Supplementary materials

Specific Interaction of Platinated DNA and Proteins by Surface Plasmon Resonance Imaging

Xiao Wang ${ }^{\text {a,b }}$, Jiying $\mathrm{Xu}^{\text {a,* }}$, Chanjuan Liu ${ }^{\text {a,b }}$, and Yi Chen ${ }^{\text {a,b,c, } *}$
${ }^{a}$ Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
${ }^{b}$ University of Chinese Academy of Sciences, Beijing 100049, China
${ }^{c}$ Beijing National Laboratory for Molecular Science, Beijing 100190, China

The specific analysis process of "initial rate analysis" ${ }^{1,2}$

The "initial rate analysis" method from Edwards and Leatherbarrow was adopted for the kinetic analysis which has been successfully applied to analyzing experimental binding data generated by optical biosensors and used to analyze the interaction between immune molecules for SPR. It can ignore the impact of space mass transfer resistance for different biosensors. Edwards and Leatherbarrow assumed that the kinetic interactions of binding events consisted of two phases including a faster initial linear phase and a slower second nonlinear phase between an immobilized probe and an analyte. In a SPR-based system, both these phases are recorded in real time on a SPR sensorgram. By linear regression, the initial binding rates of the linear region in the binding sensorgrams for each analyte concentration $\left(c_{A}\right)$ can be obtained. Then, a plot of the binding rate $(d R / d t)$ vs c_{A} results in a straight line, the k_{a} can be obtained from its slope. In the dissociation phase, the response depending on time decreases exponentially with k_{d}. From the plot of $\ln \left(R_{0} / R_{t}\right)$ vs time (t), the slope corresponds to k_{d}. The K_{d} is then calculated by using the calculated values of k_{a} and k_{d}. The specific analysis process of the initial rate analysis method we adopted is described below.

The rate of formation product at time t could be written as the pseudo first-order kinetic reaction equation as Eq. (1):

$$
\frac{d c_{P A}}{d t}=k_{a} c_{P} c_{A}-k_{d} c_{P A}
$$

where $c_{P A}$ is the concentration at time t, the subscript P, A and $P A$ are on behalf of probes, analytes and their compounds respectively. We suppose that the total concentration of probe on the sensor chip surface is $c_{P 0}$ (the maximum recognition capacity), so $c_{P}=c_{P 0}-c_{P A}$. The SPR signal R is proportional to the formation of the $P A$ complexes on the surface and the maximum signal $R_{\max }$ will be proportional to the concentration of active probe on the surface, i.e. $R_{\max }=N c_{P 0}, R=N c_{P A}$ (N is the proportional coefficient). Substituting $c_{P}=c_{P 0}-c_{P A}$ into Eq. (1), the equation becomes:
$\frac{d R}{d t}=k_{a} R_{\max } c_{A}-\left(k_{d}+k_{a} c_{A}\right) R$
rearranging Eq. (2), we got follows:

$$
\begin{aligned}
& \frac{1}{k_{a} R_{\max } c_{A}-\left(k_{d}+k_{a} c_{A}\right) R} d R=d t \\
& \frac{d\left[k_{a} R_{\max } c_{A}-\left(k_{d}+k_{a} c_{A}\right) R\right]}{k_{a} R_{\max } c_{A}-\left(k_{d}+k_{a} c_{A}\right) R}=-\left(k_{d}+k_{a} c_{A}\right) d t
\end{aligned}
$$

