Electronic Supplementary Information of

Optical Sensitivity of Mussel Protein-Coated Double-Walled Carbon Nanotube on Iron-DOPA Conjugation Bond

Yong-Il Ko^a, Cheon-Soo Kang^a, Eun-Ae Shin^b, Yong Chae Jung^c, Hiroyuki Muramatsu^a, Takuya Hayashi^a, Yoong Ahm Kim^{b,*}, Mildred S. Dresselhaus^d

^a Faculty of Engineering and Carbon Institute of Science and Technology, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan.

^b Department of Polymer Engineering, Graduated School & School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 500-757, Republic of Korea. Fax: +82-62-530-1779; Tel: +82-62-530-1871; E-mail: yak@jnu.ac.kr

^c Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), 92 Chundong-ro, Bongdong-eup, Wanju-gun, Jeonbuk 565-905, Republic of Korea.

^d Department of Electrical Engineering and Computer Science, Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, USA

Figure S1. TEM images of (a, b) pristine bundled DWNTs at different magnifications and (c) FeCl₃ solution added-MAP-dispersed DWNT supernatant. (d) The sonicated opaque DWNT suspension (left), the following ultra-centrifuged semi-transparent MAP-dispersed DWNT supernatant (middle), and after adding 100 μ l of FeCl₃ solution (100 mM) to the MAP-dispersed DWNT supernatant.

Figure S2. Raman/fluorescence spectra taken with laser excitation wavelengths of (a) 633 nm and (b) 532 nm for pristine DWNTs and MAP-dispersed DWNT solutions at different dispersion states (remnant (blue), supernatant (green), and after adding FeCl₃ solution (pink)).

Figure S3. The XPS spectra of N1s of (a) MAP-DWNT and (b) Fe-MAP-DWNT sample (no te that the concentration and amount of FeCl₃ solution were 100 mM and 30 μ l).

Figure S4. SEM images and EDS measurements of (a) pristine DWNT, (b) MAP-DWNT and (c) MAP-DWNT with FeCl₃ (50 μ l) solution. All samples were prepared by buckypaper through filtration with an Omnipore membrane filter (JVWP 0.1 μ m).

Assignment (n,m)	SDBS-DWNT			MAP-DWNT			• • • • •	A E d
	ω (cm ⁻¹)	λ (nm)	E (eV) ^a	ω (cm ⁻¹)	λ (nm)	E (eV) ^b	(nm)	ΔE^{α} (eV)
(7,5)	2995.4	1026.3	1.209	3142.4	1042.1	1.191	15.7	-0.018
(6,5)	2529.7	979.5	1.267	2681.1	994.3	1.248	14.7	-0.019
(8,3)	2289.1	957.0	1.297	2460.0	972.9	1.275	15.9	-0.021
(9,1)	1810.2	915.0	1.356	1991.2	930.4	1.334	15.4	-0.022
(6,4)	1368.4	879.5	1.411	1513.8	890.9	1.393	11.4	-0.018
(5,4)	716.3	831.8	1.492	902.8	844.9	1.469	13.1	-0.023

Table S1. Structures and first van Hove optical transitions for semiconducting SDBS- and MAP-dispersed DWNTs from the obtained Raman/fluorescence spectra.

^{a,b} Band-gap values were calculated from the absorption wavelength by the following equations: $E = hc/\lambda$, (E: band gap, h : Planck's constant, c : speed of light in vacuum, and λ : wavelength); ^c The shifts of absorption wavelength ($\Delta \lambda_{ii} = \lambda_{ii}^{MAP-DWNT} - \lambda_{ii}^{SDBS-DWNT}$) are calculated; ^d The energy differences ($\Delta E_{ii} = E_{ii}^{b} - E_{ii}^{a}$) are calculated.

Van Hove transitions	SDBS-DWNT		MAP-DW	MAP-DWNT		AE d	4	Assistant
	$\overline{\lambda_{ii}}$ (nm)	E _{ii} (eV) ^a	λ_{ii} (nm)	E _{ii} (eV) ^b	(nm)	ΔE_{ii}^{α} (eV)	a _t (nm)	(n,m)
	1248	0.994	1281	0.969	33	-0.026	1.050	(10,5)
	1178	1.053	1198	1.036	20	-0.018	0.995	(12,1)
	1114	1.114	1137	1.091	23	-0.023	0.916	(9,4)
Semi -conducting (<i>E</i> ₁₁)	1058	1.173	1077	1.152	19	-0.021	0.884	(10,2)
	1026	1.209	1045	1.187	19	-0.022	0.829	(7,5)
	978	1.269	997	1.245	19	-0.024	0.757	(6,5)
	955	1.299	974	1.274	19	-0.025	0.782	(8,3)
	913	1.359	931	1.333	18	-0.026	0.757	(9,1)
	872	1.423	884	1.404	12	-0.019	0.692	(6,4)
	801	1.549	807	1.538	6	-0.012	0.995	(12,1)
	794	1.563	803	1.545	9	-0.018	1.05	(10,5)
							1.103	(9,7)
Semi-	734	1.690	739	1.679	5	-0.011	1.032	(8,7)
conducting							0.966	(8,6)
(<i>E</i> ₂₂)	675	1.838	677	1.833	2	-0.005	1.041	(12,2)
	646	1.921	652	1.903	6	-0.018	0.895	(7.5)
							0.829	(7,6)
	589	2.107	594	2.089	5	-0.018	0.840	(8,4)

Table S2. Structures and first and second van Hove optical transitions for semiconducting SDBS- and MAP-dispersed DWNTs from the obtained UV-Vis-NIR spectra.

^{a,b}Band-gap was calculated from absorption wavelength by the following equations: $E = hc/\lambda$, (E: band gap, c : speed of light in vacuum, h : Pl anck's constant, and λ : wavelength); ^c The shifts of absorption wavelength ($\Delta \lambda_{ii} = \lambda_{ii}^{MAP-DWNT} - \lambda_{ii}^{SDBS-DWNT}$) are calculated; ^d The energy diffe rences ($\Delta E_{ii} = E_{ii}^{b} - E_{ii}^{a}$) are calculated.

FeCl ₃	Fe ³⁺		MAP ^a		Fe ³⁺ / MAP	AP
Solution (µl)	mg	µmol ^b	mg	µmol ^b	wt %	mol %
10	0.06	1.00	3	0.13	1.86	753.33
20	0.11	2.00	3	0.13	3.72	1506.67
30	0.17	3.00	3	0.13	5.58	2260.00
40	0.22	4.00	3	0.13	7.45	3013.33
50	0.28	5.00	3	0.13	9.31	3766.67
70	0.39	7.00	3	0.13	13.03	5273.33
100	0.56	10.00	3	0.13	18.61	7533.33

Table S3. The weight (wt %) and molar (mol %) ratio of Fe³⁺ with MAP for MAP-dispersed DWNT supernatant when adding different amounts of FeCl₃ solution (100 mM).

^a 3 ml of MAP-dispersed DWNT supernatant was used in this experiment. The concentration of MAP was 1 mg/ml.

^b The atomic weight of Fe³⁺ and MAP is 55.84 g/mol and 22,600 g/mol, respectively.