Electronic Supplementary Information (ESI)

Atomically precise and monolayer protected iridium clusters in solution

Shridevi Bhat,^a Indranath Chakraborty,^{a,b} Tuhina Adit Maark,^{a,c} Anuradha Mitra,^d Goutam De^d and Thalappil Pradeep^a*
^aDST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence, Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India.
^bCurrent affiliation: University of Illinois at Urbana Champaign, Urbana, IL 61801, USA.
^cDepartment of Physics, Indian Institute of Technology Madras, Chennai 600036, India.
^dCSIR-Central Glass and Ceramic Research Institute, Kolkata 700032, West Bengal, India

Content list

Number	Description	Page Number
1	Instrumentation and SAXS analysis	2
2	Control experiment with varying thiol concentration	4
3	XPS survey spectrum	5
4	Expanded version of NMR spectra	6
5	XRD pattern	7
6	Mass spectra obtained using different matrices	8
7	MALDI MS at threshold laser intensity	9
8	Time dependent UV/Vis spectra	10
9	Atomic coordinates of optimized geometries of	11
	model clusters	

Instrumentation:

UV-Vis spectral measurements on the cluster were performed using a Perkin Elmer Lambda 25 instrument in the range of 200-1100 nm. Photoluminescence spectra of samples were measured with a Jobin Vyon NanoLog instrument. Matrix-assisted desorption ionization mass spectrometric (MALDI MS) measurements were carried out using a Voyager-DE PRO Biospectrometry Workstation from Applied Biosystems. DHB and other matrices listed in the text were used in the ratio of 1:100 of sample:matrix. A pulsed nitrogen laser of wavelength 337 nm was used for the MALDI MS measurements. Mass spectra were collected in linear positive ion mode and were averaged for 250 shots. High resolution transmission electron microscopy of cluster was conducted with a JEOL 3010 instrument. The samples for TEM were prepared by drop casting THF solution of cluster on carbon-coated copper grids and allowing it to dry under ambient conditions. FT-IR spectra were taken using a Perkin Elmer Spectrum One spectrometer. X-ray photoelectron spectroscopic (XPS) measurements were carried out with an Omicron ESCA Probe spectrometer using polychromatic MgKa X-rays (hv = 1253.6 eV). The THF solution of sample was drop casted on a sample stub and dried, several times to form a thin film. The measurements were conducted with constant analyzer energy of 20 eV. Powder XRD of Ir₉PET₆ cluster was recorded by PANalytical X'pertPro diffractometer. The sample for XRD was prepared on a glass slide and diffractogram was collected for 2 theta range of 5 to 100 degrees with Cu Ka radiation. Small Angle X-ray Scattering (SAXS) analysis on cluster solution was done using Rigaku Smart Lab X-ray Diffractometer operating at 9 kW (Cu-K α radiation; $\lambda = 1.54059$ Å). The cluster solution was filled inside a borosilicate capillary tube of internal diameter approximately 1.5 mm. The raw SAXS profiles were solved using NANO-Solver programme (Rigaku). Prior to fittings the raw data was corrected for background absorption and air scattering. The 'corrected' raw profile was fitted with 'sphere' as well as 'core - shell' models to evaluate the best suited model for the Ir_9PET_6 sample. The densities of PET ligand (1.03 g/cm³), toluene (0.87 g/cm³) and Ir (22.56 g/cm^3) have been used to fit these profiles.

Fig. S1. Particle size distribution curve of Ir_9PET_6 evaluated using 'sphere' model. The corrected raw, simulated and residual SAXS profiles are shown in the inset.

Model	Avg. size	Vol (%)	Normalized	Shell	Avg. metal	R-esidual
	(nm)		dispersion	diameter	cluster core	factor
			(σ)	(nm)	size (nm)	
Core-shell	2.0	98.08 (rest	0.317	0.4	1.6	1.94
		are bigger				
		particles)				
Sphere	1.99	95.04 (rest	0.314			1.93
		are bigger				
		particles)				

UV/Vis spectra and photographs of samples synthesized using varying thiol concentrations

Fig. S2. UV/Vis spectra of samples synthesized using metal to thiol molar ratio of 1:2, 1:4 and 1:6. Inset shows the photographs (a-1:2, b-1:4 and c-1:6) samples. It is clearly seen that the sample 'b' corresponding to 1:4 ratio has intense color and this ratio works out better giving good yield. It also has absorption features different from other two compositions.

