Formal [3+3] Annulation of Isatin-derived 2-Bromoenals with 1, 3-Dicarbonyl Compounds Enabled by Lewis Acid/N-Heterocyclic Carbene Cooperative Catalysis

Junyu Xu,^a Weiguo Zhang,^a Yishan Liu, Suzhen Zhu, Ming Liu, Xi Hua, Siyi Chen, Tao Lu* and Ding Du* State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing, 210009, P. R. China. E-mail: lut163@163.com and ddmn9999@cpu.edu.cn ^a These authors contribute to this work equally.

General Methods and Materials	S2
General procedure for the synthesis of isatin-derived 2-bromoenals 5	S2
General experimental procedure for the synthesis of products 7	S4
Procedure for the ring-opening reaction of 7k with methanol	S8
Procedure for the NHC-catalyzed reaction of 2-bromoenal 5a with ethanol	S9
Copies of NMR spectra for substrates 5	S9
Copies of NMR spectra for products 7	S10
Copies of NMR spectra for compound 8	S30
Copy of ¹ H NMR spectra for compound 13	S31
Copies of chiral HPLC spectra for product 7a	S32

General Methods and Materials. All reactions were carried out under an atmosphere of nitrogen in dry glassware, and were monitored by analytical thin-layer chromatography (TLC), which was visualized by ultraviolet light (254 nm). All solvents were obtained from commercial sources and were purified according to standard procedures. Purification of the products was accomplished by flash chromatography using silica gel (200~300 mesh). All NMR spectra were recorded on Bruker spectrometers, running at 300 MHz or 500 MHz for ¹H and 75 MHz for ¹³C respectively. Chemical shifts (δ) and coupling constants (J) are reported in ppm and Hz respectively. The solvent signals were used as references (residual CHCl₃ in CDCl₃: $\delta_{\rm H} = 7.26$ ppm, $\delta_{\rm c} = 77.0$ ppm; residual DMSO in DMSO- d_{δ} : $\delta_{\rm H} = 2.50$ ppm, $\delta_{\rm c} = 39.5$ ppm). The following abbreviations are used to indicate the multiplicity in NMR spectra: s (singlet); d (doublet); t (triplet); q (quartet); m (multiplet). High resolution mass spectrometry (HRMS) was recorded on TOF perimer for ES⁺. The e.e. value was determined via chiral HPLC analysis (Diacel Chiral pack IB, methanol/H₂O = 85/15).

General procedure for the synthesis of isatin-derived 2-bromoenals 5

Isatin-derived enals 2 are prepared according to a known procedure starting from substituted isatins.¹ Isatin-derived 2-bromoenals 5 are synthesized by one-pot sequential addition of Br_2 to compounds 2 and elimination with a base.

General procedure for the synthesis of 5 from 2: To the solution of compounds 2 (263 mg, 1.0 mmol) in CH₂Cl₂ (3-4 mL) was added Br₂ (62 μ L, 1.2 mmol). The resulting mixture was stirred at 5-10 °C for 15 mins followed by addition of Et₃N (235 μ L, 1.7 mmol). The mixture was further stirred at 5-10 °C until the completion of the reaction as monitored by TLC. Then saturated sodium carbonate aqueous solution (20

mL) was added and the resulting mixture was extracted with CH_2Cl_2 (3x10 mL). The organic phase was dried over anhydrous Na_2SO_4 , and evaporated under reduced pressure. The residue was purified by chromatography on silica gel using hexane/EtOAc (3:1) as the eluent to afford products **5** as red solids.

(*E*)-2-(1-Benzyl-2-oxoindolin-3-ylidene)-2-bromoacetaldehyde (**5a**). Red solid, mp: 188-189 °C. *E/Z* = 91:9. ¹H NMR (300 MHz, CDCl₃): δ 10.92 (s, 1H), 8.64 (s, 1H), 7.47 (d, *J* = 8.4 Hz, 1H), 7.30-7.33 (m, 6H), 6.62 (d, *J* = 8.4 Hz, 1H), 4.93 (s, 2H). ¹³C NMR (75 MHz, CDCl₃): δ 185.1, 165.0, 162.3, 145.0, 134.9, 134.8, 133.4, 128.9, 127.9, 127.7, 127.2, 122.8, 121.7, 109.7, 43.8. HRMS (ESI) calcd for C₁₇H₁₃BrNO₂ (M+H)⁺: 342.0124, found 342.0129.

