Supporting Information For:

High-contrast mechanochromism and polymorphism-dependent

fluorescence of difluoroboron β -diketonate complexs based on the

effects of AIEE and halogen

Yunpeng Qi,^a Yongtao Wang,^{*a} Yongjiang Yu,^a Zhiyong Liu,^{*a} Yan Zhang,^a Guangfen Du^{*a} and Yu Qi^a

School of Chemistry and Chemical Engineering/ Engineering research center of materials-oriented chemical engineering of Xinjiang Bingtuan, Shihezi University, Shihezi 832003, Xinjiang, P. R. China.

Solvent		λabs (nm)		λem (nm)
Cyclohexane		351		520
	Taluana		408	500
	Toluene		359 A1A C	580
2 a	THF		359	564
			415	
	DCM		359	591
	DMSO	Toluono	421	607
	DIVISO	Toldelle	422	007
	Cyclohexane		361	514
			388	
	Toluene		368	501
	C		398	580
2b	THF		365	570
	DCM		421	583
	DCIVI		308	582
			422 275	528
	DIVISO		403	528
	Cyclohexane		361	516
	•		402	
	Toluene		368	495
	С		407	584
2c	THF		366	572
			421	
	DCM		366	591
			421	
	DMSO		376	525
			418	

Table S1 Photophysical data of 2a, 2b and 2c.(The emission wavelength was exited atmaximum absorption)

	Solid State	λem (nm)
	as synthesized	562
2a	grinding	582
	fuming	563
	heating	568
	as synthesized	547
2b	grinding	617
	fuming	554
	heating	565
	as synthesized	539
2c	grinding	598
	fuming	548
	heating	563

Table S2 Different solid state emission data of 2a, 2b and 2c.(The emission wavelength was exited at 360 nm)

Figure S1 a) PL spectra of 2b in THF and THF/water mixtures. b) Plot of PL peak intensity vs. water fraction (f_w) of the aqueous mixture. Luminogen concentration: 1×10^{-5} mol/L; excitation wavelength: 420 nm. Inset: Solution of 2b in THF ($f_w = 0\%$) and its suspension in a THF/water mixture with $f_w = 90\%$; photographs taken under UV illumination.

Figure S2 a) PL spectra of 2c in THF and THF/water mixtures. b) Plot of PL peak intensity vs. water fraction (f_w) of the aqueous mixture. Luminogen concentration: 1×10^{-5} mol/L; excitation wavelength: 420 nm. Inset: Solution of 2c in THF ($f_w = 0\%$) and its suspension in a THF/water mixture with $f_w = 90\%$; photographs taken under UV illumination.

Figure S3 Maximum fluorescent emission of 2a upon treated by repeating grinding and fuming with DCM (left), or heating at 150 $^{\circ}$ C (right), respectively.

Figure S4 Maximum fluorescent emission of 2b upon treated by repeating grinding and fuming with DCM (left), or heating at 150 $^{\circ}$ C (right), respectively.

Figure S5 Maximum fluorescent emission of 2c upon treated by repeating grinding and fuming with DCM (left), or heating at 150 $^{\circ}$ C (right), respectively.

Figure S6 UV-visible curves of 2a in different solid state measured in a reflection mode.

Figure S7 Time-resolved emission decay curves of the sample 2a.

Figure S8 DSC thermograms of 2b in different state.

Figure S9 DSC thermograms of 2c in different state.

Figure S10 SEM images of (a) pointed-plate-like and (b) needlelike structures of 2c.

Figure S11 XRD patterns of plate-like structure of 2c, inset: fluorescence microscope photos of plate-like structure of 2c.

Figure S12 Fluorescence spectra of two different crystals structure of (Yb) pointedplate-like, (Gb) needlelike structures and ground powder of 2b, inset: fluorescence microscope photos Yb, Gb and ground powder.

Figure S13 Fluorescence emission spectra of 2c in THF/water mixtures with $f_w = 90\%$ (concentration: 1×10⁻⁵ mol/L; excitation wavelength: 360 nm). Inset: photographs of suspension in a THF/water mixture with $f_w = 90\%$ taken under UV illumination (excitation wavelength: 360 nm). And corresponding Fluorescence microscope photos of the dry suspended particles ($\lambda_{ex} = 405$ nm).

Figure S14 Fluorescence emission spectra of 2d in two different solid state (excitation wavelength: 360 nm). Inset: photographs of 2d in different solid state taken under UV illumination (excitation wavelength: 360 nm).

Figure S15 ¹H NMR (400 MHz) spectrum of compound 2a in CDCl₃.

Figure S16 ¹H NMR (400 MHz) spectrum of compound 2b in CDCl₃.

Figure S17 ¹H NMR (400 MHz) spectrum of compound 2c in CDCl₃.

Figure S18 ¹H NMR (400 MHz) spectrum of compound 2d in CDCl₃.

Figure S19¹³C NMR (100 MHz) spectrum of compound 2a in CDCl₃.

Figure S20 ¹³C NMR (100 MHz) spectrum of compound 2b in CDCl₃.

Figure S21 $^{\rm 13}C$ NMR (100 MHz) spectrum of compound 2c in CDCl_3.

Figure S22 ¹³C NMR (100 MHz) spectrum of compound 2d in CDCl₃.

Figure S23 MALDI/TOF MS spectrum of compound 2a.

Figure S24 MALDI/TOF MS spectrum of compound 2b.

Figure S25 MALDI/TOF MS spectrum of compound 2c.

Figure S26 MALDI/TOF MS spectrum of compound 2d.