Electronic Supplementary Material (ESI) for Reaction Chemistry & Engineering. This journal is © The Royal Society of Chemistry 2015

Supporting Information

Highly Efficient and Scalable Chemoenzymatic Syntheses of (R)- and (S)-Lactaldehydes

Michael A. K. Vogel^a, Hanspeter Burger^a, Nadin Schläger^a, Roland Meier^a, Bernhard Schönenberger^a, Tom Bisschops^b, Roland Wohlgemuth^a*

- ^a Sigma-Aldrich, Industriestrasse 25, CH-9470 Buchs, Switzerland
 - [phone: +41-81-7552640, fax: +41-81-7552840, e-mail: roland wohlgemuth@sial.com]
- ^b Sigma-Aldrich, Riedstrasse 2, 89555 Steinheim, Germany

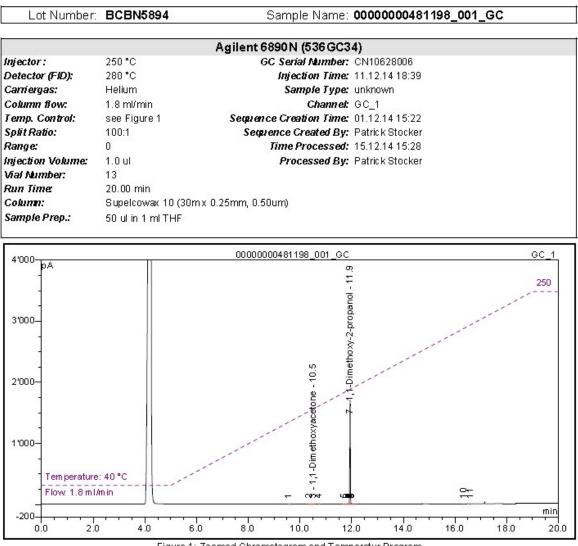
Table of contents

- 1. Screening of ketoreductases
- 2. Scale-up of ketoreductase-catalyzed reduction of Methylglyoxal-1,1-dimethylacetal
- 3. GC of (S)-1,1-Dimethoxy-2-propanol
- 4. NMR of (S)-1,1-Dimethoxy-2-propanol
- 5. Enantiomeric purity analysis of (S)- and (R)-1,1-Dimethoxy-2-propanol by GC
- 6. ¹H-NMR of (R)-Lactaldehyde
- 7. Stability of (R)-Lactaldehyde by ¹H-NMR, signal of methyl group
- 8. ¹³C-NMR of (R)-Lactaldehyde
- 9. Enantiomeric purity analysis of (S)- and (R)-lactaldehyde as its dinitrophenylhydrazone derivatives by HPLC
- 10. DoE Parameter Investigation

1. Screening of ketoreductases

sample	enzyme no. from kit	rel. peak area: starting ketone	rel. peak area: sum of enantiomeric hydroxy compounds	enantiomeric ratio: 1 st : 2 nd eluting enantiomer
T23247-001	1	0%	100%	67.6 : 32.4
T23247-002	2	0%	100%	12.6 : 87.4
T23247-003	3	0%	100%	0.5 : 99.5
T23247-004	4	0%	100%	0.0 : 100.0
T23247-005	5	0%	100%	99.0 : 1.0
T23247-006	6	0%	100%	100.0 : 0.0
T23247-007	7	0%	100%	98.8 : 1.2
T23247-008	8	10.2%	89.8%	86.9 : 13.1
T23247-009	9	0%	100%	100.0 : 0.0
T23247-010	10	0%	100%	100.0 : 0.0
T23247-011	11	0%	100%	70.1 : 29.9
T23247-012	12	0%	100%	71.3 : 28.7
T23247-013	13	0%	100%	99.5 : 0.5
T23247-014	14	0%	100%	51.8 : 48.2
T23247-015	15	0%	100%	69.1 : 30.9
T23247-016	16	0%	100%	100.0 : 0.0
T23247-017	17	0%	100%	84.7 : 15.3
T23247-018	18	0%	100%	94.6 : 5.4
T23247-019	19	0%	100%	95.4 : 4.6
T23247-020	20	0%	100%	100.0 : 0.0
T23247-021	21	0%	100%	100.0 : 0.0
T23247-022	22	0%	100%	0.0 : 100.0
T23247-023	23	0%	100%	72.9 : 27.1
T23247-024	24	0%	100%	0.8 : 99.2
T23247 starting mat	erial (ref.)	100%	0%	-
T23247-026: racemic product (ref.)		0%	100%	50.2 : 49.8

