A novel carbazole-based mitochondria-targeted ratiometric fluorescent probe for bisulfite in living cells

Gang Wang,^{a*} Hao Chen^b Xiuli Chen^b, and Yongmei Xie^b*

^a Zunyi Medical College, Zunyi, Guizhou Province, China. E-mail: Wg8855350@163.com
^b State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan Province, R. China. E-mail: xieym@scu.edu.cn

Contents

1.	Fig. S1 The absorption spectra of DCI	S2
2.	Fig. S2 Fluorescence spectra of DCI	S2
3.	Fig. S3 Comparsion of CZ-Id and DCI reactivity with bisulfite	S3
4.	Fig. S4 The line relationship between the fluorescent intensity ratios of DCI	and
	the concentration of the bisulfite	S3
5.	Fig. S5 The kinetic response of the bisulfite.	S4
6.	Fig.S6 ¹ H NMR of DCI in the abstrance and presence of bisulfite.	S5
7.	Fig. S7 HRMS spectral change of DCI in the presence of NaHSO3	S5
8.	Fig. S8 HPLC analysis of the reaction medium	S6
9.	Fig. S9 Effects of DCI on the viability of A549 Cells	S6

Fig.S1 The absorption spectra of **DCI** before and after reaction with bisulfite (10 equiv.) in PBS buffer (pH 7.4, 10 mM). [**DCI**] =10 μ M. λ ex = 350 nm. Slit: 5nm/5 nm.

Fig.S2 Fluorescence spectra of **DCI** before and after reaction with bisulfite (30 equiv.) in PBS buffer (pH 7.4, 10 mM). [**DCI**] =10 μ M. λ ex = 350 nm. Slit: 5nm/5 nm.

Fig. S3 The response of **CZ-Id** and **DCI** to bisulfute in PBS buffer (pH 7.4, 10 mM). For **DCI**: [**DCI**] =10 μ M, [HSO₃⁻] = 100 μ M, λ ex = 350 nm, the ratio (I₅₀₇/I₆₂₈) was achieved 10 min after addition of bisulfite; For **CZ-Id**: [**CZ-Id**] = 10 μ M, [HSO₃⁻] = 100 μ M, λ ex = 350 nm, the ratio (I₄₉₀/I₅₉₀) was achieved 10 min after addition of bisulfite.

Fig. S4 The line relationship between the fluorescent intensity ratios of **DCI** and the concentration of the bisulfite in PBS buffer (pH 7.4, 10 mM). [**DCI**] =10 μ M. λ ex = 350 nm. Slit: 5nm/5 nm.

Fig.S5 The kinetic response of the bisulfite (30 equiv.) to **DCI** in PBS buffer (pH 7.4, 10 mM). $[\mathbf{DCI}] = 10 \ \mu\text{M}. \ \lambda\text{ex} = 350 \ \text{nm}.$ Slit: 5nm/5 nm.

Fig.S6 ¹H NMR of DCI in the abstrance and presence of bisulfite.

Fig S7. HRMS spectral change of **DCI** in the presence of 15 equiv of NaHSO₃ in $CH_3OH / H_2O = 9:1$.

Fig. S8 HPLC result of **DCI** in the presence of bisulfite at different time. Waters e2695 Separations Module using Waters 2998 PDA detector equipped with a Symmetry C18 column(4.6×150 mm, 5µm). Water 20% and methanol 80% were used as eluents with a flow rate of 1ml/min. 295nm was used as wavelength.

Figure S9Effects of **DCI** on the viability of A549 Cells. The results are the mean standard deviation of three separate measurements.