Then, integrating the above equation, we got follows:
$\ln \left[k_{a} R_{\max } c_{A}-\left(k_{d}+k_{a} c_{A}\right) R_{t}\right]-\ln \left[k_{a} R_{\max } c_{A}-\left(k_{d}+k_{a} c_{A}\right) R_{0}\right]=-\left(k_{d}+k_{a} c_{A}\right)\left(t-t_{0}\right)$
when $t_{0}=0, R_{0}=0$, the above equation can be simplified into:
$\frac{k_{a} R_{\max } c_{A}-\left(k_{d}+k_{a} c_{A}\right) R_{t}}{k_{a} R_{\max } c_{A}}=e^{-\left(k_{d}+k_{a} c_{A}\right) t}$
for $K_{d}=k_{d} / k_{a}$, we got follows:
$R_{t}=\frac{R_{\max } c_{A}}{K_{d}+c_{A}}\left(1-e^{-\left(k_{d}+k_{a} c_{A}\right) t}\right)$ (3)
For the "initial rate analysis" method, the entire binding data could be described by the integrated form of the rate equation under pseudo-first-order reaction conditions as Eq. (4):
$R_{t}=\left(R_{e q}-R_{0}\right)\left(1-e^{-k_{\alpha} t}\right)+R_{0}(4)$
where R_{0} is the initial instrument response, R_{t} is the response at time $t, R_{e q}$ is the equilibrium state response. But it has been noted that the data are often ill-described by Eq. (4) sometimes and are better fitted with addition of a second exponential term as Eq. (5):

$$
R_{t}=A\left(1-e^{-k_{a} t}\right)+B\left(1-e^{-k_{d a t} t}\right)+R_{0}(5)
$$

Where R_{t} varies with two apparent association rate constants (k_{a} and $k^{\prime}{ }_{d i j}$). The faster rate $\left(k_{a}\right)$ is found to most closely correspond to the rate constant for the interaction in solution. The slower process has been generally accepted to be a property of the biosensor method and provides little or no information on the intrinsic bio-molecular interaction. Eq. (5) is an empirical solution to the analysis of biosensor data and there is no firm theoretical basis to justify the use of second association rate constant to now. The derivation of the integrated rate equation for the biosensors could be described as Eq. (3) like above. The term $R_{\max } c_{A} /\left(K_{d}+c_{A}\right)$ is equivalent to the term ($R_{e q}-$ R_{0}) in Eq. (4). Differentiating Eq. (3) with respect to time t gives follows:

$$
\begin{equation*}
\frac{d R}{d t}=\frac{R_{\max } c_{A}}{K_{d}+c_{A}}\left(k_{d}+k_{a} c_{A}\right) e^{-\left(k_{d}+k_{a} c_{A}\right) t}=k_{a} R_{\max } c_{A} e^{-\left(k_{d}+k_{a} c_{A}\right) t} \tag{6}
\end{equation*}
$$

Eq. (6) could be simplified to Eq. (7) at time $t=0$, we got follows:
$\frac{d R}{d t}=\frac{R_{\max } c_{A}}{K_{d}+c_{A}}\left(k_{a} c_{A}+k_{d}\right)=R_{\max } c_{A} k_{a}$
The k_{d} could be derived by application of Eq. (8) to the dissociation data and R_{∞} is the final response.

$$
R_{t}=\left(R_{0}-R_{\infty}\right) e^{-k_{d} t}+R_{\infty}(8)
$$

Here, the interaction between PC4 and transPtTz-DNA2 was taken as an example. The initial rate for each concentration of protein analyte can be obtained from the first 60 seconds of the SPR dynamic curve. The initial rate (that is the slope in Fig S1 (A)) can be obtained through linear fitting by Origin software. Then a plot of the initial rate $(d R / d t)$ vs c_{A} can be obtained and k_{a} can be obtained from the slope of the fitted line (Fig S1 (B)). The k_{d} can be obtained from the rate equation through $R_{\max }$, all of the equations were represented as above. K_{d} of every group can be calculated by reproducing the process described above.

References

1. P. R. Edwards and R. J. Leatherbarrow, Anal. Biochem., 1997, 246, 1-6.
2. S. Hoebel, D. Vornicescu, M. Bauer, D. Fischer, M. Keusgen and A. Aigner, Anal. Chem., 2014, 86, 6827-6835.