Enzyme screening: Starting conditions of the screening were given by a loading of substrate 3 of 6 g/L, KRED loading of 1 g/L and a NADPH loading of 0.8 g/L in potassium phosphate buffer of pH=7. The screening reactions were conducted in 5mL glass vials, placed in heating blocks of a magnetic stirrer at 30°C. The reaction course was monitored by TLC (silicagel, AcOEt:Heptane=1:1, Phosphomolybdic acid solution, heat to 120°, starting material hardly visible) and conversion and enantiomeric ratio were determined by GC (SupelcoWax 10 capillary GC column 30m x 0.25mm and β -Dex 110 column 30m x 0.25mm respectively) (see section 3 of the supporting information)

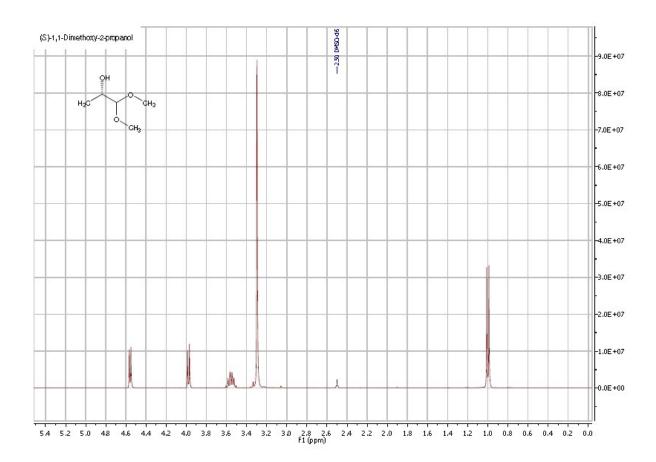

3. Scale-up of ketoreductase-catalyzed reduction of Methylglyoxal-1,1-dimethylacetal

Preparation of 0.1M KH₂PO₄-buffer solution (pH = 6.9-7.1): 473mL of 0.25M K₂HPO₄-solution (prepared from 34.85g (0.2 mol) K₂HPO₄ and 800mL deionized water, pH = 9.25) and 296mL of 0.25M KH₂PO₄-solution (prepared from 17.01g (0.12mol) KH₂PO₄, 305mg (2.53mmol) magnesium sulfate and 500mL deionized water, pH = 4.4) were added to 1154mL of deionized water at 20-30°C.

Preparation of (R)-1,1-Dimethoxy-2-propanol: 1960g 0.1M KH₂PO₄-buffer solution was placed in a 6.0L reaction flask, equipped with overhead stirring. 474.6g (4.018 mol) Methylglyoxal-1,1dimethylacetal dissolved in 348g IPA, and 261mg (0.341 mol) NADP+ dissolved in 22g 0.1M KH₂PO₄buffer solution were subsequently added to the flask. A solution of 3.01g KRED-P2-G03 in 150g 0.1M KH₂PO₄-buffer solution was added to start the reaction, applying gentle stirring at ≤100 rpm. With completed addition the reaction mixture was heated to 30 °C and stirred for 24 h. To the turbid solution 750g MTBE were added. The organic layer was saturated with 700 g sodium chloride and stirred for 30 min at 20-30°C. The reaction mixture was transferred into a separating funnel and further 3.5kg MTBE were added. After extraction, the layers were separated and the aqueous layer further extracted with 3 x 4kg MTBE. The combined organic layers were dried over 400g MgSO₄, the solid filtered off and washed two times with 100g MTBE. The solvents were evaporated carefully under reduced pressure. The crude product was distilled using a 30 cm Vigreux column at 70°C and 85 mbar to give 393.1g (3.27 mol, 81.4%) (R)-1,1-dimethoxy-2-propanol as a colorless liquid. Analytical data: GC: 99.5%, ee: 99.9% (measured by chiral stationary phase GC), ¹H-NMR (d⁶-DMSO):

δ 4.55 (bs, 1H), 3.98 (d, J = 5.8 Hz, 1H), 3.56 (dq, J = 6.4, 5.8 Hz, 1H), 3.30 (s, 6H), 1.00 (d, J = 6.4 Hz, 3H).

