellow; O = red; C = gray, H = white.

Fig. S2: Coordination environment of Na ions, Each Na coordinated to one bridged sulfur (S2 to Na1, S4 to Na2), two phenolic oxygens (O1 & O2 to Na1, O3 & O4 to Na2), two sulfonic oxygens (O15a & O12d to Na1, O10b & O6c to Na2). One water molecule (O3W) act as a bridge between two Na ions. Symmetry elements: ^a1-x, -1/2+y, 1/2-z; ^b2-x, 1/2+y, 1/2-z; ^c1-x, 1/2+y, 1/2-z; ^b2-x, -1/2+y, 1/2-z; ^b2-x, -1/2+y, 1/2-z; ^c1-x, 1/2+y, 1/2-z; ^b2-x, -1/2+y, 1/2-z; ^c1-x, 1/2+y, 1/2-z; ^b2-x, -1/2+y, 1/2-z; ^c1-x, 1/2+y, 1/2-z; ^b2-x, -1/2+y, 1/2-z; ^b2-x, -1/2+y, 1/2-z; ^c1-x, 1/2+y, 1/2-z; ^b2-x, -1/2+y, 1/2-z; ^c1-x, 1/2+y, 1/2-z; ^c1-x, 1/2+y; ^c1

Fig. S3: Coordination environment of K1. It coordinated to three water molecules (O2W, $O5W^{e}$, $O6W^{f}$) and five sulfonate oxygens (O8, O9, $O5^{e}$, $O6^{e}$, $O8^{f}$). Symmetry elements: ^e1-x, -y, -z; ^f2-x, -y, -z

Fig. S4: Coordination environment of K2. It coordinated to three water molecules (O1W, O6W, O7W^h), Oxygen of PNO molecule (O17), four sulfonate oxygens (O11, O12^h, O13^h, O10^g). Symmetry elements: ⁹2-x, -y, -z; ^h2-x, 1-y, -z

Fig. S5: Coordination environment of K3. It coordinated to one water molecule (O7W), Oxygen of PNO molecule (O17), Six sulfonate oxygens (O13, O14, O17, O11^h, O12^h, O15ⁱ, O16ⁱ). Symmetry elements: ^h2-x, 1-y, -z; ⁱ1-x, 1-y, -z.

Fig. S6: Coordination environment of K4. It coordinated to three water molecules (O4W, O5W, O7W^e), Oxygen of PNO molecule (O17), four sulfonate oxygens (O16, $O7^{e}$, $O14^{i}$, $O15^{i}$).

Fig S7: Dipole moment and energy gap of frontier orbitals of **3** and **2**.

Fig. S8: ¹H-NMR spectrum of **3**