(*E*)-2-(1-Benzyl-5-fluoro-2-oxoindolin-3-ylidene)-2-bromoacetaldehyde (**5b**). Red solid, mp: 175-177 °C. *E/Z* = >95:5. ¹H NMR (300 MHz, CDCl₃): δ 10.94 (s, 1H), 8.27 (dd, *J* = 9.0, 2.1 Hz, 1H), 7.31-7.35 (m, 5H), 7.05-7.11 (m, 1H), 6.66 (dd, *J* = 8.4, 4.2 Hz, 1H), 4.93 (s, 2H). ¹³C NMR (75 MHz, CDCl₃): δ 184.8, 164.8, 158.6 (d, *J* = 241.1Hz, 1C), 141.1 (d, *J* = 1.9 Hz, 1C), 137.6 (d, *J* = 3.4 Hz, 1C), 136.1, 134.6, 129.0, 128.1, 127.2, 122.6 (d, *J* = 9.0 Hz, 1C), 119.7 (d, *J* = 24.1 Hz, 1C), 115.1 (d, *J* = 27.2 Hz, 1C), 110.2 (d, *J* = 7.9 Hz, 1C), 44.0. HRMS (ESI) calcd for C₁₇H₁₂BrFNO₂ (M+H)⁺: 360.0030, found 360.0032.

(*E*)-2-(1-Benzyl-5-chloro-2-oxoindolin-3-ylidene)-2-bromoacetaldehyde (**5c**). Red solid, mp: 202-204 °C. *E/Z* = >95:5. ¹H NMR (300 MHz, CDCl₃): δ 10.92 (s, 1H), 8.51 (s, 1H), 7.30-7.33 (m, 6H), 6.66 (d, *J* = 8.1 Hz, 1H), 4.93 (s, 2H). ¹³C NMR (75 MHz, CDCl₃): δ 184.7, 164.7, 143.3, 137.1, 136.3, 134.5, 132.9, 129.0, 128.4, 128.1, 127.4, 127.2, 122.9, 110.6, 44.0. HRMS (ESI) calcd for C₁₇H₁₂BrClNO₂ (M+H)⁺: 375.9734, found 375.9734.

(*E*)-2-(1-Benzyl-5-bromo-2-oxoindolin-3-ylidene)-2-bromoacetaldehyde (**5d**). Red solid, mp: 213-215 °C. *E/Z* = 90:10. ¹H NMR (300 MHz, CDCl₃): δ 10.92 (s, 1H), 8.64 (s, 1H), 7.47 (d, *J* = 8.4 Hz, 1H), 7.30-7.33 (m, 5H), 6.62 (d, *J* = 8.4 Hz, 1H), 4.93 (s, 2H). ¹³C NMR (75 MHz, CDCl₃): δ 184.8, 164.6, 143.8, 137.0, 136.3, 135.8,

134.5, 130.2, 129.1, 128.2, 127.2, 123.3, 115.5, 111.1, 44.0. HRMS (ESI) calcd for C₁₇H₁₂Br₂NO₂ (M+H)⁺: 419.9229, found 419.9232.

(*E*)-2-(1-Benzyl-5-methyl-2-oxoindolin-3-ylidene)-2-bromoacetaldehyde (**5e**). Red solid, mp: 178-180 °C. *E/Z* = >95:5. ¹H NMR (300 MHz, CDCl₃): δ 10.96 (s, 1H), 8.33 (s, 1H), 7.31-7.36 (m, 5H), 7.15 (d, *J* = 7.8 Hz, 1H), 6.62 (d, *J* = 7.8 Hz, 1H), 4.91 (s, 2H), 2.35 (s, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 185.2, 165.1, 142.9, 138.4, 135.0, 134.4, 133.9, 132.4, 128.9, 128.3, 127.9, 127.2, 121.7, 109.5, 43.8, 21.2. HRMS (ESI) calcd for C₁₈H₁₅BrNO₂ (M+H)⁺: 356.0281, found 356.0267.

