Supplementary Materials

Novel synthesis of bismuth oxyiodide/graphitic carbon nitride nanocomposite

with enhanced visible-light photocatalytic activity

Shang-Yi Chou^a, Chiing-Chang Chen^{a*}, Yong-Ming Dai^a, Jia-Hao Lin^a, Wenlian William Lee^{b,c*}

^a Department of Science Education and Application, National Taichung University of Education, Taichung 403, Taiwan

^b Department of Occupational Safety and Health, Chung-Shan Medical University,

Taichung 402, Taiwan

^c Department of Occupational Medicine, Chung-Shan Medical University Hospital,

Taichung 402, Taiwan

* Author to whom correspondence should be addressed

E-mail: ccchen@mail.ntcu.edu.tw ; wllee01@csmu.edu.tw

Fax: +886-4-2218-3560

Tel: +886-4-2218-3406/+886-4-24730022

Energy gap (<i>E</i> _g , eV)											
Bismuth	pH										
oxyiodide	1		7		10	12					
Weight (%)	I		4		1	10	13				
0	2.57		2.57		2.57	2.57	2.57				
5	1.66	2.22	1.32	2.19		2.45	2.51				
10	1.69	1.95	1.54	2.32		2.29	2.44				
25	1.69		1.45	1.61		2.27	2.19				
50	1.71		1.70			1.98	2.38				
75	1.72		1.68			2.13	2.02				
90	1.72		1.68			2.07	2.00				
95	1.74		1.70			2.18	2.01				
100	1.71		1.70		2.09	2.12	2.06				

Table S1. Energy gap of $BiO_xI_y/g-C_3N_4$ photocatalysts.

 Table S2. Physical and chemical properties of as-prepared samples.

pН	$BiO_xI_y/g-C_3N_4$ (wt%)	S _{BET} (m ² /g)	Pore volume (cm ³ /g)	Pore diameter (nm)
	g-C ₃ N ₄	17.61	0.172	35.63
1	$BiOI/g-C_3N_4(95)$	8.31	0.088	28.97
1	BiOI	3.51	0.024	22.37
4	BiOI/Bi ₆ O ₅ (OH) ₃ (NO ₃) ₅ •2H ₂ O /g-C ₃ N ₄ (95)	7.04	0.095	52.67
4	BiOI/Bi ₆ O ₅ (OH) ₃ (NO ₃) ₅ •2H ₂ O	8.08	0.096	36.10
7	Bi ₇ O ₉ I ₃ /g-C ₃ N ₄ (10)	10.26	0.108	31.62
7	Bi ₇ O ₉ I ₃	6.65	0.057	27.39
10	$Bi_7O_9I_3/Bi_5O_7I/g-C_3N_4(95)$	20.39	0.150	25.18
10	$Bi_7O_9I_3/Bi_5O_7I$	5.74	0.065	37.74
13	$Bi_5O_7I/g-C_3N_4(95)$	30.94	0.182	19.67
13	Bi ₅ O ₇ I	0.44	0.006	44.68

Figure S1. DRS patterns of as-prepared BiOI/g-C₃N₄ samples under pH 1.

Figure S2. DRS patterns of as-prepared BiOI/g-C₃N₄ samples under pH 4.

Figure S3. DRS patterns of as-prepared $Bi_7O_9I_3/g$ - C_3N_4 samples under pH 7.

Figure S4. DRS patterns of as-prepared $Bi_5O_7I/g-C_3N_4$ samples under pH 13.

Figure S5. (a) N_2 adsorption-desorption isotherm and (b) pore size distribution of BiOI/g-C₃N₄ at pH 1.

Figure S6. (a) N_2 adsorption-desorption isotherm and (b) pore size distribution of BiOI/g-C₃N₄ at pH 4.

Figure S7. (a) N_2 adsorption-desorption isotherm and (b) pore size distribution of $Bi_7O_9I_3/g$ - C_3N_4 at pH 7.

Figure S8. (a) N_2 adsorption-desorption isotherm and (b) pore size distribution of $Bi_5O_7I/g-C_3N_4$ at pH 13.