Supporting Information for

Thermal induced chemical cross-linking reinforced fluorinated

polyurethane/polyacrylonitrile/polyvinyl butyral nanofibers for

waterproof-breathable application

Junlu Sheng,^a Min Zhang,^a Wenjing Luo,^b Jianyong Yu*ac and Bin Ding*ac

^a Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles,

Donghua University, Shanghai 201620, China

^b Department of Occupational and Environmental Health, School of Public Health, Fourth Military

Medical University, Xi'an, Shanxi 710032, China

^c Nanofibers Research Center, Modern Textile Institute, Donghua University, Shanghai 200051, China

* Corresponding author at: College of Textiles, Donghua University, Shanghai 201620, China. Fax: +86 21 62378202.

E-mail: binding@dhu.edu.cn and yujy@dhu.edu.cn

Fig. S1 ¹H NMR spectrograph of FPU

The FPU was subjected to NMR spectroscopic analysis after purification and crystallization. Fig. S1 presents the chemical structure and ¹H NMR spectrum of FPU. The chemical shifts for -CH₂-CH₂- in terminal fluorinate segments appear at 2.49 and 3.51 ppm (Fig. S1a and b). For PTMEG and TEG segments, the shifts for -O-CH₂- and -CH₂-CH₂- appear at 3.73 and 3.32 ppm, respectively, as shown in Fig. S1c and d. The signals for aromatic protons of MDI groups appear between 7.10 to 7.37 ppm and for -CH₂- appears at 3.65 ppm (Fig. S1e-g).

Fig. S2¹⁹ F NMR spectrograph of FPU

¹⁹F NMR has given further structural affirmation of FPU (Fig. S2). The chemical shift for terminal CF₃ appears at 80.04 ppm (Fig. S2a), while for $-CF_2-CH_2$ - appears at 126.77 ppm (Fig. S2f). The remaining $-CF_2$ - has given their chemical shift between 112.58 to 123.72 ppm (Fig. S2b-e). The results from NMR analysis has confirmed the chemical structure of FPU.

Samples	PVB (wt%)	BIP (wt%)	Viscosity (mPa*s)	Surface tension (mN/m)	Conductivity (µS/cm)
FPAN/PVB- 50/BIP-0		0	2675	25.6	15.7
FPAN/PVB- 50/BIP-10		10	2640	24.7	15.1
FPAN/PVB- 50/BIP-20	50	20	3294	24.6	14.7
FPAN/PVB- 50/BIP-30		30	3357	24.4	14.4
FPAN/PVB- 50/BIP-40		40	3597	24.8	13.8
FPAN	0		4324	20.1	31.0
FPAN/PVB- 25/BIP-30	25	30	3886	24.2	21.9
FPAN/PVB- 75/BIP-30	75		2626	24.5	7.0

Table S1 Compositions and properties of various electrospinning solutions

Samples	PVB (wt%)	BIP (wt%)	Average fiber diameter (nm)	λ _{max} (μm)	Porosity (%)
FPAN/PVB- 50/BIP-0		0	241±31	0.98	46±1.3
FPAN/PVB- 50/BIP-10		10	291±25	1.02	59±1.5
FPAN/PVB- 50/BIP-20	50	20	330±28	1.05	49±1.8
FPAN/PVB- 50/BIP-30		30	419±36	1.28	45±1.5
FPAN/PVB- 50/BIP-40		40	634±40	1.50	32±1.2
FPAN	0		387±31	1.69	85±2.6
FPAN/PVB- 25/BIP-30	25	30	408±47	1.63	78±3.8
FPAN/PVB- 75/BIP-30	75		601±79	1.06	30±4.9

Table S2 Average fiber diameter, λ_{max} and porosity of the relevant nanofibrous membranes

Samples	FPAN/PV B-50/BIP-0	FPAN/PVB- 50/BIP-10	FPAN/PVB- 50/BIP-20	FPAN/PVB- 50/BIP-30	FPAN/PVB- 50/BIP-40	FPAN	FPAN/PVB- 25/BIP-30	FPAN/PVB- 75/BIP-30
PVB (wt%)			50			0	25	75
BIP (wt%)	0	10	20	30	40		30	
Contact angle hysteresis (°)	8.5±1.1	10.7±1.4	9.4±1.6	12.7±2.2	12.3±2.4	8.6±1.7	12.6±1.3	9.5±1.2

Table S3 Contact angle hysteresis of the dry-casting films fabricated from various polymers solutions.