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 Table S1. Comparison of electrochemical performance of graphene-based silicon 

nanocomposites.

Material description Si particle size
/ Si content

Initial capacity
 / coulombic 

efficiency

Cycling 
performance Ref.

Si nanoparticles grown on rGO surface 
through sonochemical method, 
followed by magnesiothermic reduction 
process without NaCl

~30 nm
 / 78 wt.%

1144 mAh g-1  
at 50 mA g-1

 / 68%
No cycling data 1

Thermally decomposing dead bamboo 
leaves, followed by magnesiothermic 
reduction reaction with NaCl as heat 
scavenger. Carbon coated and 
embedded in graphene matrix

5-8 nm
 / 82.2 wt.%

2590 mAh g-1  
at 0.05 C

 / 87%

1200  mAh g-1 
after 100 cycles at 
0.2 C

2

Graphene-silicon hybrids were prepared 
through hybrid electrostatic assembly 
between amino-functionalized silica 
and GO, followed by thermal reduction

<200 nm 
/ 73.9 wt.%

1328 mAh g-1  
at 300 mA g-1 

/ 57.3%

902  mAh g-1 after 
100 cycles at 300 
mA g-1

3

Self-assembly of positively charged 
polyelectrolyte functionalized silica and 
GO, followed by thermal reduction

40 nm 
/ 80.1 wt.%

1720 mAh g-1   
at 100 mA g-1 

/ 58.9%

1205  mAh g-1 
after 150 cycles at 
100 mA g-1

4

Freeze-drying an aqueous mixture of 
GO and silica, followed by thermal 
reduction

<300 nm
 / 82.1 wt.%

1866 mAh g-1   
at 200 mA g-1  

/ 60.8%

1153  mAh g-1 
after 100 cycles at 
200 mA g-1

5

Simple mixing of commercially 
available silica and graphene

40 nm
 / 50 wt.%

1575 mAh g-1  
at 100 mA g-1 

/ 73%

1168  mAh g-1 
after 30 cycles at 
100 mA g-1

6

Cross-linking reaction between 
polyacrylamide and GO to prepare 3D 
framework and Si embedded in it

100 nm
 / 79 wt.%

1881 mAh g-1   
at 1.2 A g-1 

/ 67.9%

1610  mAh g-1 
after 200 cycles at 
1.2 A g-1

7

Covalent immobilization of silicon 
nanoparticles and GO, followed by 
thermal reduction step

50 - 100 nm
 / 93.6 wt.%

973 mAh g-1  
at 150 mA g-1 

/ 75%

1203  mAh g-1 
after 50 cycles at 
0.2 C

8

Wrapping of micro-sized Si/C 
composite by graphene nanosheets

2 µm
 / 70 wt.%

1834 mAh g-1   
at 50 mA g-1 

/ 64%

1100  mAh g-1 
after 100 cycles at 
50 mA g-1

9

Growth of ultra-small silica 
nanoparticles on GO surface followed 
by magnesiothermic reduction reaction 
with NaCl

<10 nm
 / 76 wt.%

1902 mAh g-1  
at 100 mA g-1 

/ 64.5%

1165  mAh g-1 
after 100 cycles at 
2.1 A g-1

This 
work
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Fig. S1.  SEM image and corresponding EDS spectrum of GO-SiO2 sample.
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Fig. S2.  SEM image and corresponding EDS spectrum of rGO-SiNaCl sample.
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Fig. S3.  XPS survey spectra of GO and rGO (prepared using the same reduction procedure in 

the absence of silica nanoparticles on GO surface).
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Fig. S4.  (a) TEM and (b) HRTEM images of the rGO-Si sample showing the silicon particles 

attached to the rGO nanosheet synthesized using magnesiothermic reduction reaction without 

NaCl as a heat scavenger.  This results in larger particle size due to aggregation of 

nanoparticles during the magnesiothermic reduction step.  (c) and (d) show the line profiles 

of the area marked as 1 and 2, respectively in (b).  The HRTEM image and the corresponding 

line profiles confirm the presence of crystalline silicon carbide impurity phase in the hybrid.
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Fig. S5.  XRD pattern of the rGO-Si sample prepared using similar synthetic procedure 

except NaCl was not used as a heat scavenger in the magnesiothermic reduction step.  

Excessive local heat produced by the exothermic reaction of magnesium metal enabled the 

reaction of silicon and carbon in rGO to form a silicon carbide phase.
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Fig. S6.  Cycling performance of rGO-Si electrode prepared without using NaCl as a heat 

scavenger.  The cycling performance was inferior to the rGO-SiNaCl electrode prepared with 

NaCl.
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