3. GC – Chemical purity of (S)-1,1-Dimethoxy-2-propanol

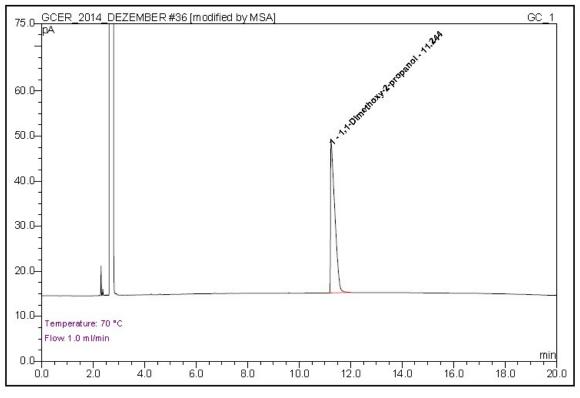


768936 (S)-1,1-Dimethoxy-2-propanol

Figure 1: Zoomed Chromatogram and Temperatur Program

No.	Ret.Time min	Peak Name	Туре	Height pA	Area pA*min	Amount w/w%	Rel.Area %
1	9.580	n.a.	BMB	0.8150	0.0236	n.a.	0.05
2	10.368	n.a.	BMB*	0.2926	0.0086	n.a.	0.02
3	10.511	1,1-Dimethoxya	BMB	1.1917	0.0306	n.a.	0.07
4	10.745	n.a.	BMB	0.9974	0.0264	n.a.	0.06
5	11.730	n.a.	BMB*	0.3021	0.0086	n.a.	0.02
6	11.829	n.a.	BMB*	0.5230	0.0132	n.a.	0.03
7	11.941	1,1-Dimethoxy-1	BM *	1703.0924	45.6646	n.a.	99.49
8	11.981	n.a.	M *	4.0453	0.0769	n.a.	0.17
9	12.015	n.a.	MB*	0.7793	0.0291	n.a.	0.06
10	16.339	n.a.	BMB*	0.4749	0.0102	n.a.	0.02
11	16.595	n.a.	BMB*	0.4310	0.0091	n.a.	0.02
iotal:				1712.9447	45.9009		100.000

4. NMR of (S)-1,1-Dimethoxy-2-propanol

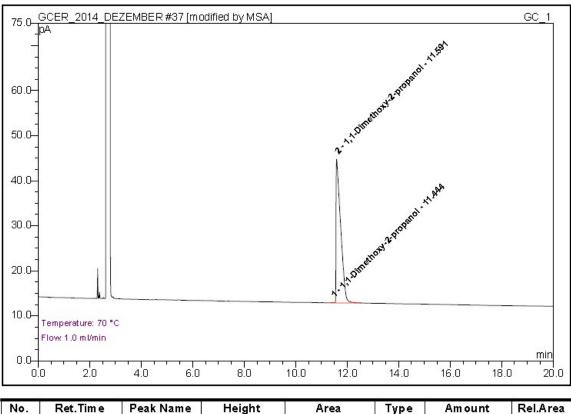


5. Enantiomeric purity analysis of (S)- and (R)-1,1-Dimethoxy-2-propanol by GC

768936	(S)-1,1-Dimethoxy-2-propanol	
--------	------------------------------	--

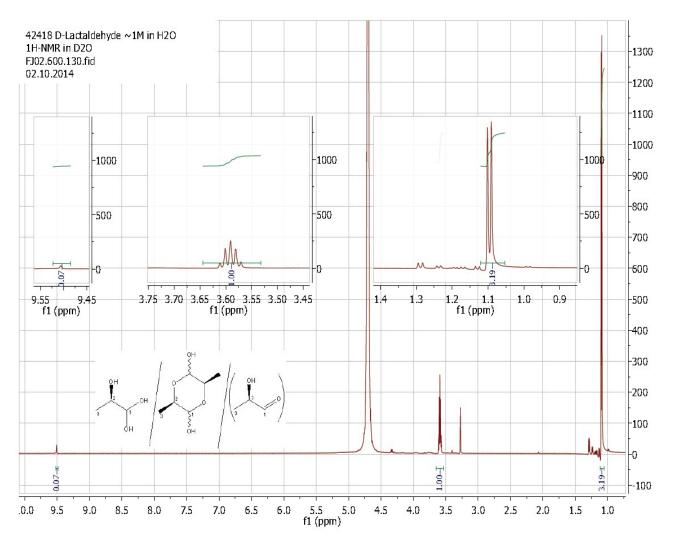
Lot	BCBN5894	Sample: 000000	000481198 001 ER
Injector (SSI, °C)	250	Channel:	GC_1
Detector (FID, °C)	250	Vial Number:	23
Carriergas:	Helium	Injection Volume [µl]:	1.0
Column Flow (ml/min)	1.0	Range:	5.T.
Split ratio:	100:1	Run Time (min):	20.00
Quantif. Method:	768936	Recording Time:	15.12.14 07:53
Column:	Supelco beta-DEX 110 30 m >	< 0.25 mm 0.25 μm	

