Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2015

Supporting Information Swern Manuscript

Figure S2: ¹³C NMR of model compound **8**

Figure S6: ¹H NMR spectrum of compound $\mathbf{1'}$

Figure S7: ¹³C NMR spectrum of compound **2'**

Figure S11: ¹³C NMR spectrum of compound **4'**

Figure S13: ¹³C NMR spectrum of compound **5**'

Figure S14: ¹H NMR spectrum of compound **5**'

Figure S15: ¹H NMR spectrum of compound **6'** produced *via* Swern oxidation of compound **6**

Figure S17: ¹H NMR spectrum of compound **6'** produced *via* Parikh-Doering oxidation of compound **6**

Figure S18: ¹³C NMR spectrum of compound **6'** produced *via* Parikh-Doering oxidation of compound **6**

Peak at 163 ppm (noted with *) a glitch as evidenced by digital resolution

Figure S19: ³¹P NMR of Kraft lignin (bottom, blue) and Swern oxidized Kraft Lignin (top, red).

³¹P NMR measurements were performed on a Varian Inova 400 MHz Spectrometer. 2-Chloro-4,4,5,5-tetramethyl-1,3,2dioxaphospholane was procured from Sigma Aldrich. PW90 and T1 values were measured for each sample prior to analysis. The observation pulse was 90° at 6.8 μs for Kraft lignin and 6.69 μs for Swern oxidized lignin. T1 was calibrated at 3.2 s for Kraft lignin and 4.233 s for Swern oxidized lignin. In all cases the delay was set to 5 times the measured T1 value and 1020 scans were recorded. Samples were prepared in a similar method to Ragauskas¹ in which 20 mg of lignin was added to a vial. Then 100 microliters of a 0.1 N solution of N-Hydroxy-5-norbornene-2,3dicarboxylic acid imide (internal standard), followed by 100 microliters of 0.01 N solution of chromium (III) acetylacetonate, were added. Lastly 50 microliters of phosphitylating reagent and 750 microliters of 1.6/1 v/v mixture of pyridine/CDCl₃ were added. The resulting mixture was then capped and heated and sonicated until dissolved. All solutions were made in a 1.6/1 v/v mixture of pyridine/CDCl₃. In the case of Swern oxidized lignin dissolution was nearly complete after two days (See Figure S20). Data was baseline corrected with a 4th order polynomial fit using ACD/NMR Processor Academic Edition software. Figure S20: Dissolution of Swern oxidized Kraft Lignin (Indulin AT Lignin) for ³¹P NMR analysis.

Figure S21: ¹H NMR of Kraft lignin, Swern oxidized Kraft lignin, Parikh-Doering oxidized Kraft Lignin

Figure S22: FT-IR spectrum of compound 3'

References:

1. Y. Pu, S. Cao and A. J. Ragauskas, *Energy & Environmental Science*, 2011, **4**, 3154-3166.