Supplementary Information

Removal of bisphenol A by iron nanoparticles doped magnetic ordered mesoporous carbon

Lin Tang^{*, a,b}, ZhihongXie^{a,b}, GuangmingZeng^{*,a,b}, Haoran Dong^{a,b}, Changzheng Fan^{a,b}, Yaoyu

Zhou^{*a,b*}, Jiajia Wang^{*a,b*}, Yaocheng Deng^{*a,b*}, Jingjing Wang^{*a,b*}, Xue Wei^{*a,b*}

aCollege of Environmental Science and Engineering, Hunan University, Changsha, 410082, China,

bKey Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, PR China.

^{*}Corresponding author: Tel.: +86-731-88822778; Fax.: +86-731-88823701

E-mail: <u>tanglin@hnu.edu.cn</u>(L. Tang), <u>zgming@hnu.edu.cn</u>(G.M. Zeng)

Total number of pages of Supporting Information: 11

Number of Figures in Supporting Information: 8

Number of Tables in Supporting Information: 2

List of Supplemental Figures

Fig. S1 Nitrogen adsorption-desorption isotherms. Inset:pore size distribution of OMC and Fe/OMC.

Fig. S2 Zeta potentials of Fe/OMC. Inset: the magnetization curves of Fe/OMC.

Fig. S3 Thermogravimetric analysis curves of Fe/OMC.

Fig. S4 Effect of pH values on removal of BPA by Fe/OMC at 25 °C, within 6h (initial concentration, 200 mg/L).

Fig. S5 Effect of contact time and initial concentration on removal of BPA by Fe/OMC at 25 °C.

Fig. S6 Pseudo-second-order kinetic model for the adsorption of BPA onto Fe/OMC at 25 $^\circ\mathrm{C}$

Fig. S7 Adsorption isotherms for adsorption of BPA onto Fe/OMC.

Fig. S8 Six consecutive adsorption-desorption cycles of Fe/OMC

Table S1 Pore structure parameters of the two mesoporous materials.

Table S2 The chemical characterization results obtained by each analytical technique.

Fig. S1 Nitrogen adsorption–desorption isotherms. Inset: pore size distribution of OMC and Fe/OMC $\,$

Fig. S2 Zeta potentials of Fe/OMC. Inset: the magnetization curves of Fe/OMC

Fig. S3 Thermogravimetric analysis curves of Fe/OMC.

Fig. S4 Effect of pH values on removal of BPA by Fe/OMC at 25 $^{\circ}$ C, within 6h (initial concentration, 200 mg/L)

Fig. S5 Effect of contact time and initial concentration on removal of BPA by Fe/OMC at 25 $^\circ\text{C}$

Fig. S6 Pseudo-second-order kinetic model for the adsorption of BPA onto Fe/OMC at 25 $^\circ\text{C}$

Fig. S7 Adsorption isotherms for adsorption of BPA onto Fe/OMC

Fig. S8 Six consecutive adsorption-desorption cycles of Fe/OMC

Tore structure parameters of the two mesoporous materials.					
Samples	Surface area (m^2/g)	Pore size (nm)	Pore volume ($cm^{3/g}$)		
OMC	1620	4.9	2.3		
Fe/OMC	536	3.8	1.1		

Table S1Pore structure parameters of the two mesoporous materials.

Table S2

Analytic technique	Observations		
Scanning electron	· Fe/OMC composite possessed uniform mesopores		
microscope/ transmission	structure;		
electron microscopy	• The degree of order was slightly lower than OMC ;		
	• The iron nanoparticles with an average diameter about		
	20 nm were dispersed evenly on the carbon rod matrix		
Nitrogen adsorption-	The pore structure parameter values of Fe/OMC distinctly		
desorption	decreased compared with OMC, which might indicate that		
	the iron nanopartcicles changed the structure of carbon		
	matrix or entered into channels partially occupying or even		
	blocking the mesopores.		
The Zeta potential	The zero point of zeta potential of Fe/OMC was at pH		
	4.76.		
The vibrating sample	The saturation magnetization strength of Fe/OMC was		
magnetometer	10.54 emu/g which was beneficial for separation.		
Thermogravimetric	The weight percentage of Fe nanoparticles in Fe/OMC was		
analysis	35.6 wt%.		
Effect of initial pH	The removal capacity of Fe/OMC composite remained in		
	high level (around 280 mg/g) at a wide pH range from 3 to		
	9.		
Effect of contact time	• The removal process reached balance at about 6 h;		
	· The experiment data exhibited good accordance with		
	pseudo-second-order model.		
Sorption isotherms	Freundlich isotherm model was more suitable for the		
	adsorption of BPA by Fe/OMC than Langmuir model.		
Thermodynamics	According to the thermodynamic parameters of enthalpy		
	change ($\Delta H = -20.84$ KJ/mol), entropy change ($\Delta S = -$		
	56.74 J/mol K) and free energy change ($\Delta G < 0$), the		
	removal process of BPA by Fe/OMC was inferred to be		
	thermodynamic feasible, unconscious, and spontaneous.		
X-ray diffraction	Iron in Fe/OMC was mainly in the forms of nanoscale		
	zero-valent iron and Fe_3O_4 or Fe_2O_3 .		
Fourier transform infrared	Most of the peaks of BPA-adsorbed Fe/OMC spectra were		
spectrometer	in accordance with the peaks from the FTIR spectrum of		
	BPA indicated that a mass of BPA molecules were		

		adsorbed onto Fe/OMC.
X-ray	photoelectron	Detailed XPS spectrum of the regions for Fe 2p, O 1s and
spectroscopy		C 1s of the fresh and spent composites suggested the
		adsorption and degradation of BPA by Fe/OMC.
Regeneration of Fe/OMC		In the sixth absorption-desorption cycle, the removal
		efficiency as high as 68% was obtained, which suggested
		that Fe/OMC had a good performance for regeneration and
		reusability.