(*E*)-2-(1-Benzyl-7-chloro-2-oxoindolin-3-ylidene)-2-bromoacetaldehyde (**5f**). Red solid, mp: 166-168 °C. *E/Z* = > 95:5. ¹H NMR (300 MHz, CDCl₃): δ 10.90 (s, 1H), 8.58 (d, *J* = 7.8 Hz, 1H), 7.29-7.37 (m, 6H), 7.04-7.09 (m, 1H), 5.42 (s, 2H). ¹³C NMR (75 MHz, CDCl₃): δ 185.1, 165.7, 140.7, 136.53, 136.46, 136.1, 135.7, 128.7, 127.5, 126.4, 126.1, 124.3, 123.5, 116.1, 45.2. HRMS (ESI) calcd for C₁₇H₁₂BrClNO₂ (M+H)⁺: 375.9734, found 375.9734.

General procedure for the synthesis of products 7

To an oven-dried 15 mL glass cylindrical pressure vessel was charged with 2bromoenals **5** (0.2 mmol), 1,3-dicarbonyl compounds **6** (0.4 mmol), carbene precursor **F** (8 mg, 0.03 mmol), Cs_2CO_3 (98 mg, 0.3 mmol), LiCl (9.0 mg, 0.22 mmol) and 200 mg of 4 Å MS under N₂ atmosphere. Then anhydrous 1,4-dioxane (3 mL) was added and the vessel was immediately sealed tightly. The resulting mixture was stirred at 50 °C for 2 h. The mixture was cooled to room temperature. The solvent was evaporated under reduced pressure and the residue was purified by chromatography on silica gel to using hexane/EtOAc (5:1) as the eluent afford products **7**.

Ethyl 1-benzyl-6'-methyl-2,2'-dioxo-2',3'-dihydrospiro[indoline-3,4'-pyran]-5'-carboxylate (**7a**). White solid, mp: 126-128 °C. ¹H NMR (300 MHz, CDCl₃): δ 7.27-7.35 (m, 5H), 7.20 (t, *J* = 7.8 Hz, 1H), 7.08 (d, *J* = 7.2 Hz, 1H), 6.99 (t, *J* = 7.2 Hz, 1H), 6.77 (d, *J* = 7.8 Hz, 1H), 5.04 and 4.82 (d×2, *J* = 15.6 Hz, 2H), 3.81-4.02 (m, 2H), 3.11 (d, *J* = 15.6 Hz, 1H), 2.67 (d, *J* = 15.5 Hz, 1H), 2.47 (s, 3H), 0.88 (t, *J* = 7.0 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃): δ 176.6, 164.5, 164.2, 163.0, 142.1, 135.4, 130.4, 129.1, 128.8, 127.8, 127.4, 123.1, 122.3, 109.6, 108.6, 60.9, 48.9, 44.2, 38.0, 19.0, 13.5. HRMS (ESI) calcd for C₂₃H₂₂NO₅ (M+H)⁺: 392.1492, found 392.1488.

Ethyl 1-benzyl-2,2'-dioxo-6'-phenyl-2',3'-dihydrospiro[indoline-3,4'-pyran]-5'-carboxylate (**7b**). White solid, mp: 187-189 °C. ¹H NMR (300 MHz, CDCl₃): δ 7.50-7.53 (m, 2H), 7.29-7.46 (m, 8H), 7.20-7.24 (m, 2H), 7.04 (t, *J* = 7.5 Hz, 1H), 6.78 (d, *J* = 7.8 Hz, 1H), 4.93-5.04 (m, 2H), 3.69-3.88 (m, 2H), 3.29 (d, *J* = 15.8 Hz, 1H), 2.85 (d, *J* = 15.8 Hz, 1H), 0.70 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 176.1, 164.7, 164.2, 162.3, 160.5, 142.3, 135.4, 132.7, 130.4, 129.8, 129.4, 128.8, 128.7, 128.0, 127.7, 127.3, 123.2, 122.6, 109.9, 60.9, 49.5, 44.3, 38.0, 13.1. HRMS (ESI) calcd for C₂₈H₂₄NO₅ (M+H)⁺: 454.1649, found 454.1659.