XPS survey spectrum of Ir₉PET₆ cluster

Fig. S3. XPS survey spectrum of Ir_9PET_6 measured from 0 - 1000 eV showing the elements Ir, S, C and O.

Expanded view of NMR spectrum of Ir₉PET₆ cluster as compared to that of free PET

Fig. S4. Expanded view of comparative plot of NMR spectra of Ir_9PET_6 clusters (red trace) and PET (black trace).

XRD pattern of Ir₉PET₆ cluster

Fig. S5. Powder XRD pattern of Ir_9PET_6 clusters measured by drop casting THF solution of clusters on a glass slide several times and drying to form a thin film. Standard pattern of Ir metal is also shown.

Mass spectra obtained using different matrices

Fig. S6. MALDI MS obtained using different matrices are plotted together for comparison. The matrix used to obtain each spectrum is indicated in the figure.

Mass spectrum at threshold laser intensity

Fig. S7. MALDI MS obtained at threshold laser intensity showing better resolution. Inset shows the expanded view, wherein, it can be seen that experimental spectrum (black trace) is in better agreement with the theoretical spectrum calculated at similar resolution (red trace) and blue trace is the theoretical spectrum calculated at highest possible resolution. The experimental spectrum has more noise due to poor signal quality.

Fig. S8. Time dependent UV/Vis spectra of the cluster solution in THF kept a) in fridge (at ~ 4° C) and b) at room temperature measured for a time period of 7 days.

Atomic coordinates of optimized geometries of model clusters:

1. Ir₃(SCH₃)₂ – isomer (a)

Ir	11.623303	12.849419	13.136886
S	12.599564	12.455964	11.255281
Ir	14.751456	12.446011	11.530630
Ir	14.902190	11.633294	13.683341
S	13.188610	12.599242	14.598317
C	12.143934	10.732869	10.744433
Н	12.589926	10.548600	9.759417
Н	11.050211	10.680447	10.687162
Η	12.525054	10.021048	11.481836
C	13.761688	14.292242	15.091198
Η	14.184926	14.801766	14.221130
Η	12.892324	14.839939	15.473881
Η	14.517185	14.172468	15.877300
2. 1	$r_3(SCH_3)_2 -$	isomer (b)	
С	12.755526	10.649612	11.526901
S	12.311646	12.310260	10.849593
Ir	14.121808	13.459329	10.639438

- Ir 13.397168 14.101478 12.798571
- S 14.441620 14.602178 14.612887
- C 15.017882 13.109171 15.525506
- Ir 11.190566 13.373750 12.350818

- H 13.378101 10.146656 10.777789
- H 11.820013 10.101180 11.687424
- H 13.300330 10.777569 12.466462
- Н 15.535240 13.454702 16.429947
- H 14.160506 12.488027 15.804834
- H 15.709442 12.533683 14.901403

3. Ir₃(SCH₃)₂ – isomer (c)

С	12.053627	10.753478	10.639916
S	12.644522	12.490833	11.106043
Ir	11.712954	12.651744	13.132928
Ir	14.092210	11.849749	13.695775
S	10.041237	13.068855	14.439584
С	10.157745	14.878418	14.956478
Ir	14.792378	12.224427	11.369537
Η	12.113242	10.702989	9.551796
Н	11.021295	10.658932	10.964896
Η	12.679660	10.019020	11.109310
Η	9.703707	14.957657	15.942446
Н	11.195730	15.189908	15.033705
Η	9.613137	15.490931	14.246902
/ T		iaomon (d)	

4. $Ir_3(SCH_3)_2 - isomer (d)$

- Ir 6.563522 7.035119 6.692346
- Ir 8.957637 7.246990 7.375922

- Ir 6.920398 8.565528 8.474533
- S 8.449089 7.455616 9.603860
- S 8.195623 7.260862 5.204826
- C 8.154369 8.956055 4.508244
- Н 7.368388 9.005523 3.746746
- H 9.133699 9.145599 4.051649
- H 7.964161 9.675912 5.311083
- C 7.715083 5.893616 10.232591
- H 7.066706 6.125718 11.083994
- H 7.147821 5.408341 9.430838
- H 8.546625 5.252550 10.550354