Fig S1 The initial rate analysis of the interaction between PC4 and transPtTz-DNA2

Fig. S1 (A) SPR dynamic curve of interaction between PC4 and transPtTz-DNA2 (grey curve) and its linear fitting (red curve) within the first 60 seconds. The concentration of PC4 is 0.625 , $1.25,2.5,5.0$ and $10.0 \mu \mathrm{M}$ respectively. (B) The initial rate $v s$ concentration of PC4 and its linear fitting.

Fig S2 Choice of blocking solution

Fig. S2 SPRi sensorgram of non-specific adsorption of HMGB1 $(10 \mu \mathrm{M})$ on three different blocking surface modified by 0.1% bovine serum albumin (BSA); 1 M ethanolamine (EOA) and a solution containing 20 mM cysteamine hydrochloride and 1 mM 6 -mercapto-1-hexanol (MCH).

Fig S3 Regeneration of chips

Fig. S3 SPRi sensorgram of five successive binding-regenerating cycles measured from the recognitions of PC4 with transPtTz-DNA2 on the same chip. Each cycle includes 4 steps: (a) incubation of the chip with PC4 solution; (b) wash of the chip surface with $\mathrm{TME}_{\text {Tween }}$ buffer; (c) removal of the PC4 molecules by flashing the chip surface with 2 M NaCl ; and (d) regeneration of the chip surface with $\mathrm{TME}_{\text {Tween }}$ buffer.

Fig S4 Interaction with other proteins

Fig. S4 SPRi sensorgram of interactions between four kinds of DNAs and pepsin, BSA, hemoglobin (A) and cytochrome c (B) respectively. The protein concentration was $10 \mu \mathrm{M}$ respectively. The same DNA chip was used and regenerated by 2 M NaCl to remove the bound proteins from the sensor chip surface at the end of each measurement in (A) and another new chip was used
in
(B).

Table S1 Gibbs free energy change (ΔG) at various temperatures
Table S1. Values of ΔG at various temperatures obtained from SPRi experiments (The error demonstrated the standard deviation from three sensor chips)

Protein	$\Delta \boldsymbol{G}[\mathbf{k J} / \mathbf{m o l}]$										
		$\mathbf{1 5 ~}^{\circ} \mathbf{C}$						$\mathbf{2 0}{ }^{\circ} \mathbf{C}$	$\mathbf{3 0}{ }^{\circ} \mathbf{C}$	$\mathbf{3 7}^{\circ} \mathbf{C}$	$\mathbf{4 2}{ }^{\circ} \mathbf{C}$
HMGB1		-29.79 ± 0.71	-30.24 ± 0.12	-31.16 ± 0.28	-32.33 ± 0.23	-32.48 ± 0.43					
		-26.52 ± 0.59	-26.22 ± 0.88	-27.58 ± 0.46	-28.77 ± 0.58	-28.76 ± 0.39					
		-26.59 ± 0.43	-26.85 ± 0.36	-27.57 ± 0.60	-28.23 ± 0.55	-28.46 ± 0.52					
		-26.28 ± 0.54	-26.52 ± 0.53	-27.21 ± 0.59	-27.88 ± 0.52	-28.30 ± 0.70					
PC4	cisplatin-DNA1	-35.11 ± 0.24	-35.78 ± 0.14	-36.96 ± 0.22	-37.42 ± 0.14	-37.83 ± 0.29					
	DNA1	-33.28 ± 0.07	-33.92 ± 0.05	-35.05 ± 0.08	-35.82 ± 0.03	-36.42 ± 0.07					
	trans-PtTz-DNA2	-35.30 ± 0.37	-35.96 ± 0.24	-37.31 ± 0.22	-38.09 ± 0.15	-37.22 ± 0.27					
	DNA2	-33.30 ± 0.15	-34.11 ± 0.08	-35.16 ± 0.06	-35.96 ± 0.08	-36.48 ± 0.03					