Ethyl 1-benzyl-6'-(4-methoxyphenyl)-2,2'-dioxo-2',3'-dihydrospiro[indoline-3,4'-pyran]-5'-carboxylate (**7c**). White solid, mp: 148-149 °C. ¹H NMR (300 MHz, CDCl₃): δ 7.50 (d, J = 8.7 Hz, 2H), 7.21-7.41 (m, 7H), 7.04 (t, J = 7.5 Hz, 1H), 6.93 (d, J = 8.4Hz, 2H), 6.78 (d, J = 8.1 Hz, 1H), 5.02 and 4.96 (d×2, J = 15.9 Hz, 2H), 3.75-3.90 (m, 5H), 3.27 (d, J = 15.9 Hz, 1H), 2.85 (d, J = 15.9 Hz, 1H), 0.76 (t, J = 7.2 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 176.3, 165.0, 164.4, 161.4, 160.2, 142.3, 135.4, 130.5, 130.0, 129.4, 128.8, 127.7, 127.4, 124.7, 123.2, 122.6, 113.3, 109.8, 109.0, 60.9, 55.3, 49.6, 44.3, 38.1, 13.3. HRMS (ESI) calcd for C₂₉H₂₆NO₆ (M+H)⁺: 484.1755, found 484.1756.

Methyl 1-benzyl-2,2'-dioxo-6'-phenyl-2',3'-dihydrospiro[indoline-3,4'-pyran]-5'-carboxylate (**7d**). White solid, mp: 162-163 °C. ¹H NMR (300 MHz, CDCl₃): δ 7.50-7.53 (m, 2H), 7.29 -7.47 (m, 8H), 7.22 (d, *J* = 7.5 Hz, 2H), 7.04 (t, *J* = 7.5 Hz, 1H), 6.80 (d, *J* = 7.7 Hz, 1H), 5.05 and 4.92 (d×2, *J* = 15.7 Hz, 2H), 3.30 (d, *J* = 15.8 Hz, 1H), 3.25 (s, 3H), 2.84 (d, *J* = 15.8 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃): δ 176.1, 165.2, 164.1, 162.3, 160.5, 142.2, 135.4, 130.5, 129.8, 129.5, 128.8, 128.6, 128.0, 127.8, 127.4, 123.3, 122.5, 109.9, 51.7, 49.5, 44.4, 37.9. HRMS (ESI) calcd for C₂₇H₂₂NO₅ (M+H)⁺: 440.1492, found 440.1501.

Methyl 1-benzyl-2,2'-dioxo-6'-(p-tolyl)-2',3'-dihydrospiro[indoline-3,4'-pyran]-5'-car-

boxylate (**7e**). White solid, mp: 201-202 °C. ¹H NMR (300 MHz, CDCl₃): δ 7.28-7.42 (m, 7H), 7.20-7.23 (m, 4H), 7.03 (t, *J* = 7.5 Hz, 1H), 6.79 (d, *J* = 7.8 Hz, 1H), 5.04 and 4.92 (d×2, *J* = 15.7 Hz, 2H), 3.27-3.31 (m, 4H), 2.82 (d, *J* = 15.8 Hz, 1H), 2.40 (s, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 176.1, 165.4, 164.2, 160.6, 142.2, 140.9, 135.4, 129.8, 129.5, 129.4, 128.8, 128.7, 128.6, 127.7, 127.4, 123.2, 122.5, 109.9, 109.2, 51.6, 49.5, 44.3, 38.0, 21.5. HRMS (ESI) calcd for C₂₈H₂₄NO₅ (M+H)⁺: 454.1649, found 454.1643.

