1	Electronic Supplementary information
2 3 4 5	Palladium nanoparticles immobilized on an amine-functionalized MIL-101(Cr) as a highly active catalyst for oxidative amination of aldehydes
6	Mrinal Saikia ^{a,b} and Lakshi Saikia ^{*a}
7 8 9	^a Materials Science Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India. Fax: +91 0376 2370011; Tel: +91 0376 2370081; E-mail: lakshi_saikia@yahoo.com ^b Academy of Scientific and Innovative Research, Chennai, India
10	*Corresponding author. Tel.: +91 376 2370 081; fax. +91 376 2370 011
11	*E-mail address: <u>l.saikia@gmail.com</u>
12	
13	Table of contents
14 15	1. Fig S1 FE-SEM images of (a) NH2-MIL-101(Cr), (b) Fresh Pd/NH2-MIL-101(Cr), (C)
16	Recovered Pd/NH ₂ -MIL-101(Cr)
17	2. Figure S2 N ₂ adsorption isotherm of NH ₂ -MIL-101(Cr) (black) and Pd/NH ₂ -MIL-101(Cr)
18	(red)
19	3. Figure S3 FT-IR spectra of (a) Fresh Pd/NH ₂ -MIL-101(Cr), (b) Recovered
20	Pd/NH ₂ -MIL-101(Cr) and (c) NH ₂ -MIL-101(Cr)
21	4. Figure S4 Thermogravimetric analysis of Pd/NH ₂ -MIL-101(Cr)
22	5. Figure S5 PXRD pattern of the Fresh (black) and recovered catalyst (red)
23	6. Figure S6 TEM images of the recovered Pd/NH ₂ -MIL-101(Cr)
24	7. Figure S7 EDS spectrum of the recovered Pd/NH ₂ -MIL-101(Cr)
25	8. Table S1 Oxidative amination of benzaldehyde with different amines catalyzed by other
26	reported catalyst in the literature.
27	9. ¹ H and ¹³ C NMR data of the synthesized compounds
28	10. ¹ H and ¹³ C spectra of the synthesized compounds.
29	
30	
31	
32	
33	
54 25	
55	

⁵² Recovered Pd/NH₂-MIL-101(Cr)

55 Fig. S2 N_2 adsorption isotherm of NH₂-MIL-101(Cr) (black) and Pd/NH₂-MIL-101(Cr) 56 (red)

- 57
- 58

60 Fig. S3 FT-IR spectra of (a) Fresh Pd/NH₂-MIL-101(Cr), (b) Recovered 61 Pd/NH₂-MIL-101(Cr) and (c) NH₂-MIL-101(Cr)

63

64 Fig. S4 Thermogravimetric (black) and derivative curve (blue) of Pd/NH₂-MIL-101(Cr)

Fig. S5 PXRD pattern of Fresh catalyst (Black), Recovered catalyst (Red)

Fig. S6 TEM images of the recovered Pd/NH₂-MIL-101(Cr)

- - -

88 Table S1: Oxidative amination of benzaldehyde with different amines catalyzed by other

89 reported catalyst in the literature

Entry	Aldehydes/Amines	Reaction conditions	Yield ^a (%)	TON	Ref.
1	СНО/НЛ	[Rh(COD) ₂]BF ₄ /Toluene/140°C/8h	78	31	25
2	СНО/НЛО	CuSO ₄ .5H ₂ O/MeCN/60°C/6h/TBHP/CaCO ₃	78	15	27
3		FeSO ₄ .7H ₂ O/MeCN/60°C/6h/TBHP/CaCO ₃	74	14	28
4	СНО/НЛ	RuH ₂ (PPh ₃) ₄ /NHC precursor/NaH/MeCN/Toluene/Reflux/24h	66	13	29
5		NBS/NHC catalyst/Et ₃ N/CH ₃ CN/25°C/ 18 h	77	7	А
6	СНО/НМ	La[N(TMS)2]/C ₆ D ₆ /25°C/24h	38	22	В
7		KI/TBHP/H ₂ O/80°C/15h	63	12	С
8 ^b	СНО/НЛ	SiO ₂ @APTES@Pd-FFR/H ₂ O ₂ /reflux at 70°C	-	414	77
9	СНО/НЛ	Pd/NH ₂ -MIL-101(Cr)/solvent free/ H ₂ O ₂ /60°C/2h	85	904	This study
90 ^a Is	solated vield				

91 ^bConversion=97%, was determined through GC-MS

_

93 A. A. Alanthadka and C. U. Maheswari, Adv. Synth. Catal., 2015, 357, 1199–1203.

94 B. S. Seo and T. J. Marks, Org. Lett., 2008, 10, 317–319.

95 C. K. R. Reddy, C. U. Maheswari, M. Venkateshwar and M. L. Kantam, Eur. J. Org. Chem.,

96 2008, **21**, 3619–3622.

- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104

⁹²

- 105 1. ¹H and ¹³C NMR data of the synthesized compounds:
- 106 (i) phenyl(piperidin-1-yl)methanone (entry 1)

- ¹H NMR (500 MHz, CDCl₃, ppm) δ 7.39 (s, 5H), 3.71 (s, 2H), 3.34 (s, 2H), 1.68-1.51 (m,
- 109 6H); ¹³C NMR (125 MHz, CDCl₃, ppm) δ 170.2, 136.3, 129.2, 128.2, 126.6, 48.6, 43.0, 26.4,
- 110 25.5, 24.4; MS m/z 189.1 (M^+).
- 111 (ii) (4-chlorophenyl)(piperidin-1-yl)methanone (entry 2)

112

- 113 ¹H NMR (500 MHz, CDCl₃, ppm) δ 7.39-7.36 (m, 2H), 7.35-7.33 (m, 2H) 3.69 (s, 2H), 3.33
- 114 (s, 2H), 1.67-1.51 (m, 6H); ¹³C NMR (125 MHz, CDCl₃, ppm) δ 169.1, 135.2, 134.6, 128.2,
- 115 48.7, 43.1, 26.4, 25.4, 24.4; MS m/z 223 (M⁺).
- 116 (iii) piperidin-1-yl(p-tolyl)methanone (entry 3)

- 118 ¹H NMR (500 MHz, CDCl₃, ppm) δ 7.29-7.28 (m, 2H), 7.20-7.18 (m, 2H) 3.69 (s, 2H), 3.36
- 119 (s, 2H), 2.37(s,3H), 1.67-1.51 (m, 6H); ¹³C NMR (125 MHz, CDCl₃, ppm) δ 170.4, 139.3,
- 120 133.3, 128.8, 126.7, 48.7, 40.8, 29.5, 24.4, 21.2; MS m/z 203.1 (M⁺).
- 121 (iv) (4-bromophenyl)(piperidin-1-yl)methanone (entry 4)

- 123 ¹H NMR (500 MHz, CDCl₃, ppm) δ 7.55-7.52 (m, 2H), 7.29-7.26 (m, 2H) 3.69 (s, 2H), 3.32
- 124 (s, 2H), 1.67-1.51 (m, 6H); ¹³C NMR (125 MHz, CDCl₃, ppm) δ 169.1, 135.1, 131.5, 128.4,
- 125 123.5, 48.6, 40.8, 29.5, 25.4, 24.3; MS m/z 267 (M⁺).
- 126 (v) (4-nitrophenyl)(piperidin-1-yl)methanone (entry 5)

- 127
- 128 ¹H NMR (500 MHz, CDCl₃, ppm) δ 8.29-8.27 (m, 2H), 7.58-7.56 (m, 2H) 3.74-3.72 (m, 2H),
- 129 3.30-3.28 (m, 2H), 1.72-1.52 (m, 6H); ¹³C NMR (125 MHz, CDCl₃, ppm) δ 167.7, 148.0,
- 130 142.5, 127.6, 123.7,48.5, 43.0, 26.3, 25.3, 24.2; MS m/z 234 (M⁺).
- 131 (vi) piperidin-1-yl(pyridin-2-yl)methanone (entry 6)

- 133 ¹H NMR (500 MHz, CDCl₃, ppm) δ 8.60-8.59 (d, J= 5Hz, 1H), 7.80-7.77 (m, 1H), 7.58-7.56
- 134 (d, J=10 Hz, 1H), 7.34-7.31(m, 1H), 3.75-3.73 (m, 2H), 3.44-3.42 (m, 2H), 1.69-1.57 (m,
- 135 6H); ¹³C NMR (125 MHz, CDCl₃, ppm) δ 167.5, 154.6, 148.3, 136.8, 124.0, 123.1,48.1, 43.1,
- 136 26.3, 25.4, 24.4; MS m/z 190.1 (M^+).
- 137 (vii) naphthalen-2-yl(piperidin-1-yl)methanone(entry 7)

138

139 ¹H NMR (500 MHz, CDCl₃, ppm) δ 8.07-8.01 (m, 2H), 7.93-7.91(m, 1H), 7.85-7.79 (m, 2H),

140 7.55-7.49 (m, 2H), 3.72 (s, 2H), 2.85-2.82 (m, 2H), 1.63-1.56 (m, 6H); ¹³C NMR (125 MHz,

141 CDCl₃, ppm) δ163.8, 136.3, 133.0, 128.9, 128.1, 127.8, 127.5, 126.9, 126.5, 49.3, 29.5, 24.9;

142 MS m/z 239.1 (M⁺).

144 (viii) phenyl(pyrrolidin-1-yl)methanone (entry 8)

- 146 ¹H NMR (500 MHz, CDCl₃, ppm) δ 7.52-7.50 (m, 2H), 7.41-7.38 (m, 3H), 3.66-3.63 (t, J=
- 147 15 Hz, 2H), 3.43-3.40 (t, J= 15 Hz, 2H), 1.98-1.94 (m, 2H), 1.89-1.85 (m, 2H); 13 C NMR

148 (125 MHz, CDCl₃, ppm) δ 169.5, 137.0, 129.6, 128.0, 126.9, 49.4, 46.0, 26.2, 24.3; MS m/z

