Supporting information

Heteroarchitectured Ag-Bi₂O₃-ZnO as a bifunctional

nanomaterial

Subramanian Balachandran,^{a,d} Natarajan Prakash^b and Meenakshisundaram Swaminathan^c*

^aDepartment of Chemistry, Annamalai University, Annamalainagar- 608 002, India

^bGraduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-ku,

Hamamatsu 432-8011, Japan

^cNanomaterials Laboratory, International Research Centre, Kalasalingam University, Krishnankoil- 626126, Tamil Nadu, India

^dBeijing National Laboratory for Molecular Sciences, Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing 100190, P. R. China

AR 1

AV 7

Fig. S1 Structure of Dye molecules

Fig. S2 UV spectral changes of AR 1 dye at different intervals (a) 0 min, (b) 30 min, (c) 60 min, (d) 75 min and (e) 90 min.

Fig. S3 UV spectral changes of EB dye at different intervals (a) 0 min, (b) 30 min, 60 min and (d) 90 min.

Fig. S4 UV spectral changes of AV 7 dye at different intervals (a) 0 min, (b) 30 min, 60 min and (d) 90 min.

Fig. S5 Primary analysis: AR 1 dye concentration = 5×10^{-4} M, catalyst suspended = 4 g L⁻¹, pH = 7, airflow rate = 8.1 mL s^{-1} , $I_{solar} = 1250 \times 100 \text{Lux } \pm 100$, (b) EB dye concentration = 5×10^{-4} M, catalyst suspended 4 g L⁻¹, pH = 7, airflow rate = 8.1 mL s^{-1} , $I_{solar} = 1250 \times 100 \text{Lux } \pm 100 \text{ lx}$, (c) Primary analysis: AV 7 dye concentration = 5×10^{-4} M, catalyst suspended = 4 g L⁻¹, pH = 11, airflow rate = 8.1 mL s^{-1} , $I_{solar} = 1250 \times 100 \text{Lux } \pm 100$.

Fig. S6. AR 1 dye concentration = 5×10^{-4} M, catalyst suspended = 4 g L⁻¹, airflow rate = 8.1 mL s⁻¹, I_{solar} = 1250×100 Lux ± 100 , (b) EB dye concentration = 5×10^{-4} M, catalyst suspended = 4 g L⁻¹, airflow rate = 8.1 mL s⁻¹, I_{solar} = 1250×100 Lux ± 100 lx, (c) Primary analysis: AV 7 dye concentration = 5×10^{-4} M, catalyst suspended = 4 g L⁻¹, airflow rate = 8.1 mL s^{-1} , I_{solar} = 1250×100 Lux ± 100 lx, (c) Primary analysis: AV 7 dye concentration = 5×10^{-4} M, catalyst suspended = 4 g L⁻¹, airflow rate = 8.1 mL s^{-1} , I_{solar} = 1250×100 Lux ± 100 .

Fig. S7. Chronoamperometry of (a) Prepared ZnO and (b) 9wt% Ag-Bi₂O₃-ZnOin N₂ and saturated 0.5 M NaOH + 0.5 M CH₃OH solution at an operation potential of 0.1 V at 25 °C.