Methyl 1-benzyl-6'-(4-chlorophenyl)-2,2'-dioxo-2',3'-dihydrospiro[indoline-3,4'-pyran]-5'-carboxylate (**7f**). White solid, mp: 190-191 °C. ¹H NMR (300 MHz, CDCl₃): δ 7.29-7.48 (m, 9H), 7.18-7.24 (m, 2H), 7.04 (t, J = 7.5 Hz, 1H), 6.80 (d, J = 7.9 Hz, 1H), 5.04 and 4.91 (d×2, J = 15.7 Hz, 2H), 3.26 (s, 3H), 3.27 (d, J = 15.9 Hz, 1), 2.83 (d, J = 15.8 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃): δ 175.9, 164.9, 163.8, 159.4, 142.2, 136.7, 135.3, 130.9, 130.1, 129.6, 128.8, 128.4, 127.8, 127.5, 123.3, 122.5, 110.2, 110.0, 51.8, 49.5, 44.4, 37.9. HRMS (ESI) calcd for C₂₇H₂₁ClNO₅ (M+H)⁺: 474.1103, found 474.1097.

5'-Acetyl-1-benzyl-6'-methylspiro[indoline-3,4'-pyran]-2,2'(3'H)-dione (**7g**). White solid, mp: 150-151 °C. ¹H NMR (300 MHz, CDCl₃): δ 7.28-7.40 (m, 5H), 7.20 (m, 1H), 6.96-7.07 (m, 2H), 6.77 (d, *J* = 7.8 Hz, 1H), 4.96 (s, 2H), 3.11 (d, *J* = 15.6 Hz, 1H), 2.63 (d, *J* = 15.6 Hz, 1H), 2.42 (s, 3H), 2.14 (s, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 195.7, 176.2, 163.8, 159.9, 141.4, 134.9, 129.5, 128.9, 128.4, 127.3, 126.9, 122.8, 121.8, 118.8, 109.6, 49.0, 43.9, 37.98, 30.4, 19.2. HRMS (ESI) calcd for C₂₂H₂₀NO₄ (M+H)⁺: 362.1387, found 362.1387.

5'-Acetyl-1-benzyl-6'-phenylspiro[indoline-3,4'-pyran]-2,2'(3'H)-dione (**7h**). White solid, mp: 223-224 °C. ¹H NMR (300 MHz, CDCl₃): δ 7.67-7.70 (m, 2H), 7.53 (m, 1H), 7.37-7.42 (m, 2H), 7.28-7.34 (m, 8H), 7.12-7.17 (m, 2H), 6.98 (m, 1H), 6.62 (m, 1H), 4.92 and 4.75 (d×2, *J* = 15.7 Hz, 2H), 3.16 (d, *J* = 15.8 Hz, 1H), 2.89 (d, *J* = 15.8 Hz, 1H), 1.95 (s, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 194.5, 176.2, 164.5, 162.3, 157.7, 142.2, 138.4, 135.2, 133.1, 129.6, 129.2, 128.8, 128.7, 127.6, 127.2, 123.2,

122.5, 115.9, 109.9, 50.0, 44.2, 38.0, 19.5. HRMS (ESI) calcd for C₂₇H₂₂NO₄ (M+H)⁺: 424.1543, found 424.1541.

5'-Benzoyl-1-benzyl-6'-phenylspiro[indoline-3,4'-pyran]-2,2'(3'H)-dione (7i). White solid, mp: 266-268 °C. ¹H NMR (300 MHz, DMSO-*d*₆): δ 7.71 (d, *J* = 7.2 Hz, 2H), 7.14-7.46 (m, 15H), 6.89 (t, *J* = 7.2 Hz, 1H), 6.80 (d, *J* = 7.5 Hz, 1H), 5.01 and 4.87 (d×2, *J* = 15.9 Hz, 2H), 3.74 (d, *J* = 15.9 Hz, 1H), 3.18 (d, *J* = 16.2 Hz, 1H). ¹³C NMR (75 MHz, DMSO-*d*₆): δ 194.3, 175.9, 165.3, 156.1, 142.6, 136.9, 135.8, 133.0, 132.1, 130.4, 129.1, 129.0, 128.7, 128.6, 128.1, 128.0, 127.3, 127.0, 122.8, 122.7, 115.2, 109.7, 50.1, 43.2, 36.6. HRMS (ESI) calcd for C₃₂H₂₄NO₄ (M+H)⁺: 486.1700, found 486.1711.