5. Ir₃(SCH₃)₂ – isomer (e)

Ir	1.112160	-1.002094	0.239234
Ir	0.023392	1.146970	-0.028114
Ir	-1.226476	-0.988150	-0.260257
S	-2.224277	1.158037	-0.391473
S	2.237681	1.157422	0.387517
C	3.190393	1.429044	-1.166390
Н	4.178463	0.971512	-1.041434
Η	3.297747	2.509234	-1.314400
Η	2.668594	0.983663	-2.016962
C	-3.115733	1.511332	1.182430
Η	-4.111855	1.059778	1.115313
Н	-2.565060	1.096467	2.030148

Н -3.205560 2.598555 1.284952

6. Ir₃(SCH₃)₂ – isomer (f)

- Ir 12.309177 12.706316 12.742232
- S 13.231746 12.738223 14.715847
- Ir 15.206540 11.993012 13.957759
- Ir 14.474419 13.072322 11.896811
- S 16.277440 11.718008 11.939570
- C 13.347819 14.487820 15.294727
- H 13.955881 15.058931 14.586622
- H 13.835534 14.461422 16.276810
- H 12.341128 14.909298 15.374398
- C 15.995190 10.122416 11.089021
- H 16.753601 9.414767 11.444410
- H 16.101914 10.278673 10.010157
- Н 14.992759 9.755255 11.327740

7. Ir₃(SCH₃)₂ – isomer (g)

Ir	0.003767	1.611685	0.008810
Ir	1.064370	-0.450027	0.601114
Ir	-1.049128	-0.450795	-0.591141
S	-3.022318	-1.181875	-0.121888
S	3.039527	-1.174103	0.129848
С	3.481962	-0.942535	-1.626974
С	-3.465241	-0.955243	1.635446
Η	-2.758908	-1.501862	2.267970
Η	-3.445397	0.111429	1.881163
Η	-4.478574	-1.352137	1.772083
Η	3.461694	0.124830	-1.869679
Η	2.775733	-1.487632	-2.260911
Η	4.495450	-1.338612	-1.764838

8. Ir₃(SCH₃)₂ – isomer (h)

Ir	-0.725569	1.187585	-0.155868
Ir	1.289216	0.016141	0.512233
Ir	-0.713040	-1.200389	-0.111513
S	-2.639575	-0.025935	-0.639521
S	3.430989	0.018315	0.023562
C	3.641983	-0.014594	-1.795866
С	-3.724016	-0.003824	0.852113

- Н -3.123551 0.016062 1.764779
- H -4.356171 0.889236 0.794654
- Н -4.347114 -0.904734 0.827792
- Н 3.181242 0.871374 -2.242936
- Н 3.191679 -0.922019 -2.209272
- Н 4.720699 -0.012054 -1.994663

9. Ir₃(SCH₃)₂ – isomer (i)

Ir	-1.018558	-0.086384	0.203833
Ir	1.388298	0.885978	0.091153
Ir	0.964000	-1.411057	-0.135851
S	-0.393618	1.824729	-0.817694
S	-3.111925	-0.569354	0.545695
С	-4.143636	-0.424737	-0.964817
С	-0.937631	3.312110	0.138787
Η	-0.433650	4.186603	-0.291032
Η	-0.702417	3.207804	1.201129

- Н -2.021844 3.405736 0.001339
- Н -3.840402 0.449371 -1.549994
- Н -4.022079 -1.329692 -1.570819
- Н -5.191764 -0.329382 -0.655038

10. Ir₃(PET)₁ – isomer (j)

Ir	11.078616	6.678504	18.087445
Ir	9.566682	7.838141	16.705897
Ir	10.806959	7.662714	14.711221
S	12.179877	6.878933	16.216417
С	13.396818	8.259880	16.522600
С	14.187628	8.574787	15.248172
С	15.199424	9.673517	15.475276
С	14.802121	11.018794	15.475887
С	15.726910	12.037352	15.707052
С	17.068400	11.726818	15.942793
С	17.476600	10.392005	15.943750
С	16.548086	9.374938	15.712194
Η	14.050443	7.893825	17.327328
Η	12.833058	9.126431	16.884590
Η	14.693232	7.666017	14.889255
Η	13.468818	8.879584	14.468340
Η	16.875840	8.333336	15.707147
Н	18.522677	10.140136	16.120841
Н	17.792669	12.521972	16.120083

