## Supporting Information

## Design of core-shell magnetic mesoporous silica hybrids for pH and UVlight stimuli-responsive cargo release

Madhappan Santha Moorthy,<sup>a</sup> Hak-Bong Kim,<sup>b</sup> Jae-Ho Bae,<sup>b</sup> Sun-Hee Kim,<sup>b</sup> and

Chang-Sik Ha \*a

<sup>a</sup> Department of Polymer Science and Engineering, Pusan National University,

Busan 46241, Korea. E-mail: csha@pnu.edu

<sup>b</sup> Department of Biochemistry, School of Medicine, Pusan National University,

Yangsan Hospital, Yangsan 50612, Korea



Figure S1. FTIR spectrum of control Fe<sub>3</sub>O<sub>4</sub>@MSN sample.



**Figure S2.** (a) SEM and (b,c) TEM of the MSH@Azo-CA nanospheres. (d) The particle size distributions of the MSH@Azo-CA nanospheres.



Figure S3. TGA curves of the (a) MSH@SAH and (b) MSH@Azo-CA nanospheres.



**Figure S4.** (A) Room temperature magnetization curves of (a)  $Fe_3O_4$  nanoparticles and (b) MSH@SAH nanospheres and (c) MSH@Azo-CA nanospheres, and (B) photographs of aqueous suspensions of MSH@Azo-CA samples before (left) and after magnetic attraction within 30 s (right).



**Figure S5.** UV-vis spectra of Rh123 release when the Rh123-loaded MSH@Azo-CA nanospheres were exposed continuously to UV-light (365 nm) at pH 5.0. The inset photograph shows the green fluorescence intensity of the Rh123 at different times of UV-light exposure.