
Electronic Supplementary Information

Observation of Large Dielectric Permittivity and Dielectric Relaxation Phenomenon in Mn Doped Lanthanum Gallate

Hari Mohan Rai¹, Shailendra K. Saxena¹, Ravikiran Late¹, Vikash Mishra¹, Parasmani Rajput², Archna Sagdeo², Rajesh Kumar¹ and P.R. Sagdeo^{1*}

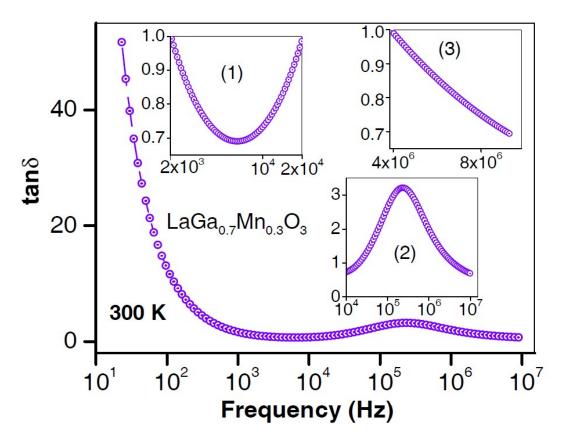

^{*} Corresponding author: prs@iiti.ac.in

Fig. S1: (Color online) Dielectric loss (tanδ) of LaGaO₃ plotted as a function of temperature for probing frequencies ranging from 100 Hz to 1 MHz.

¹Material Research Lab. (MRL), Department of Physics and MSE; Indian Institute of Technology Indore, Simrol, Indore (M.P.) – 452020, India.

²Raja Ramanna Center for Advance Technology (RRCAT), Indore (M.P.) – 452013, India.

Fig. S2: (Color online) Dielectric loss (tanδ) of LaGa $_{0.7}$ Mn $_{0.3}$ O $_3$ plotted as a function of probing frequencies ranging from 20 Hz to 10 MHz. Inset-1 and 3 show that the value of tanδ is < 1 for corresponding low (2 kHz to 20kHz) and high (>1MHz) frequencies respectively. Inset-2 displays the magnified view of characteristic tanδ-peak.