5'-Acetyl-1-benzyl-5-fluoro-6'-phenylspiro[indoline-3,4'-pyran]-2,2'(3'H)-dione (7j). White solid, mp: 193-194 °C. ¹H NMR (300 MHz, CDCl₃): δ 7.73 (d, *J* = 7.5 Hz, 2H), 7.55 (t, *J* = 7.2 Hz, 1H), 7.43 (t, *J* = 7.5 Hz, 2H), 7.26-7.32 (m, 5H), 6.82-6.91 (m, 2H), 6.56 (dd, *J* = 8.4, 3.9 Hz, 1H), 4.90 and 4.79 (d×2, *J* = 15.9 Hz, 2H), 3.19 (d, *J* = 15.9 Hz, 1H), 2.88 (d, *J* = 15.9 Hz, 1H), 1.94 (s, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 194.4, 175.9, 164.1, 159.6 (d, *J* = 197.3 Hz, 1C), 157.7, 138.4, 138.1 (d, *J* = 2.0 Hz, 1C), 134.9, 133.3, 131.3 (d, *J* = 8.0 Hz, 1C), 128.87, 128.83, 128.80, 127.8, 127.1, 115.6 (d, *J* = 23.3 Hz, 1C), 110.8 (d, *J* = 14.9 Hz, 1C), 110.60, 110.57, 50.39 (d, *J* = 1.7 Hz, 1C), 44.4, 37.9, 19.7. HRMS (ESI) calcd for C₂₇H₂₁FNO₄ (M+H)⁺: 442.1449, found 442.1445.

5'-Acetyl-1-benzyl-5-chloro-6'-phenylspiro[indoline-3,4'-pyran]-2,2'(3'H)-dione (7k). White solid, mp: 212-213 °C. ¹H NMR (300 MHz, CDCl₃): δ 7.73 (d, *J* = 7.2 Hz, 2H), 7.56 (m, 1H), 7.44 (t, *J* = 7.5 Hz, 2H), 7.26-7.35 (m 5H), 7.12-7.14 (m, 2H), 6.57 (d, *J* = 8.1 Hz, 1H), 4.90 and 4.80 (d×2, *J* = 15.9 Hz, 2H), 3.20 (d, *J* = 15.9 Hz, 1H), 2.86 (d, *J* = 15.9 Hz, 1H), 1.94 (s, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 194.4, 175.8, 164.0, 158.5, 140.7, 138.5, 134.7, 133.3, 131.6, 129.3, 128.9, 128.8, 128.6, 127.8, 127.1, 123.0, 115.6, 111.0, 50.2, 44.3, 37.9, 19.8. HRMS (ESI) calcd for C₂₇H₂₁ClNO₄ (M+H)⁺: 458.1154, found 458.1160. 5'-Acetyl-1-benzyl-5-bromo-6'-phenylspiro[indoline-3,4'-pyran]-2,2'(3'H)-dione (7I). White solid, mp: 206-207 °C. ¹H NMR (300 MHz, CDCl₃): δ 7.74 (d, *J* = 7.5 Hz, 2H), 7.58 (t, *J* = 7.2 Hz, 1H), 7.45 (t, *J* = 7.5 Hz, 2H), 7.28-7.34 (m, 7H), 6.54 (d, *J* = 8.1 Hz, 1H), 4.91 and 4.81 (d×2, *J* = 15.9 Hz, 2H), 3.22 (d, *J* = 15.9 Hz, 1H), 2.87 (d, *J* = 15.9 Hz, 1H), 1.96 (s, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 194.4, 175.7, 164.0, 158.5, 141.2, 138.5, 134.7, 133.3, 132.2, 131.9, 128.9, 128.8, 127.8, 127.1, 125.7, 115.8, 115.6, 111.4, 50.1, 44.3, 37.9, 19.8. HRMS (ESI) calcd for C₂₇H₂₁BrNO₄ (M+H)⁺: 502.0648, found 502.0645.