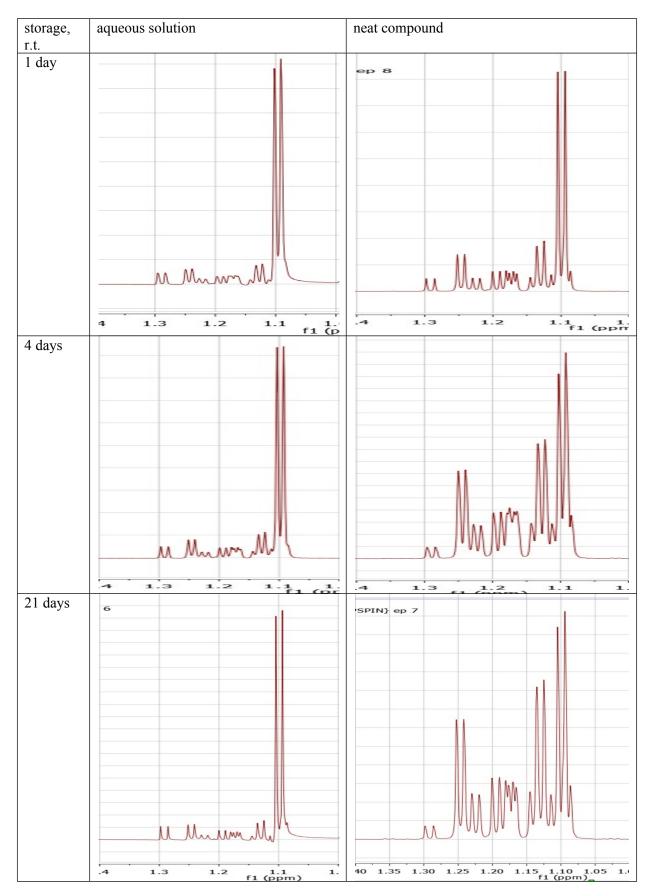
Sample Preparation 10 ul in 1.5 ml TBME



No.	Ret.Time min	Peak Name	Height pA	Area pA*min	Туре	Amount	Rel.Area %
1	11.24	1,1-Dimethoxy	34.107	6.4481	BMB*	n.a.	100.000
Total:			34.107	6.4481	0.00	0.000	100.000

768928	(R)-1,1-Dimethoxy-2-propanol
--------	------------------------------


Lot	BCBM8110	Sample: 0000	00000494930 001 ER
Injector (SSI, °C)	250	Channel:	GC_1
Detector (FID, °C)	250	Vial Number:	24
Carriergas:	Helium	Injection Volume [µl]:	1.0
Column Flow (ml/min)	1.0	Range:	5 - 0
Split ratio:	100:1	Run Time (min):	20.00
Quantif. Method:	768928	Recording Time:	15.12.14 08:15
Column:	Supelco beta-DEX 110 30 m x	0.25 mm 0.25 µm	

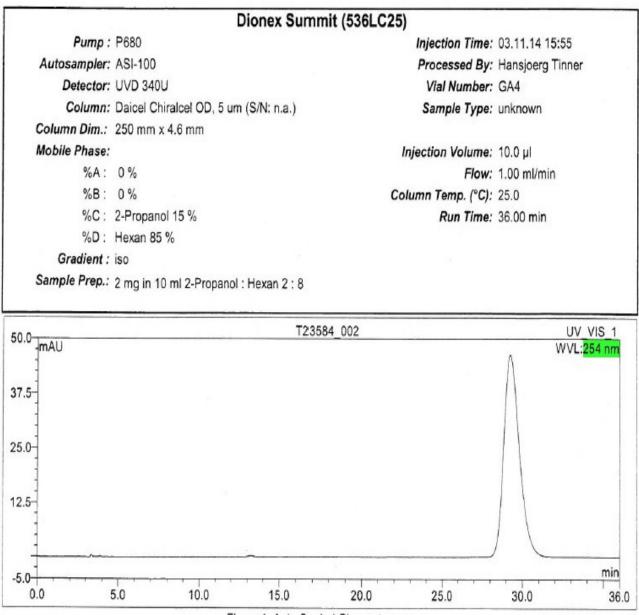

Sample Preparation 10 ul in 1.5 ml TBME

No.	Ret.Tim e	Peak Name	Height	Area	Type	Amount	Rel.Area
	min		pА	pA*min			%
1	11.44	1,1-Dimethoxy	0.053	0.0043	BM b*	n.a.	0.066
2	11.59	1,1-Dimethoxy	31.915	6.5334	bMB*	n.a.	99.934
Total:		-12	31.968	6.5377	0.00	0.000	100.000

