Electronic Supplementary Information

Silicon nanoparticles grown on reduced graphene oxide surface as high performance anode materials for lithiumion batteries

Aravindaraj G Kannan, Sang Hyung Kim, Hwi Soo Yang, Dong-Won Kim*

Department of Chemical Engineering, Hanyang University, Seoul 133-791, Republic of Korea

*E-mail: dongwonkim@hanyang.ac.kr

Table S1. Comparison of electrochemical performance of graphene-based siliconnanocomposites.

Material description	Si particle size / Si content	Initial capacity / coulombic efficiency	Cycling performance	Ref.
Si nanoparticles grown on rGO surface through sonochemical method, followed by magnesiothermic reduction process without NaCl	~30 nm / 78 wt.%	1144 mAh g ⁻¹ at 50 mA g ⁻¹ / 68%	No cycling data	1
Thermally decomposing dead bamboo leaves, followed by magnesiothermic reduction reaction with NaCl as heat scavenger. Carbon coated and embedded in graphene matrix	5-8 nm / 82.2 wt.%	2590 mAh g ⁻¹ at 0.05 C / 87%	1200 mAh g ⁻¹ after 100 cycles at 0.2 C	2
Graphene-silicon hybrids were prepared through hybrid electrostatic assembly between amino-functionalized silica and GO, followed by thermal reduction	<200 nm / 73.9 wt.%	1328 mAh g ⁻¹ at 300 mA g ⁻¹ / 57.3%	902 mAh g ⁻¹ after 100 cycles at 300 mA g ⁻¹	3
Self-assembly of positively charged polyelectrolyte functionalized silica and GO, followed by thermal reduction	40 nm / 80.1 wt.%	1720 mAh g ⁻¹ at 100 mA g ⁻¹ / 58.9%	1205 mAh g ⁻¹ after 150 cycles at 100 mA g ⁻¹	4
Freeze-drying an aqueous mixture of GO and silica, followed by thermal reduction	<300 nm / 82.1 wt.%	1866 mAh g ⁻¹ at 200 mA g ⁻¹ / 60.8%	1153 mAh g ⁻¹ after 100 cycles at 200 mA g ⁻¹	5
Simple mixing of commercially available silica and graphene	40 nm / 50 wt.%	1575 mAh g ⁻¹ at 100 mA g ⁻¹ / 73%	1168 mAh g ⁻¹ after 30 cycles at 100 mA g ⁻¹	6
Cross-linking reaction between polyacrylamide and GO to prepare 3D framework and Si embedded in it	100 nm / 79 wt.%	1881 mAh g ⁻¹ at 1.2 A g ⁻¹ / 67.9%	1610 mAh g ⁻¹ after 200 cycles at 1.2 A g ⁻¹	7
Covalent immobilization of silicon nanoparticles and GO, followed by thermal reduction step	50 - 100 nm / 93.6 wt.%	973 mAh g ⁻¹ at 150 mA g ⁻¹ / 75%	1203 mAh g ⁻¹ after 50 cycles at 0.2 C	8
Wrapping of micro-sized Si/C composite by graphene nanosheets	2 μm / 70 wt.%	1834 mAh g ⁻¹ at 50 mA g ⁻¹ / 64%	1100 mAh g ⁻¹ after 100 cycles at 50 mA g ⁻¹	9
Growth of ultra-small silica nanoparticles on GO surface followed by magnesiothermic reduction reaction with NaCl	<10 nm / 76 wt.%	1902 mAh g ⁻¹ at 100 mA g ⁻¹ / 64.5%	1165 mAh g^{-1} after 100 cycles at 2.1 A g^{-1}	This work

Fig. S1. SEM image and corresponding EDS spectrum of GO-SiO₂ sample.

Fig. S2. SEM image and corresponding EDS spectrum of rGO-Si_{NaCl} sample.

Fig. S3. XPS survey spectra of GO and rGO (prepared using the same reduction procedure in the absence of silica nanoparticles on GO surface).

Fig. S4. (a) TEM and (b) HRTEM images of the rGO-Si sample showing the silicon particles attached to the rGO nanosheet synthesized using magnesiothermic reduction reaction without NaCl as a heat scavenger. This results in larger particle size due to aggregation of nanoparticles during the magnesiothermic reduction step. (c) and (d) show the line profiles of the area marked as 1 and 2, respectively in (b). The HRTEM image and the corresponding line profiles confirm the presence of crystalline silicon carbide impurity phase in the hybrid.

Fig. S5. XRD pattern of the rGO-Si sample prepared using similar synthetic procedure except NaCl was not used as a heat scavenger in the magnesiothermic reduction step. Excessive local heat produced by the exothermic reaction of magnesium metal enabled the reaction of silicon and carbon in rGO to form a silicon carbide phase.

Fig. S6. Cycling performance of rGO-Si electrode prepared without using NaCl as a heat scavenger. The cycling performance was inferior to the rGO-Si_{NaCl} electrode prepared with NaCl.

References

- S. Zhu, C. Zhu, J. Ma, Q. Meng, Z. Guo, Z. Yu, T. Lu, Y. Li, D. Zhang and W. M. Lau, *RSC Adv.*, 2013, **3**, 6141-6146.
- L. Wang, B. Gao, C. Peng, X. Peng, J. Fu, P. K. Chu and K. Huo, *Nanoscale*, 2015, 7, 13840-13847.
- M. Zhou, T. Cai, F. Pu, H. Chen, Z. Wang, H. Zhang and S. Guan, ACS Appl. Mater. Inter., 2013, 5, 3449-3455.
- 4. X. Zhou, Y.-X. Yin, L.-J. Wan and Y.-G. Guo, Adv. Energy Mater., 2012, 2, 1086-1090.
- 5. X. Zhou, Y.-X. Yin, L.-J. Wan and Y.-G. Guo, Chem. Commun., 2012, 48, 2198-2200.
- S.-L. Chou, J.-Z. Wang, M. Choucair, H.-K. Liu, J. A. Stride and S.-X. Dou, *Electrochem. Commun.*, 2010, **12**, 303-306.
- 7. N. Lin, J. Zhou, Y. Zhu and Y. Qian, J. Mater. Chem. A, 2014, 2, 19604-19608.
- G. Zhao, L. Zhang, Y. Meng, N. Zhang and K. Sun, J. Power Sources, 2013, 240, 212-218.
- 9. R. Yi, J. Zai, F. Dai, M. L. Gordin and D. Wang, Nano Energy, 2014, 6, 211-218.