5'-Acetyl-1-benzyl-5-methyl-6'-phenylspiro[indoline-3,4'-pyran]-2,2'(3'H)-dione (**7m**). White solid, mp: 230-231 °C. ¹H NMR (300 MHz, CDCl₃): δ 7.72 (d, *J* = 7.5 Hz, 2H), 7.55 (t, *J* = 7.2 Hz, 1H), 7.42 (t, *J* = 7.5 Hz, 2H), 7.23-7.34 (m, 5H), 6.95-6.98 (m, 2H), 6.53 (d, *J* = 7.8 Hz, 1H), 4.90 and 4.76 (d×2, *J* = 15.6 Hz, 2H), 3.21 (d, *J* = 15.9 Hz, 1H), 2.87 (d, *J* = 15.9 Hz, 1H), 2.25 (s, 3H), 1.96 (s, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 194.7, 176.1, 164.7, 157.7, 139.7, 138.5, 135.3, 133.1, 132.9, 129.8, 129.6, 128.84, 128.76, 128.67, 127.6, 127.2, 123.3, 116.1, 109.7, 50.1, 44.2, 38.1, 21.0, 19.6. HRMS (ESI) calcd for C₂₈H₂₄NO₄ (M+H)⁺: 438.1700, found 438.1687.

5'-Acetyl-1-benzyl-7-chloro-6'-phenylspiro[indoline-3,4'-pyran]-2,2'(3'H)-dione (**7n**). White solid, mp: 172-173 °C. ¹H NMR (300 MHz, CDCl₃): δ 7.70 (d, *J* = 7.5 Hz, 2H), 7.56 (t, *J* = 7.5 Hz, 1H), 7.42 (t, *J* = 7.5 Hz, 2H), 7.23-7.33 (m, 5H), 7.16 (d, *J* = 8.1 Hz, 1H), 7.07 (m, 1H), 6.94 (t, *J* = 7.5 Hz, 1H), 5.26 (s, 2H), 3.17 (d, *J* = 15.9 Hz, 1H), 2.87 (d, *J* = 15.6 Hz, 1H), 1.94 (s, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 194.4, 176.8, 164.0, 158.3, 138.45, 138.35, 137.1, 133.3, 132.7, 131.9, 128.80, 128.77, 128.6, 127.2, 126.4, 124.1, 121.0, 116.2, 115.6, 49.8, 45.3, 38.3, 19.7. HRMS (ESI) calcd for C₂₇H₂₁ClNO₄ (M+H)⁺: 458.1154, found 458.1152.

Procedure for the ring-opening reaction of 7k with methanol

To an oven-dried 10 mL round-bottom flask was charged with compound 7k (46 mg, 0.1 mmol) and anhydrous methanol (1 mL). The resulting mixture was heated at 65°C until the completion of the reaction as monitored by TLC. The solvent was evaporated

under reduced pressure and the residue was purified by flash chromatography on silica gel to using hexane/EtOAc (5:1) as the eluent afford 42 mg of compound **8**.

Methyl 2-(1-benzyl-5-chloro-2-oxo-3-(2-oxo-2-phenylethyl)indolin-3-yl)acetate (**8**). 93% yield. ¹H NMR (300 MHz, CDCl₃): δ 7.87-7.90 (m, 2H), 7.55 (t, *J* = 7.2 Hz, 1H), 7.29-7.46 (m 8H), 7.10 (dd, *J* = 8.4, 2.1 Hz, 1H), 6.65 (d, *J* = 8.1 Hz, 1H), 5.05 and 4.97 (d×2, *J* = 15.9 Hz, 2H), 4.12 (d, *J* = 18.0 Hz, 1H), 3.62 (d, *J* = 18.6 Hz, 1H), 3.59 (s, 3H), 3.16 (d, *J* = 16.2 Hz, 1H), 2.83 (d, *J* = 16.2 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃): δ 195.5, 178.7, 170.0, 142.2, 136.1, 135.6, 133.4, 132.5, 128.9, 128.8, 128.6, 128.2, 128.0, 127.6, 127.3, 124.2, 110.2, 63.4, 51.8, 47.2, 44.4, 40.9. HRMS (ESI) calcd for C₂₆H₂₃ClNO₄ (M+H)⁺: 448.1310, found 448.1289.