- 149 175.1 (M⁺).
- 150 (ix) (4-chlorophenyl)(pyrrolidin-1-yl)methanone (entry 9)

151

152 ¹H NMR (500 MHz, CDCl₃, ppm) δ 7.49-7.46 (m, 2H), 7.39-7.36 (m, 2H), 3.65-3.62 (t, J=

153 15 Hz, 2H), 3.43-3.40 (t, J= 15 Hz, 2H), 1.99-1.95 (m, 2H), 1.91-1.87 (m, 2H); ¹³C NMR

154 (125 MHz, CDCl₃, ppm) δ 168.4, 135.7, 129.7, 128.5, 128.3, 49.5, 46.1, 26.3, 24.2; MS m/z

155 209 (M⁺).

156 (x) pyrrolidin-1-yl(p-tolyl)methanone (entry 10)

157

¹H NMR (500 MHz, CDCl₃, ppm) δ 7.43-7.41 (m, 2H), 7.20-7.18 (m, 2H), 3.64-3.62 (t, J=
10 Hz, 2H), 3.45-3.42 (t, J= 15 Hz, 2H), 2.37 (s, 3H), 1.96-1.93 (m, 2H), 1.87-1.84 (m, 2H);
¹³C NMR (125 MHz, CDCl₃, ppm) δ 169.6, 139.7, 134.1, 128.6, 127.0, 53.3, 49.5, 46.0, 26.2,
24.3, 21.2; MS m/z 189 (M⁺).

- 162
- 163
- 164

165

167 (xi) (4-bromophenyl)(pyrrolidin-1-yl)methanone (entry 11)

168

- 169 ¹H NMR (500 MHz, CDCl₃, ppm) δ 7.54-7.52 (m, 2H), 7.42-7.39 (m, 2H), 3.64-3.61 (t, J=
- 170 15 Hz, 2H), 3.42-3.39 (t, J= 15 Hz, 2H), 1.97-1.93 (m, 2H), 1.91-1.86 (m, 2H); ¹³C NMR

171 (125 MHz, CDCl₃, ppm) δ 168.4, 135.8, 131.3, 128.7, 123.9, 49.4, 46.1, 26.2, 24.2; MS m/z

- 172 252.9 (M^+).
- 173 (xii) (4-nitrophenyl)(pyrrolidin-1-yl)methanone (entry 12)

174

- 175 ¹H NMR (500 MHz, CDCl₃, ppm) δ 8.20-8.18 (m, 2H), 7.62-7.60 (m, 2H), 3.60-3.57 (t, J=
- 176 15 Hz, 2H), 3.33-3.30 (t, J= 15 Hz, 2H), 1.94-1.91 (m, 2H), 1.87-1.84 (m, 2H); ¹³C NMR
- 177 (125 MHz, CDCl₃, ppm) δ 167.2, 148.2, 142.9, 128.0, 123.5, 49.3, 46.2, 26.2, 24.2; MS m/z
- 178 220 (M⁺).
- 179 (xiii) morpholino(phenyl)methanone (entry 13)

- 180
- 181 ¹H NMR (500 MHz, CDCl₃, ppm) δ 7.41 (s, 5H), 3.79-3.45 (m, 8H); ¹³C NMR (125 MHz,
- 182 CDCl₃, ppm) δ 170.3, 135.1, 129.7, 128.4, 126.9, 66.7, 48.3, 42.4; MS m/z 191 (M⁺).
- 183 (xiv) (4-chlorophenyl)(morpholino)methanone (entry 14)

- 185 ¹H NMR (500 MHz, CDCl₃, ppm) δ 7.41-7.38 (m, 2H), 7.37-7.35 (m, 2H), 3.71-3.40 (m,
- 186 8H); ¹³C NMR (125 MHz, CDCl₃, ppm) δ 169.2, 135.9, 133.4, 128.7, 128.5, 66.7, 47.1, 43.1;
- 187 MS m/z 225 (M⁺).
- 188 (xv) (4-bromophenyl)(morpholino)methanone (entry 15)

- 190 ¹H NMR (500 MHz, CDCl₃, ppm) δ 7.58-7.55 (m, 2H), 7.31-7.27 (m, 2H), 3.77-3.45 (m,
- 191 8H); ¹³C NMR (125 MHz, CDCl₃, ppm) δ 169.2, 133.9, 131.7, 128.7, 124.1, 66.7, 47.4, 42.7;
- 192 MS m/z 269 (M⁺).
- 193 (xvi) morpholino(4-nitrophenyl)methanone (entry 15)

194

195 ¹H NMR (500 MHz, CDCl₃, ppm) δ 8.30-8.28 (m, 2H), 7.61-7.58 (m, 2H), 3.70-3.39 (m,

196 8H); ¹³C NMR (125 MHz, CDCl₃, ppm) δ 167.9, 148.3, 141.2, 128.0, 123.8, 66.6, 47.9, 42.4;
197 MS m/z 236 (M⁺).

180 170 160 150 140 130 120 110 100 90 80 70 fl (ppm)

