Electronic supplementary material

Bis(amido) Rare-earth Complexes Coordinated by Tridentate Amidinate Ligand: Synthesis, Structure and Catalytic Activity

in Polymerization of Isoprene and rac-Lactide

Aleksei O. Tolpygin, Olesya A. Linnikova, Tatyana A. Glukhova, Anton V. Cherkasov, Georgy K.

Fukin, Alexander A. Trifonov*

Institute of Organometallic Chemistry of Russian Academy of Sciences, Tropinina 49, GSP-445, 630950, Nizhny Novgorod (Russia) Fax: 007831 4627497; Tel: 007 831 4623532; E-mail: trif@iomc.ras.ru

Contents:

Table 1S. Crystallographic data and structure refinement details for 2–4.**Figure 1S.** ¹H NMR spectrum of $\{2-[Ph_2P(O)]C_6H_4NC(tBu)N(2,6-Me_2C_6H_3)\}Y(N(SiMe_3)_2)_2$ (2).**Figure 2S.** ¹³C NMR spectrum of $\{2-[Ph_2P(O)]C_6H_4NC(tBu)N(2,6-Me_2C_6H_3)\}Y(N(SiMe_3)_2)_2$ (2).**Figure 3S.** ³¹P NMR spectrum of $\{2-[Ph_2P(O)]C_6H_4NC(tBu)N(2,6-Me_2C_6H_3)\}Y(N(SiMe_3)_2)_2$ (2).(2).

Figure 4S.IR spectrum of $\{2-[Ph_2P(O)]C_6H_4NC(tBu)N(2,6-Me_2C_6H_3)\}Y(N(SiMe_3)_2)_2$ (2).

Figure 5S.IR spectrum of $\{2-[Ph_2P(O)]C_6H_4NC(tBu)N(2,6-Me_2C_6H_3)\}Nd(N(SiMe_3)_2)_2$ (3).

Figure 6S.¹H NMR spectrum of $\{2-[Ph_2P(O)]C_6H_4NC(tBu)N(2,6-Me_2C_6H_3)\}La(N(SiMe_3)_2)_2$ (4).

Figure 7S.¹³C NMR spectrum of $\{2-[Ph_2P(O)]C_6H_4NC(tBu)N(2,6-Me_2C_6H_3)\}La(N(SiMe_3)_2)_2$ (4).

Figure 8S.³¹P NMR spectrum of $\{2-[Ph_2P(O)]C_6H_4NC(tBu)N(2,6-Me_2C_6H_3)\}La(N(SiMe_3)_2)_2$ (4).

Figure 9S.IR spectrum of $\{2-[Ph_2P(O)]C_6H_4NC(tBu)N(2,6-Me_2C_6H_3)\}La(N(SiMe_3)_2)_2$ (4).

Compound	2	3	4
Empiricalformula	$C_{43}H_{68}N_4OPSi_4Y$	C ₄₃ H ₆₈ N ₄ OPSi ₄ Nd	C43H68N4OPSi4La
Formulaweight	889.25	944.58	939.25
T [K]	100(2)		
Wavelength [Å]	0.71073		
Crystalsystem	Monoclinic		
Spacegroup	C2/c		
a [Å]	21.2784(9)	21.4494(2)	21.5190(6)
b [Å]	12.6709(5)	12.75910(10)	12.7854(3)
c [Å]	36.8622(15)	37.4670(4)	36.8722(10)
α [°]	90	90	90
β [°]	105.1430(10)	108.1100(10)	105.513(3)
γ [°]	90	90	90
Volume [Å ³]	9593.6(7)	9745.82(17)	9775.1(5)
Z	8	8	8
$\rho_{\text{calcd.}} [\text{g cm}^{-3}]$	1.231	1.288	1.276
Absorptioncoefficient	1.384	1.231	1.039
$[mm^{-1}]$			
F(000)	3776	3944	3920
Crystalsize [mm]	0.42×0.25×0.18	0.45×0.30×0.15	0.42×0.25×0.18
θ range for data collection	1.90 to 29.00	3.16 to 29.00	3.16 to 29.00
[°]			
Indexranges	-28≤h≤28,	-29≤h≤29,	-29≤h≤28,
	-17≦k≤16,	-17≤k≤17,	-17≤k≤17,
	-49≤l≤49	-51≤l≤51	-50 <u>≤</u> l≤46
Reflectionscollected	50161	93016	28859
Independentreflections	12692	12919	12946
Rint	0.0415	0.0420	0.0577
Completenessto θ [%]	99.8	99.8	99.7
Data/restraints/parameters	12692 / 0 / 504	12919 / 0 / 504	12946 / 0 / 504
Goodness-of-fit on F ²	1.043	1.123	1.024
Final R indices $[I > 2\sigma(I)]$	$R_1 = 0.0394,$	$R_1 = 0.0287,$	$R_1 = 0.0531,$
	$wR_2 = 0.0857$	$wR_2 = 0.0592$	$wR_2 = 0.0746$
R indices (alldata)	$R_1 = 0.0604,$	$R_1 = 0.0335,$	$R_1 = 0.0849,$
	$wR_2 = 0.0911$	$wR_2 = 0.0606$	$wR_2 = 0.0811$
Largest diff. peak and	0.555 / -0.393	0.686 / -1.111	0.780 / -1.127
hole [eA]			

 Table 1S. Crystallographic data and structure refinement details for 2–4.

Figure 1S.¹H NMR spectrum of $\{2-[Ph_2P(O)]C_6H_4NC(tBu)N(2,6-Me_2C_6H_3)\}Y(N(SiMe_3)_2)_2$ (2).

Figure 2S.¹³C NMR spectrum of $\{2-[Ph_2P(O)]C_6H_4NC(tBu)N(2,6-Me_2C_6H_3)\}Y(N(SiMe_3)_2)_2$ (2).

Figure 3S.³¹P NMR spectrum of $\{2-[Ph_2P(O)]C_6H_4NC(tBu)N(2,6-Me_2C_6H_3)\}Y(N(SiMe_3)_2)_2$ (2).

Figure 4S.IR spectrum of $\{2-[Ph_2P(O)]C_6H_4NC(tBu)N(2,6-Me_2C_6H_3)\}Y(N(SiMe_3)_2)_2$ (2).

Figure 5S.IR spectrum of $\{2-[Ph_2P(O)]C_6H_4NC(tBu)N(2,6-Me_2C_6H_3)\}Nd(N(SiMe_3)_2)_2$ (3).

Figure 6S.¹H NMR spectrum of $\{2-[Ph_2P(O)]C_6H_4NC(tBu)N(2,6-Me_2C_6H_3)\}La(N(SiMe_3)_2)_2$ (4).

Figure 7S.¹³C NMR spectrum of $\{2-[Ph_2P(O)]C_6H_4NC(tBu)N(2,6-Me_2C_6H_3)\}La(N(SiMe_3)_2)_2$ (4).

Figure 8S.³¹P NMR spectrum of $\{2-[Ph_2P(O)]C_6H_4NC(tBu)N(2,6-Me_2C_6H_3)\}La(N(SiMe_3)_2)_2$ (4).

Figure 9S.IR spectrum of $\{2-[Ph_2P(O)]C_6H_4NC(tBu)N(2,6-Me_2C_6H_3)\}La(N(SiMe_3)_2)_2$ (4).