- Н 15.400257 13.077620 15.698158
- H 13.756508 11.269285 15.285638

11. Ir₃(PET)₁ – isomer (k)

С	-1.113381	1.205743	0.063229
С	-2.443906	1.237395	-0.357267
С	-3.167140	0.049573	-0.483394
С	-2.551710	-1.167655	-0.184217
С	-1.220986	-1.194809	0.235942
С	-0.483474	-0.009632	0.365635
С	0.967652	-0.044434	0.786471
С	1.891885	-0.175121	-0.431508
S	3.653687	-0.216915	0.092567
Ir	5.031883	-0.397786	-1.565437
Ir	4.876410	-1.717521	-3.542161
Η	-0.555645	2.138919	0.166062
Η	-2.918517	2.192875	-0.582606
Н	-4.207328	0.072801	-0.808569
Н	-3.110923	-2.099450	-0.273748
Н	-0.747892	-2.149637	0.474593
Н	1.777682	0.673856	-1.117270
Η	1.697121	-1.100549	-0.988036
Η	1.142682	-0.890157	1.467407
Η	1.222275	0.871944	1.338696
Ir	4.984410	0.637099	-3.710226

12. Ir₃(PET)₁ – isomer (l)

- C 13.270123 13.274979 15.949681
- C 12.232931 12.426127 15.539853
- C 10.942210 12.960675 15.413535
- C 10.695651 14.306325 15.687708
- C 11.738190 15.141886 16.095430
- C 13.027399 14.622112 16.224917
- C 12.487957 10.961235 15.270138
- C 12.138899 10.101990 16.489930
- S 12.491080 8.313208 16.180427
- Ir 11.012711 7.098787 17.343752
- Ir 8.948935 7.742941 16.349402
- Ir 10.833370 7.492534 14.916942
- H 11.074155 10.173908 16.750078
- H 12.742944 10.375066 17.366737
- H 13.542447 10.808495 14.996320
- H 11.877758 10.617537 14.421047
- H 10.123744 12.313651 15.091400
- H 9.686674 14.705226 15.578533
- H 11.547192 16.194146 16.306682
- H 13.848631 15.268078 16.537042
- H 14.282234 12.876455 16.046388

13. Ir₂(PET)₁ – isomer (m)

- C 7.751063 12.595023 12.694163 -0.055483
- C 8.409786 11.379385 12.890548 -0.086312

С	9.743896	11.364585	13.299167 -0.129226
С	10.442686	12.560153	13.519162 0.188134
С	9.769854	13.773749	13.319005 -0.131006
С	8.434856	13.792916	12.911375 -0.084929
С	11.897592	12.535782	13.925819 -0.085551
С	12.814291	12.482079	12.692916 -0.011530
S	14.582768	12.475473	13.241963 -0.255361
Ir	15.833695	11.890446	11.562621 60.234740
Н	10.296673	14.714296	13.493019 0.048737
Η	7.926430	14.746750	12.767557 0.058803
Н	6.707854	12.609159	12.378311 0.056693
Н	7.881156	10.439371	12.729881 0.058228
Η	10.249922	10.410046	13.458282 0.047684
Н	12.673625	13.368356	12.060671 0.085053
Η	12.610939	11.590049	12.089536 0.057265
Η	12.096403	11.661337	14.562505 0.059325
Н	12.141887	13.428841	14.519245 0.055477
Ir	16.925448	13.207583	10.165456 59.889378

14. $Ir_2(PET)_1$ – isomer (n)

С	4.095057	7.425062	7.907180 -0.054201
С	4.788723	6.246216	8.188135 -0.085977
С	6.160861	6.284315	8.441474 -0.127900
С	6.863005	7.497440	8.419626 0.191214
С	6.154370	8.674361	8.137721 -0.132774

С	4.782489	8.640607	7.884235 -0.087892
С	8.355139	7.534097	8.656212 -0.066716
C	9.132641	7.438382	7.338615 0.023217
S	10.968433	7.351162	7.664797 -0.178672
Ir	12.067099	8.205618	6.010277 59.996803
Η	6.685203	9.628507	8.122627 0.051138
Η	4.247932	9.567044	7.672096 0.058099
Η	3.022950	7.397488	7.711900 0.056626
Η	4.258739	5.293598	8.214947 0.057891
Η	6.695715	5.359296	8.666824 0.046949
Η	8.937107	8.289743	6.679350 0.085884
Η	8.898582	6.507310	6.801492 0.058669
Н	8.649613	6.707093	9.320228 0.058529
Н	8.638681	8.470181	9.160214 0.035474
Ir	11.748529	9.327967	8.077383 60.013599