Procedure for the NHC-catalyzed reaction of 2-bromoenal 5a with ethanol

To an oven-dried 15 mL glass cylindrical pressure vessel was charged with 2bromoenals **5a** (68 mg, 0.2 mmol), carbene precursor **F** (8 mg, 0.03 mmol), Cs_2CO_3 (98 mg, 0.3 mmol), LiCl (9.0 mg, 0.22 mmol) and 200 mg of 4 Å MS under N₂ atmosphere. Then anhydrous 1,4-dioxane (3 mL) and ethanol (0.5 mL) were added and the vessel was immediately sealed tightly. The resulting mixture was stirred at 50 °C for 2 h. The mixture was cooled to room temperature. The solvent was evaporated under reduced pressure and the residue was purified by chromatography on silica gel to using hexane/EtOAc (5:1) as the eluent afford 48 mg of compound **13**.

(*E*)-ethyl 2-(1-benzyl-2-oxoindolin-3-ylidene)acetate (**13**).² 78% yield. ¹H NMR (500 MHz, CDCl₃): δ 8.54 (d, *J* = 7.5 Hz, 1H), 7.22-7.33 (m, 6H), 7.01 (t, *J* = 7.5 Hz, 1H), 6.96 (s, 1H), 6.67 (d, *J* = 7.5 Hz, 1H), 4.92 (s, 2H), 4.32 (q, *J* = 7.0 Hz, 2H), 1.36 (t, *J* = 7.0 Hz, 3H).

- 1. T. Mukaiyama, K. Ogata, I. Sato and Y. Hayashi, Chem. Eur. J., 2014, 20, 13583.
- 2. C. Palumbo, G. Mazzeo, A. Mazziotta, A. Gambacorta, M. A. Loreto, A. Migliorini, S. Superchi, D. Tofani and T. Gasperi, *Org. Lett.*, 2011, **13**, 6248.

~3.311 ~3.265 ~2.791 ~2.791

S23

S28

S30

Wavelength = 250 nm

Peak	Ret. Time	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAu*S]	[mAu]	%
1	3.985	VV	0.1004	47.12137	6.75049	0.7915
2	4.491	VB	0.0991	218.33531	32.59848	3.6676
3	5.022	BB	0.0926	19.78923	3.26985	0.3324
4	5.939	BV	0.1578	281.42203	27.17084	4.7273
5	6.147	VB	0.1467	174.53943	17.59498	2.9319
6	6.909	BV	0.1710	2592.20020	232.59561	43.5435
7	7.467	VB	0.1936	2619.72632	207.04919	44.0058

Wavelength = 254 nm

Peak	Ret. Time	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAu*S]	[mAu]	%
1	5.864	BV	0.1605	165.75880	15.78871	3.3181
2	6.049	VB	0.1324	76.55961	8.55839	1.5325
3	6.801	BV	0.1660	2296.79712	212.73007	45.9766
4	7.333	VB	0.1868	2341.61914	191.25034	46.8738
5	9.694	BB	0.2640	56.27768	3.26632	1.1265
6	10.649	BB	0.2881	58.56614	3.13337	1.1724

Wave	length	= 254	nm
------	--------	-------	----

Peak	Ret. Time	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAu*S]	[mAu]	%
1	5.915	BV	0.1489	96.02527	9.83993	0.5800
2	6.128	VB	0.1542	78.04585	7.51224	0.4714
3	6.876	BV	0.1690	6227.41406	563.33710	37.6116
4	7.422	VB	0.1951	6170.60352	482.72256	37.2685
5	9.827	BV	0.2713	2219.40503	125.53606	13.4045
6	10.794	VB	0.2959	1765.68103	91.59210	10.6641