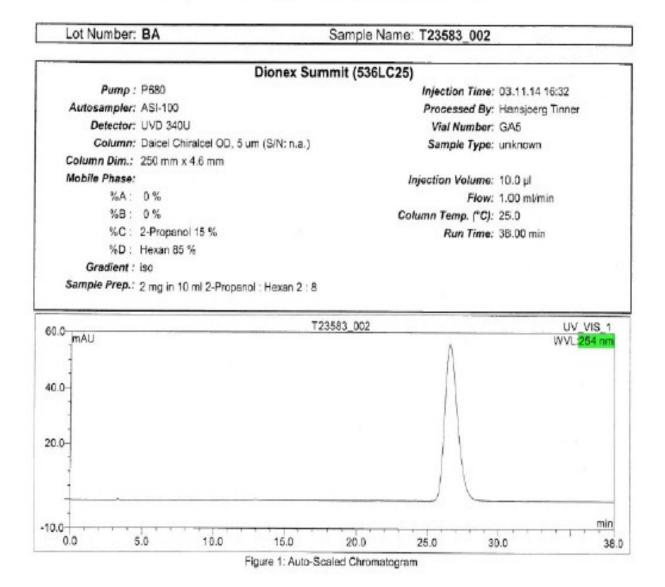
6. ¹H-NMR of (R)-Lactaldehyde

7. Stability of (R)-Lactaldehyde by ¹H-NMR, signal of methyl group

8. ¹³C-NMR of (R)-Lactaldehyde

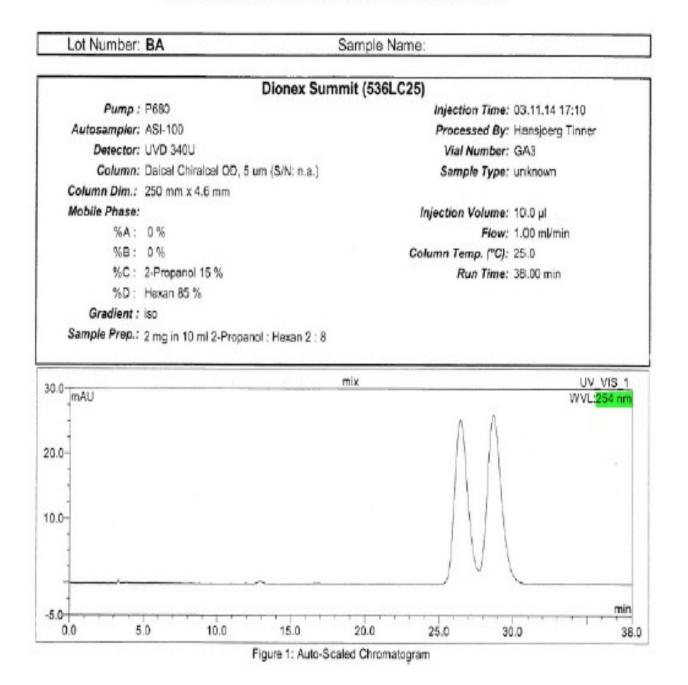


9. Enantiomeric purity analysis of (S)- and (R)-lactaldehyde as its dinitrophenylhydrazone derivatives by HPLC

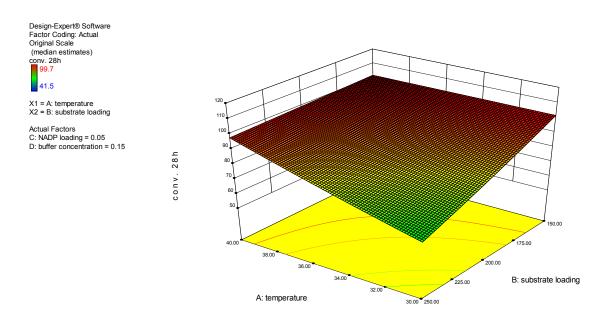

47014 L-Lactaldehyde solution (as its DNPH derivative)

Lot Number: BA

Sample Name: T23584 002



42418 D-Lactaldehyde solution (as its DNPH derivative)


49426 DL-Lactaldehyde solution (as its DNPH derivative)

10. DoE Parameter Investigation

Design: 2 Level Factoria	al including 4 center points
Parameters Varied:	Substrate loading from 150g/L – 250g/L
	NADPH loading from 0.01g/L – 0.1g/L
	Temperature from 30°C – 40°C
	Buffer concentration from 0.04 Mol/L – 0.15 Mol/L
Responses:	Conversion 5.5h
	Conversion 20.5h
	Conversion 28h

3D Surface Plot - Optimum conversion profile at time point 28h:

