Electrophilic *Bis*-Fluorophosphonium Dications:

Lewis Acid Catalysts from Diphosphines

Michael H. Holthausen, Rashi R. Hiranandani and Douglas W. Stephan

Supporting Information

This PDF file includes:

1.	Mate	rials and Methods	S4
2.	Synth	neses and Spectroscopic Data	S6
	2.1.	Preparation of $(C_{10}H_6)(Ph_2P)(Ph_2PF_2)$ (1)	S6
	2.2.	Preparation of $(C_{10}H_6)(Ph_2PF_2)_2$ (2)	S 8
	2.3.	Preparation of $[(C_{10}H_6)(Ph_2PF)(Ph_2P)][B(C_6F_5)_4]$ (3)	S9
	2.4.	Preparation of $[(C_{10}H_6)(Ph_2PF)(Ph_2PF_2)][B(C_6F_5)_4]$ (4)	S11
	2.5.	Preparation of $[(C_{10}H_6)(Ph_2PF)_2][B(C_6F_5)_4]_2$ (5)	S13
	2.6	Preparation of (CH ₂) ₁ (Ph ₂ PF ₂) ₂ (8a)	S15
	2.7	Preparation of (CH ₂) ₂ (Ph ₂ PF ₂) ₂ (8b)	S17
	2.8	Preparation of (CH ₂) ₃ (Ph ₂ PF ₂) ₂ (8c)	S18
	2.9	Preparation of (CH ₂) ₄ (Ph ₂ PF ₂) ₂ (8d)	S20
	2.10	Preparation of (CH ₂) ₅ (Ph ₂ PF ₂) ₂ (8e)	S21
	2.11	Attempted stepwise oxidation of 1,1-bis(diphenylphosphino)methane	S23
	2.12	Preparation of $[(CH_2)_1(Ph_2PF)_2][B(C_6F_5)_4]_2$ (9a)	S25
	2.13	Preparation of [(CH ₂) ₂ (Ph ₂ PF) ₂][B(C ₆ F ₅) ₄] ₂ (9b)	S27
	2.14	Preparation of [(CH ₂) ₃ (Ph ₂ PF) ₂][B(C ₆ F ₅) ₄] ₂ (9c)	S29
	2.15	Preparation of $[(CH_2)_4(Ph_2PF)_2][B(C_6F_5)_4]_2$ (9d)	S31
	2.16	Preparation of $[(CH_2)_5(Ph_2PF)_2][B(C_6F_5)_4]_2$ (9e)	S33
	2.17	³¹ P{ ¹ H} and ¹⁹ F{ ¹ H} NMR parameters of 8a-e and 9a-e	S35
	2.18	Preparation of Ph ₃ PF ₂	S36
	2.19	Preparation of [Ph ₃ PF][B(C ₆ F ₅) ₄]	S36
	2.20	Reaction of 5, [Ph ₃ PF][B(C ₆ F ₅) ₄] and 9a-e	S37
		with Et ₃ PO (Gutmann-Becket test)	
	2.21	Friedel-Crafts dimerization of 1,1-diphenylethylene	S43
		with 5, $[Ph_3PF][B(C_6F_5)_4]$ and 9a-e as catalysts	
	2.22	Dehydrocoupling of Et ₃ SiH and Phenol with 5, [Ph ₃ PF][B(C ₆ F ₅) ₄]	S45
		and 9a-e as catalysts	
	2.23	Hydrosilylation of 1,1-diphenylethylene with Et ₃ SiH	S47

	using 5, $[Ph_3PF][B(C_6F_5)_4]$ and 9a-e as catalysts	
2.24	Deoxygenation of benzophenone in the presence of Et ₃ SiH	S49
	using 5, $[Ph_3PF][B(C_6F_5)_4]$ and 9a-e as catalysts	
2.25	Hydrodefluorination of fluoropentane in the presence of Et_3SiH	S51
	using 5, $[Ph_3PF][B(C_6F_5)_4]$ and 9a-e as catalysts	
Cryst	allographic Details	S53
Refer	ences	S55

3.

4.

1. Materials and Methods

General Remarks

All manipulations were performed in a glove box MB Unilab produced by MBraun or using standard Schlenk techniques^[S1] under an inert atmosphere of anhydrous N₂. Dry, oxygen-free solvents (CH₂Cl₂, *n*-pentane, toluene) were prepared using an Innovative Technologies solvent purification system. Fluorobenzene (C₆H₅F) was distilled from CaH₂ and stored over molecular sieves (4 Å) prior to use. Deuterated dichloromethane (CD_2Cl_2) and bromobenzene (C_6D_5Br) were purchased from Sigma-Aldrich, distilled from CaH₂ and stored over molecular sieves (4 Å) for at least two days prior to use. Reagents such as 1,8-Bis(diphenylphosphino)naphthalene, 1,1-Bis(diphenylphosphino)methane, 1,2-Bis(diphenylphosphino)ethane, 1,3 Bis(diphenylphosphino) propane, 1,4-Bis(diphenylphosphino)butane, 1,5-Bis(diphenylphosphino)pentane, XeF₂, Et₃PO, Et₃SiH, Ph₃P, 1-fluoropentane, 1,1-diphenylethylene, phenol and benzophenone were purchased either from Sigma-Aldrich, Strem Chemicals or Alfa Aesar and, if applicable, distilled prior to use. Compound $[Et_3Si][B(C_6F_5)_4]*2(C_7H_8)$ was prepared according to a literature known procedure.^[S2] All glassware was oven-dried at temperatures above 180°C prior to use. NMR spectra were measured on a Bruker AVANCE 400 (¹H: 400 MHz, ¹¹B: 128 MHz, ¹³C: 101 MHz, ³¹P: 162 MHz, ¹⁹F: 377 MHz) or Agilent DD2 500 (¹H: 500 MHz, ¹³C: 125 MHz, ³¹P: 202 MHz, ¹⁹F: 471 MHz) at ambient temperature. All ¹³C NMR spectra were exclusively recorded with composite pulse decoupling. Assignments of the carbon atoms in the ¹³C spectra were performed via indirect deduction from the cross-peaks in 2D correlation experiments (HMBC; HSQC). Chemical shifts were referenced to $\delta_{TMS} = 0.00 \text{ ppm} (^{1}\text{H}, ^{13}\text{C}), \delta_{BF3*OEt2} = 0.00 \text{ ppm} (^{11}\text{B}),$ $\delta_{\text{CFCI3}} = 0.00 \text{ ppm}$ (¹⁹F) and $\delta_{\text{H3PO4(85\%)}} = 0.00 \text{ ppm}$ (³¹P, externally). Chemical shifts (δ) are reported in ppm, multiplicity is reported as follows (s = singlet, d = doublet, t = triplet, m = multiplet) and coupling constants (J) are reported in Hz. Assignments of individual resonances were done using 2D techniques (HMBC, HSQC, HH-COSY) when necessary. Yields of products in solution were determined by integration of all resonances observed in the respective NMR spectra if not stated otherwise. High-resolution mass spectra (HRMS) were obtained on a micro mass 70S-250 spectrometer (EI), an ABI/Sciex QStar Mass Spectrometer (DART), or on a JOEL AccuTOF-DART (DART). Elemental analyses (C, H, N) were performed at the University of Toronto employing a Perkin Elmer 2400 Series II CHNS Analyzer.

X-ray Diffraction Studies.

Single crystals were coated with Paratone-N oil, mounted using a glass fibre pin and frozen in the cold nitrogen stream of the goniometer. Data sets were collected on a Siemens Smart System CCD diffractometer which was equipped with a rotation anode using graphite-monochromated MoK α radiation ($\lambda = 0.71073$ Å) Data reduction was performed using the Bruker SMART^[S3] software package. Data sets were corrected for absorption effects using SADABS routine (empirical multi-scan method). Structure solutions were found with the SHELXS-97 package using the direct method and were refined with SHELXL-97^[S4] against F^2 using first isotropic and anisotropic thermal parameters for all non-hydrogen atoms. The unit cell of **4** contains 5 molecules CH₂Cl₂ which have been treated as a diffuse contribution to the overall scattering without specific atom positions by SQUEEZE/PLATON due to their high degree of disorder. Hydrogen atoms bonded to carbon atoms were generated with idealized geometries and isotropically refined using a riding model. Further details are given in tables S3.1 and S3.2 (pages S54-S55).

2. Syntheses and Spectroscopic Data

2.1. Preparation of $(C_{10}H_6)(Ph_2PF_2)(Ph_2P)$ (1)

1

XeF₂ (76 mg, 0.45 mmol, 0.9 eq.) was added portionwise to a solution of 1,8bis(diphenylphosphino)naphthalene (248 mg, 0.50 mmol, 1.0 eq.) in CH₂Cl₂ (15 mL) at -35 °C. The solution was slowly warmed to ambient temperature and stirred for one hour. All volatiles were removed *in vacuo* and the remaining yellowish solid was washed with *n*-pentane (3 x 3 mL) yielding **1** as a colourless material (208 mg, 87% yield).

¹**H** NMR (CD₂Cl₂, [**ppm**]): $\delta = 6.94 - 7.00$ (4H, m, Ph), 7.16 - 7.24 (8H, m, Ph), 7.26 - 7.37 (8H, m, Ph), 7.44 - 7.49 (1H, m, naphthyl), 7.51 - 7.55 (1H, m, naphthyl), 7.78 - 7.82 (1H, m, naphthyl), 7.85 - 7.91 (2H, m, naphthyl), 7.91 - 7.96 (1H, m, naphthyl); ¹³C{¹H} NMR (CD₂Cl₂, [**ppm**]): $\delta = 124.8$ (1C, d, *p*-naphthyl, ⁴*J*_{CP} = 23.5 Hz), 125.9 (1C, d, *p*-naphthyl, ⁴*J*_{CP} = 6.1 Hz), 128.3 (4C, s(br), Ph), 128.5 (4C, m, Ph), 130.4 (4C, s(br), Ph), 131.5 (1C, m, naphthyl), 131.8 (1C, m, naphthyl), 133.2 (4C, d, Ph, ⁿ*J*_{CP} = 18.0 Hz), 134.0 (1C, t, naphthyl, ⁿ*J*_{CF} = 10.5 Hz), 134.2 (4C, s(br), Ph), 135.1 (1C, m, naphthyl), 135.5 (1C, m, naphthyl), 137.1 (1C, t, naphthyl, ⁿ*J*_{CF} = 1.8 Hz), 137.7 (2C, d, *i*-Ph, ¹*J*_{CP} = 12.3 Hz), 139.4 (2C, d, *i*-Ph, ¹*J*_{CP} = 212.4 Hz), resonances for the quaternary carbon atoms of the naphthyl-moiety were not observed; ¹⁹F{¹H} NMR (CD₂Cl₂, [**ppm**]): $\delta = -42.0$ (2F, dd, ¹*J*_{FP} = 742 Hz, ⁵*J*_{FP} = 17 Hz); ³¹P{¹H} NMR (CD₂Cl₂, [**ppm**]): $\delta = -55.5$ (1P, td, ¹*J*_{PF} = 742 Hz, ⁴*J*_{PP} = 10 Hz), -18.5 (1P, ⁵*J*_{PF} = 17 Hz, td, ⁴*J*_{PP} = 10 Hz); elemental analysis for C₃₄H₂₆F₂P₂: calcd.: C 76.4, H 4.9, found: C 76.3, H 5.3; ESI MS: m/z: 515.1479 (calcd. for M–F⁺: 515.1488).

 $^{19}\mathrm{F}\{^{1}\mathrm{H}\}$ NMR spectrum of compound 1 (CD₂Cl₂).

 $^{31}P\{^{1}H\}$ NMR spectrum of compound $\boldsymbol{1}$ (CD₂Cl₂).

2.2. Preparation of (C₁₀H₆)(Ph₂PF₂)₂ (2)

XeF₂ (406 mg, 2.4 mmol, 2.2 eq.) was added portionwise to a yellow solution of 1,8-bis(diphenylphosphino)naphthalene (496 mg, 1.00 mmol, 1.0 eq.) in CH₂Cl₂ (10 mL). The reaction mixture was stirred at ambient temperature for six hours giving a colourless solution. All volatiles were removed *in vacuo* yielding **2** as a colourless solid (509 mg, 95% yield).

¹**H** NMR (CD₂Cl₂, [**ppm**]): $\delta = 7.05 - 7.13$ (8H, m, *m*-Ph), 7.21 - 7.27 (4H, m, *p*-Ph), 7.33 - 7.42 (8H, m, *o*-Ph), 7.44 - 7.50 (2H, m, *p*-naphthyl), 7.94 - 8.01 (2H, m, *m*-naphthyl), 8.46 - 8.57 (2H, m, *o*-naphthyl); ¹³C{¹**H**} NMR (CD₂Cl₂, [**ppm**]): $\delta = 125.0$ (2C, d, *p*-naphthyl, ⁴*J*_{CP} = 20.9 Hz), 128.1 (8C, d, *m*-Ph, ³*J*_{CP} = 17.2 Hz), 130.3 (4C, d, *p*-Ph, ⁴*J*_{CP} = 3.5 Hz), 133.3 (8C, dt, *o*-Ph, ²*J*_{CP} = 12.8 Hz, ³*J*_{CF} = 8.1 Hz), 133.8 (2C, m, *m*-C_{naphthyl}H), 137.4 (2C, dtdt, *i*-naphthyl, ¹*J*_{CP} = 202.4 Hz, ²*J*_{CF} = 31.6 Hz, ³*J*_{CP} = 3.6 Hz, ⁴*J*_{CF} = 3.6 Hz), 138.5 (2C, dt, *o*-C_{naphtyl}H, ²*J*_{CP} = 14.5 Hz, ³*J*_{CF} = 14.5 Hz), 139.8 (4C, dt, *i*-Ph, ¹*J*_{CP} = 182.3 Hz, ²*J*_{PF} = 28.4 Hz), resonances for the quaternary carbon atoms of the naphthyl-moiety were not observed; ¹⁹F{¹H} NMR (CD₂Cl₂, [**ppm**]): $\delta = -34.3$ (4F, X₂X₂' part of AA'X₂X₂' spin system, ¹*J*_{AX} = ¹*J*_{A'X} = 717 Hz, ⁵*J*_{A'X} = ⁵*J*_{AX'} = -18 Hz, ⁶*J*_{XX'} = 0 Hz); ³¹P{¹H} NMR (CD₂Cl₂, [**ppm**]): $\delta = -49.4$ (2P, AA' part of AA'X₂X₂' spin system, ⁵*J*_{AA'} = 3 Hz); **elemental analysis** for C₃₄H₂₆F₄P₂: calcd.: C 71.2, H 4.6, found: C 71.0, H 5.0; **ESI MS**: m/z: 553.1 (calcd. for M–F⁺: 553.1).

¹⁹F $\{^{1}H\}$ NMR spectrum of compound **2** (CD₂Cl₂, upwards) and simulated spectrum (downwards).

 ${}^{31}P{}^{1}H$ NMR spectrum of compound 2 (CD₂Cl₂, upwards) and simulated spectrum (downwards).

2.3. Preparation of $[(C_{10}H_6)(Ph_2PF)(Ph_2P)][B(C_6F_5)_4]$ (3)

Freshly prepared $[Et_3Si][B(C_6F_5)_4]*2(C_7H_8)$ (196 mg, 0.20 mmol, 1.0 eq.) was added portion wise to a solution of **1** (107 mg, 0.20 mmol, 1.0 eq.) in C_6H_5F (5 mL). The clear, yellowish reaction mixture was stirred for 30 min at ambient temperature. Addition of *n*-pentane (10 mL) gave a colourless precipitate. The supernatant was removed and the residue was washed with *n*-pentane (3 x 3 mL). Removal of all volatiles *in vacuo* gave **3** as colourless, microcrystalline solid (208 mg, 87% yield).

¹**H NMR** (**CD**₂**Cl**₂, [**ppm**]): $\delta = 6.67 - 6.65$ (4H, m, Ph), 7.09 - 7.16 (4H, m, Ph), 7.20 - 7.28 (4H, m, Ph), 7.44 - 7.49 (8H, m, Ph), 7.82 - 7.94 (2H, m, naphthyl), 8.09 - 8.15 (1H, m, naphthyl), 8.46 - 8.51 (1H, m, naphthyl), 8.58 - 8.62 (1H, m, naphthyl), 8.98 - 9.05 (1H, m, naphthyl); 1¹B{¹H} **NMR** (**CD**₂**Cl**₂, [**ppm**]): $\delta = -16.6$ (s); ¹³C{¹H} **NMR** (**CD**₂**Cl**₂, [**ppm**]): $\delta = 115.6$ (1C, d, *i*-naphthyl, ¹*J*_{CP} = 20.9), 118.0 (1C, ddd, *i*-naphtyl, ¹*J*_{CP} = 140.0 Hz, ²*J*_{CF} = 40.7 Hz, ³*J*_{CP} = 20.9 Hz), 121.1 (2C, dd, *i*-Ph, ¹*J*_{CP} = 40.5 Hz, ⁴*J*_{CF} = 3.0 Hz), 125.0 (2C, ddd, *i*-Ph, ddd,

¹*J*_{CF} = 38.7 Hz, ⁵*J*_{CP} = 1.6 Hz, ⁶*J*_{CF} = 1.6 Hz), 128.8 - 129.2 (6C, m, Ph / naphthyl), 129.7 (4C, d, Ph, *J*_{CP} = 10.4 Hz), 130.0 (4C, dd, Ph, *J*_{CP} = 17.1 Hz, *J*_{CF} = 1.7 Hz), 131.9 (2C, d, Ph, *J*_{CP} = 3.1 Hz), 132.4 (4C, dd, Ph, *J*_{CP} = 9.1 Hz, *J*_{CP} = 0.9 Hz), 132.7 (2C, m, Ph), 134.7 (1C, ddd, naphthyl, *J*_{CP} = 11.7 Hz, *J*_{CF} = 9.9 Hz, *J*_{CP} = 2.2 Hz), 136.7 (8C, d(br), C₆F₅, ¹*J*_{CF} = 246 Hz), 137.6 - 137.9 (2C, m, naphthyl), 138.6 (4C, d(br), C₆F₅, ¹*J*_{CF} = 237 Hz), 143.3 (1C, ddd, naphthyl, *J*_{CP} = 16.7 Hz, *J*_{CF/P} = 13.5 Hz, *J*_{CF/P} = 10.6 Hz), 148.5 (8C, d(br), C₆F₅, ¹*J*_{CF} = 241 Hz), resonances for the quaternary carbon atoms of the naphthyl-moiety were not observed; ¹⁹F{¹H} **NMR (CD₂Cl₂, [ppm]):** δ = -167.6 (8F, m, *m*-C₆F₅), -163.7 (4F, t, *p*-C₆F₅, ³*J*_{FF} = 20 Hz), -133.1 (8F, m, *o*-C₆F₅), -36.5 (1F, dd, PF, ¹*J*_{FF} = 783 Hz, ²*J*_{FP} = 164 Hz); ³¹P{¹H} **NMR** (**CD₂Cl₂, [ppm]):** δ = -17.4 (1P, dd, PPh₂F, ¹*J*_{PF} = 783 Hz, ¹*J*_{PP} = 138 Hz), -5.5 (1P, dd, PPh₂, ²*J*_{PF} = 164 Hz, ¹*J*_{PP} = 138 Hz); **elemental analysis** for C₅₈H₂₆F₂₁BP₂: calcd.: C 58.3, H 2.2, found: C 57.7, H 2.3; **ESI MS**: m/z: 515.1487 (calcd. for M⁺: 515.1488).

-30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 ppm

¹⁹F $\{^{1}H\}$ NMR spectrum of compound **3** (CD₂Cl₂), * indicates traces of C₆H₅F.

2.4. Preparation of $[(C_{10}H_6)(Ph_2PF)(Ph_2PF_2)][B(C_6F_5)_4]$ (4)

Freshly prepared $[Et_3Si][B(C_6F_5)_4]*2(C_7H_8)$ (156 mg, 0.16 mmol, 1.0 eq.) was added portionwise to a solution of **2** (85 mg, 0.16 mmol, 1.0 eq.) in C_6H_5F (5 mL). The clear, yellowish solution was stirred for 30 min at ambient temperature. Addition of *n*-pentane (10 mL) gave a colourless precipitate. The supernatant was removed and the residue was washed with *n*-pentane (3 x 3 mL). Removal of all volatiles *in vacuo* gave **4** as

colourless, microcrystalline solid (189 mg, 96% yield). Single crystals of

4, as its dichloromethane solvate $4^{*}(CH_{2}Cl_{2})$, were obtained by slow diffusion of *n*-pentane into a $CH_{2}Cl_{2}$ solution at -35 °C and were suitable of X-ray single crystal structure determination. Portions of the crystalline material were isolated by decanting the supernatant and either removing remaining volatiles *in vacuo* or by evaporating in one atmosphere of N₂. Both samples were investigated by ¹H NMR spectroscopy. While 0.7 equivalent CH₂Cl₂ solvate were observed in the ¹H NMR spectrum of the sample that was dried *in vacuo*, the latter indicated the presence of one CH₂Cl₂ solvate molecule. This indicates that the solvate molecules are only weakly bound.

¹**H NMR** (**CD**₂**Cl**₂, [**ppm**]): δ = 7.12 - 7.27 (4H, m(br), Ph), 7.32 - 7.48 (12H, m(br), Ph), 7.52 - 7.68 (4H, m(br), Ph), 7.68 - 7.80 (2H, m(br), naphthyl), 7.82 - 7.92 (1H, m(br), naphthyl), 8.20 - 8.31 (1H, m(br), naphthyl), 8.36 - 8.47 (1H, m(br), naphthyl), 8.78 - 8.90 (2H, m(br), naphthyl); ¹¹**B**{¹**H**} **NMR** (**CD**₂**Cl**₂, [**ppm**]): δ = -16.7 (s); ¹³**C**{¹**H**} **NMR** (**CD**₂**Cl**₂, [**ppm**]): δ = 116.0 (s(br)), 119.1 (s(br)), 119.9 (s(br)), 123.5 (s(br)), 127.0 (s(br)), 127.9 (s(br)), 132.8 (s(br)), 134.7 (s(br)), 136.1 (8C, d(br), C₆F₅, ¹J_{CF} = 244 Hz), 136.6 (s(br)), 137.8 (4C, d(br), C₆F₅, ¹J_{CF} = 236 Hz), 142.5 (s(br)), 148.1 (8C, d(br), C₆F₅, ¹J_{CF} = 242 Hz); ¹⁹**F**{¹**H**} **NMR** (**CD**₂**Cl**₂, [**ppm**]): δ = -167.3 (8F, m, *m*-C₆F₅), -163.4 (4F, m, *p*-C₆F₅), -132.8 (8F, m, *o*-C₆F₅), -125.0 (d(br), ¹J_{PF} = 1012 Hz), -34.5 (d(br), ¹J_{PF} = 717 Hz); ³¹**P**{¹**H**} **NMR** (**CD**₂**Cl**₂, [**ppm**]): δ = -51.7 (t(br), ¹J_{PF} = 717 Hz), 96.6 (d(br), ¹J_{PF} = 1012 Hz); **elemental analysis** for C₈₂H₂₆F₄₃B₂P₂: calcd.: C 56.5, H 2.1, found: C 56.5, H 1.5; **ESI MS**: m/z: 529.1 (calcd. for [M+H₂O-2HF]⁺: 529.1).

³¹P{¹H} NMR spectrum of compound **4** (CD₂Cl₂). *despite several tested workup procedures the broad resonance at 16 ppm persisted. Based on this, it is tentatively assigned to an isomer of **4** which is present in small amounts only. This isomer is assumed to feature a bridging P–F–P interaction caused by coordination of the σ *(P–F) acceptor orbital of the phosphonium moiety to one of the fluoro-groups of the adjacent difluorophosphorane.

2.5. Preparation of $[(C_{10}H_6)(Ph_2PF)_2][B(C_6F_5)_4]_2$ (5)

Freshly prepared $[Et_3Si][B(C_6F_5)_4]*2(C_7H_8)$ (1029 mg, 1.05 mmol, 2.0 eq.) was added to a solution of **2** (281 mg, 0.53 mmol, 1.0 eq.) in C_6H_5F (10 mL). Instantly the formation of a colourless oil was observed. The supernatant was removed and the residue was washed with *n*-pentane (3 x 3 mL). During this process, the oil turned into a colourless, microcrystalline solid. Removal of all volatiles *in vacuo* gave **5** was

colourless, microcrystalline solid (842 mg, 84% yield).

¹**H** NMR (CD₂Cl₂, [ppm]): $\delta = 7.39 - 7.48$ (8H, m, *o*-Ph), 7.67 - 7.76 (8H, m, *m*-Ph), 7.96 - 8.06 (6H, m, *p*-Ph/*p*-naphthyl), 8.08 - 8.18 (2H, m, *o*-naphthyl), 8.73 - 8.80 (2H, m, *m*-naphthyl); ¹¹B{¹H} NMR (CD₂Cl₂, [ppm]): $\delta = -16.7$ (s); ¹³C{¹H} NMR (CD₂Cl₂, [ppm]): $\delta = 111.1$ (2C, dd, *i*-naphthyl, ¹*J*_{CP} = 106.9 Hz, ²*J*_{CF} = 16.0 Hz), 116.9 (4C, dd, *i*-Ph, ¹*J*_{CP} = 109.8 Hz, ²*J*_{CF} = 15.0 Hz), 123.8 (4C, s(br), C₆F₅), 127.9 (2C, d, *p*-C_{naphthyl}H, ⁴*J*_{CP} = 17.3 Hz), 131.3 (8C, d, *m*-Ph, ³*J*_{CP} = 14.7 Hz), 133.4 (8C, d, *o*-Ph, ²*J*_{CP} = 13.1 Hz), 136.2 (16C, d(br), C₆F₅, ¹*J*_{CF} = 246 Hz), 138.1 (8C, d(br), C₆F₅, ¹*J*_{CF} = 243 Hz), 139.2 (4C, s, *p*-Ph), 142.5 - 142.6 (2C, m, m-C_{naphthyl}H), 145.2 (2C, d(br), o-C_{naphthyl}H), 148.1 (16C, d(br), ${}^{1}J_{CF} = 242$ Hz), resonances for the quaternary carbon atoms of the naphthyl-moiety were not observed; ${}^{19}F{}^{1}H$ NMR (CD₂Cl₂, **[ppm]):** $\delta = -167.4 (16F, m, m-C_6F_5), -163.4 (8F, m, p-C_6F_5), -132.9 (16F, m, o-C_6F_5), -117.1$ (2F, XX' part of AA'XX' spin system, ${}^{1}J_{AX} = {}^{1}J_{A'X'} = 1004$ Hz, ${}^{5}J_{A'X} = {}^{5}J_{AX'} = -13$ Hz, ${}^{6}J_{XX'}$ was not determined due to broad ¹⁹F{¹H} resonance); ³¹P{¹H} NMR (CD₂Cl₂, [ppm]): $\delta = 96.8$ (2P, AA' part of AA'XX' spin system, ${}^{5}J_{AA'} = 3$ Hz); elemental analysis for $C_{82}H_{26}B_{2}F_{42}P_{2}$: calcd.: C 52.0, H 1.4, found: C 52.8, H 1.7; ESI MS: m/z: 529.1469 (calcd. for [M-2F+H₂O]⁺: 529.1469), 543.1626 (calcd. for $[M+e^{-}]^{+}$: 543.1478).

 $^{31}P{^{1}H}$ NMR spectrum of compound 5 (CD₂Cl₂, upwards) and simulated spectrum (downwards). S14

2.6. Preparation of (CH₂)₁(Ph₂PF₂)₂ (8a)^[S5]

 $Ph_{I,I}$, F_{F} , Ph_{F} , $Ph_$

¹**H NMR** (**CD**₂**Cl**₂, [**ppm**]): $\delta = 3.57$ (2H, m, CH₂), 7.37 (8H, m, *m*-Ph), 7.46 (4H, m, *p*-Ph), 7.88 (8H, m, *o*-Ph);¹³**C**{¹**H**} **NMR** (**CD**₂**Cl**₂, [**ppm**]): $\delta = 46.3$ (1C, td, CH₂, ¹*J*_{CP} = 132 Hz, ²*J*_{CF} = 35 Hz), 128.6 (8C, dm, *m*-Ph, ³*J*_{CP} = 16 Hz), 131.9 (4C, d, *p*-Ph, ⁴*J*_{CP} = 5 Hz), 134.9 (8C, m, *o*-Ph), 136.1 (4C, dt, *i*-Ph, ¹*J*_{PF} = 232 Hz, ²*J*_{CF} = 32 Hz); ¹⁹**F**{¹**H**} **NMR** (**CD**₂**Cl**₂, [**ppm**]): $\delta = -27.7$ (4F, X₂X₂' part of AA'X₂X₂' spin system, ¹*J*_{AX} = ¹*J*_{A'X'} = 644 Hz, ³*J*_{A'X} = ³*J*_{AX'} = -18 Hz, ⁴*J*_{XX'} = -7 Hz); ³¹**P**{**1H**} **NMR** (**CD**₂**Cl**₂, [**ppm**]): $\delta = -46.8$ (2P, AA' part of AA'X₂X₂' spin system, ²*J*_{AA'} = 26 Hz); elemental analysis for C₂₅H₂₂F₄P₂: calcd.: C 65.2, H 4.8, found: C 64.9, H 5.0; **DART MS**: m/z: 441.1 (calcd. for M-F⁺: 441.1).

Figure 2.6.1. POV-ray depiction of 8a. P: orange, F: yellow-green, C: black. S15

 $^{31}P{^{1}H}$ NMR spectrum of compound **8a** (CD₂Cl₂, upwards) and simulated spectrum (downwards).

 $^{19}F{}^{1}H$ NMR spectrum of compound **8a** (CD₂Cl₂, upwards) and simulated spectrum (downwards).

2.7. Preparation of (CH₂)₂(Ph₂PF₂)₂ (8b)^[S5]

volatiles were removed *in vacuo* yielding a white solid (117 mg, 99% yield). Multi-nuclear magnetic resonance experiments were in accordance to literature reported values.^[S5]

¹H NMR (CD₂Cl₂, [ppm]): $\delta = 2.74$ (4H, m, CH₂), 7.46 (8H, m, *m*-Ph), 7.52 (4H, m, *p*-Ph), 7.97 (8H, m, *o*-Ph); ¹³C{1H} NMR (CD₂Cl₂, [ppm]): $\delta = 31.0$ (2C, dm, CH₂, ¹*J*_{CP} = 126 Hz), 128.8 (8C, dm, *m*-Ph, ³*J*_{CP} = 15 Hz), 132.0 (4C, s(br), *p*-Ph), 134.5 (8C, m, *o*-Ph), 135.8 (4C, dt, *i*-Ph, ¹*J*_{PF} = 172 Hz, ²*J*_{CF} = 26 Hz); ¹⁹F{¹H} NMR (CD₂Cl₂, [ppm]): $\delta = -39.7$ (4F, X₂X₂' part of AA'X₂X₂' spin system, ¹*J*_{AX} = ¹*J*_{A'X'} = 653 Hz, ⁴*J*_{A'X} = ⁴*J*_{AX'} = -6 Hz, ⁵*J*_{XX'} = 0 Hz); ³¹P{¹H} NMR (CD₂Cl₂, [ppm]): $\delta = -43.6$ (2P, AA' part of AA'X₂X₂' spin system, ³*J*_{AA'} = 115 Hz); elemental analysis for C₂₆H₂₄F₄P₂: calcd.: C 65.8, H 5.1, found: C 65.5, H 5.5; DART MS: m/z: 455.1 (calcd. for M-F⁺: 455.1).

 $^{31}P{^{1}H}$ NMR spectrum of compound **8b** (CD₂Cl₂, upwards) and simulated spectrum (downwards).

 19 F{ 1 H} NMR spectrum of compound **8b** (CD₂Cl₂, upwards) and simulated spectrum (downwards).

2.8. Preparation of (CH₂)₃(Ph₂PF₂)₂ (8c)^[S6]

 $\begin{array}{c} \begin{array}{c} \mathsf{Ph}_{I,I}, \mathsf{P}_{\mathsf{Ph}} \\ \mathsf{Ph}^{\mathsf{I}}, \mathsf{Ided} dropwise to a solution of 1,3 bis(diphenylphosphino)propane (131 mg, 0.32 mmol, 1.0 eq.) in CH_2Cl_2 (5 mL). The reaction mixture was stirred at ambient temperature for 15 min giving a colourless solution. All volatile, were removed$ *in vacuo*yielding a white solid (142 mg, 88% yield). Multi-nuclear magnetic resonance experiments were in accordance to literature reported values. [S6]

¹H NMR (CD₂Cl₂, [ppm]): $\delta = 2.20$ (2H, m, CH₂), 2.53 (4H, m, P-CH₂), 7.45 (8H, m, *m*-Ph), 7.52 (4H, m, *p*-Ph), 7.92 (8H, m, *o*-Ph); ¹³C {¹H} NMR (CD₂Cl₂, [ppm]): $\delta = 19.6$ (1C, m, CH₂), 37.6 (1C, dm, P-CH₂, ¹J_{CP} = 111 Hz), 128.7 (8C, dm, *m*-Ph, ³J_{CP} = 16 Hz), 131.8 (4C,m, *p*-Ph), 134.2 (8C, m, *o*-Ph), 136.3 (4C, dt, *i*-Ph, ¹J_{CP} = 172 Hz, ²J_{CF} = 26 Hz); ¹⁹F{¹H} NMR (CD₂Cl₂, [ppm]): $\delta = -39.0$ (4F, X₂X₂' part of AA'X₂X₂' spin system, ¹J_{AX} = ¹J_{A'X'} = 644 Hz, ⁵J_{A'X} = ⁵J_{AX'} = -2 Hz, ⁶J_{XX'} = 0 Hz); ³¹P{¹H} NMR (CD₂Cl₂, [ppm]): $\delta = -43.2$ (2P, AA' part of

AA'X₂X₂' spin system, ${}^{4}J_{AA'} = 12$ Hz); **elemental analysis** for C₂₇H₂₆F₄P₂: calcd.: C 66.4, H 5.4, found: C 66.3, H 5.0; **DART MS**: m/z: 469.2 (calcd. for M–F⁺: 469.2).

 $^{31}P{^{1}H}$ NMR spectrum of compound **8c** (CD₂Cl₂, upwards) and simulated spectrum (downwards).

 $^{19}F{}^{1}H$ NMR spectrum of compound **8c** (CD₂Cl₂, upwards) and simulated spectrum (downwards).

2.9. Preparation of (CH₂)₄(Ph₂PF₂)₂ (8d)^[S6]

 $\begin{array}{c} \begin{array}{c} \mathsf{Ph}_{1,1} \mathsf{P}_{\mathsf{P}} \\ \mathsf{Ph}_{\mathsf{F}} \mathsf{Ph}_{\mathsf{F}} \\ \mathsf{Ph}_{\mathsf{F}} \mathsf{Ph}_{\mathsf{F}} \\ \mathsf{Rd} \end{array} \begin{array}{c} \mathsf{A} \text{ solution of } XeF_2 \ (86 \text{ mg}, \ 0.51 \text{ mmol}, \ 2.1 \text{ eq.}) \text{ in } CH_2Cl_2 \ (5 \text{ mL}) \text{ was} \\ \text{added dropwise to a solution of } 1,4 \ \text{bis}(\text{diphenylphosphino})\text{butane} \\ (104 \text{ mg}, \ 0.24 \text{ mmol}, \ 1.0 \text{ eq.}) \text{ in } CH_2Cl_2 \ (5 \text{ mL}). \text{ The reaction mixture was} \\ \text{stirred at ambient temperature for } 15 \text{ min giving a colourless solution. All} \\ \text{volatiles were removed } in \ vacuo \ yielding \ a \ white \ solid \ (121 \text{ mg}, \ 98\% \ yield). Multi-nuclear \\ \text{magnetic resonance experiments were in accordance to literature reported values.} \ {}^{[S6]}$

¹**H NMR** (**CD**₂**Cl**₂, [**ppm**]): $\delta = 1.80$ (4H, m, CH₂), 2.42 (4H, m, P-CH₂), 7.44 (8H, m, *m*-Ph), 7.50 (4H, m, *p*-Ph), 7.90 (8H, m, *o*-Ph); ¹³**C**{¹**H**} **NMR** (**CD**₂**Cl**₂, [**ppm**]): $\delta = 25.6$ (2C, m, CH₂), 36.0 (2C, dtd, P-CH₂, ¹*J*_{CP} = 130 Hz, ²*J*_{CF} = 29 Hz, ⁴*J*_{CP} = 1 Hz), 128.6 (8C, dt, *m*-Ph, ³*J*_{CP} = 15 Hz, ⁴*J*_{CF} = 1 Hz), 131.7 (4C, m, *p*-Ph), 134.2 (8C, m, *o*-Ph), 136.4 (4C, dt, *i*-Ph, ¹*J*_{PF} = 171 Hz, ²*J*_{CF} = 28 Hz); ¹⁹**F**{¹**H**} **NMR** (**CD**₂**Cl**₂, [**ppm**]): $\delta = -38.9$ (4F, X₂X₂' part of AA'X₂X₂' spin system, ¹*J*_{AX} = ¹*J*_{A'X'} = 641 Hz, ⁶*J*_{A'X} = ⁶*J*_{AX'} = 0 Hz, ⁷*J*_{XX'} = 0 Hz); ³¹**P**{¹**H**} **NMR** (**CD**₂**Cl**₂, [**ppm**]): $\delta = -42.4$ (2P, AA' part of AA'X₂X₂' spin system, ⁵*J*_{AA'} = 0 Hz); **elemental analysis** for C₂₇H₂₈F₄P₂: calcd.: C 66.9, H 5.6, found: C 66.9, H 6.0; **DART MS**: m/z: 483.2 (calcd. for M-F⁺: 483.2).

 $^{31}P{^{1}H}$ NMR spectrum of compound **8d** (CD₂Cl₂).

 $^{19}F{^{1}H}$ NMR spectrum of compound **8d** (CD₂Cl₂).

2.10. Preparation of (CH₂)₅(Ph₂PF₂)₂ (8e)

¹**H NMR** (**CD**₂**Cl**₂, [**ppm**]): $\delta = 1.47$ (2H, p, CH₂, ³*J*_{HH} = 10 Hz), 1.76 (4H, m, CH₂), 2.41 (4H, s(br), P-CH₂), 7.45 (8H, m, *m*-Ph), 7.51 (4H, m, *p*-Ph), 7.95 (8H, m, *o*-Ph); ¹³**C**{¹**H**} **NMR** (**CD**₂**Cl**₂, [**ppm**]): $\delta = 24.0$ 1C, CH₂), 32.5 (2C, t, CH₂, ²*J*_{CP} = 21 Hz) 36.2 (2C, dt, P-CH₂, ¹*J*_{CP} = 128 Hz, ²*J*_{CF} = 24 Hz, ⁴*J*_{CP} = 1 Hz), 128.6 (8C, dt, *m*-Ph, ³*J*_{CP} = 16 Hz, ⁴*J*_{CF} = 2 Hz), 131.7 (4C, d, *p*-Ph, ⁴*J*_{CP} = 4 Hz), 134.2 (8C, dt, *o*-Ph, ²*J*_{CP} = 12 Hz, ³*J*_{CF} = 10 Hz), 136.5 (4C, dt, *i*-Ph, ¹*J*_{PF} = 172 Hz, ²*J*_{CF} = 25 Hz); ¹⁹**F**{¹**H**} **NMR** (**CD**₂**Cl**₂, [**ppm**]): $\delta = -38.9$ (4F, X₂X₂' part of AA'X₂X₂' spin system, ¹*J*_{AX} = ¹*J*_{A'X'} = 641 Hz, ⁷*J*_{A'X} = ⁷*J*_{AX'} = 0 Hz, ⁸*J*_{XX'} = 0 Hz); ³¹**P**{¹**H**} **NMR** (**CD**₂**Cl**₂, [**ppm**]): $\delta = -42.1$ (2P, AA' part of AA'X₂X₂' spin system, ⁵*J*_{AA'} = 0 Hz); **elemental analysis** for C₂₉H₃₀F₄P₂: calcd.:</sub> C 67.4, H 5.9, found: C 67.8, H 6.2; **DART MS**: m/z: 497.2 (calcd. for M-F⁺: 497.2).

 $^{31}P\{^{1}H\}$ NMR spectrum of compound $\boldsymbol{8e}$ (CD_2Cl_2).

 $^{19}\mathrm{F}\left\{ ^{1}\mathrm{H}\right\}$ NMR spectrum of compound $\boldsymbol{8e}$ (CD_2Cl_2).

2.11. Attempted stepwise oxidation of 1,1-bis(diphenylphosphino)methane

A solution of XeF₂ (15 mg, 0.089 mmol, 1.0 eq.) in CH₂Cl₂ (2 mL) was added dropwise to a solution of 1,1-bis(diphenylphosphino)methane (35 mg, 0.089 mmol, 1.0 eq.) in CH₂Cl₂ (2 mL) at -35 °C. The reaction mixture was stirred for one hour and all volatiles were removed *in vacuo* yielding a white solid. The residue was dissolved in CD₂Cl₂ and investigated by multi-nuclear magnetic resonance spectroscopy which indicated the presence of 1,1-bis(diphenylphosphino)methane, monophosphorane (CH₂)₁(Ph₂P)(Ph₂PF₂) and bisphosphorane **8a** a 1 : 2 : 1 ratio.

¹**H NMR** (**CD**₂**Cl**₂, [**ppm**]): δ 2.91 (t, (CH₂)₁(Ph₂P)₂, ²*J*_{HP} = 4 Hz), 3.19 (m, (CH₂)₁(Ph₂P)(Ph₂PF₂)), 3.63 (m, 8a), 7.37 (8H, m, *m*-Ph), 7.32-7.98 ((CH₂)₁(Ph₂P)₂), (CH₂)₁(Ph₂P)(Ph₂PF₂), 8a); ¹⁹**F**{¹**H**} **NMR** (**CD**₂**Cl**₂, [**ppm**]): δ -32.0 (dd, (CH₂)₁(Ph₂P)(Ph₂PF₂), ¹*J*_{FP} = 650 Hz, ³*J*_{FP} = 16 Hz), -27.5 (m, 8a); ³¹P{¹**H**} **NMR** (**CD**₂**Cl**₂, [**ppm**]): δ -46.8 (m, 8a), -44.8 (td, (CH₂)₁(Ph₂P)(Ph₂PF₂), ¹*J*_{PF} = 650 Hz, ²*J*_{PP} = 63 Hz), δ -24.40 (dt, (CH₂)₁(Ph₂P)(Ph₂PF₂), ²*J*_{PP} = 63 Hz, ³*J*_{PF} = 16 Hz), -22.81 (s, (CH₂)₁(Ph₂P)₂).

¹H of reaction mixture (alkyl region), CD₂Cl₂

 $^{19}\mathrm{F}$ of reaction mixture, CD_2Cl_2

 ^{31}P {1H} of reaction mixture, CD_2Cl_2

2.12. Preparation of [(CH₂)₁(Ph₂PF)₂][B(C₆F₅)₄]₂ (9a)

Freshly prepared $[Et_3Si][B(C_6F_5)_4]*2(C_7H_8)$ (411 mg, 0.42 mmol, Freshly prepared $[Et_3Si][B(C_6F_5)_4]*2(C_7H_8)$ (411 mg, 0.42 mmol, 1.8 eq.) was added to a solution of **8a** (104 mg, 0.23 mmol, 1.0 eq.) in toluene (5 mL). The formation of a brown oil was observed. The toluene (5 mL). The formation of a brown oil was observed. The supernatant was removed and the residue was washed with *n*-pentane

(3 x 3 mL). During this process, the oil turned into a white solid. The 9a residue was dissolved in CH_2Cl_2 (2 mL) and addition of *n*-pentane (3 mL) resulted in the precipitation of 9a. The supernatant was removed and the residue was dried in vacuo to afford 9a as a white solid (349 mg, 93% yield).

¹**H NMR (CD₂Cl₂, [ppm]):** *δ* = 4.78 (2H, m, CH₂), 7.73 (8H, m, *o*-Ph), 7.82 (8H, m, *m*-Ph), 8.15 (4H, t, p-Ph, ${}^{3}J_{\text{HH}} = 8$ Hz); ${}^{11}B{}^{1}H{}$ NMR (CD₂Cl₂, [ppm]): $\delta = -16.7$ (s); ${}^{13}C{}^{1}H{}$ NMR (CD₂Cl₂, [ppm]): $\delta = 25.8$ (1C, tt, CH₂, ${}^{1}J_{CP} = 60$ Hz, ${}^{2}J_{CF} = 16$ Hz), 111.8 (4C, dm, *i*-Ph, ${}^{1}J_{CP} = 115 \text{ Hz}$, 123.8 (8C, m(br), *i*-C₆F₅), 132.0 (8C, dm, *m*-Ph, ${}^{3}J_{CP} = 15 \text{ Hz}$), 134.9 (8C, dm, *o*-Ph, ${}^{2}J_{CP} = 14$ Hz), 136.2 (16C, dt, *p*-C₆F₅, ${}^{1}J_{CF} = 241$ Hz, ${}^{3}J_{FF} = 14$ Hz), 138.1 (8C, dt, *p*-C₆F₅, ${}^{1}J_{CF} = 238 \text{ Hz}, {}^{3}J_{FF} = 12 \text{ Hz}), 148.1 (16C, d(br), {}^{1}J_{CF} = 238 \text{ Hz}); {}^{19}F{}^{1}H} \text{ NMR (CD_{2}Cl_{2}, [ppm]):}$ $\delta = -167.1 (16F, m, m-C_6F_5), -163.1 (8F, m, p-C_6F_5), -133.0 (16F, m, o-C_6F_5), -126.3 (2F, XX')$ part of AA'XX' spin system, ${}^{1}J_{AX} = {}^{1}J_{A'X'} = 1024$ Hz, ${}^{3}J_{A'X} = {}^{3}J_{AX'} = 3$ Hz, ${}^{4}J_{XX'} = 12$ Hz); ³¹P{¹H} NMR (CD₂Cl₂, [ppm]): $\delta = 94.5$ (2P, AA' part of AA'XX' spin system, ⁵J_{AA'} = 20 Hz); elemental analysis for C₇₃H₂₂B₂F₄₂P₂: calcd.: C 49.2, H 1.2, found: C 49.2, H 1.1; ESI MS: m/z: 417.1161 (calcd. for [M-2F+HO₂]⁺: 417.1173)

 $^{31}P{^{1}H}$ NMR spectrum of compound **9a** (CD₂Cl₂, upwards) and simulated spectrum (downwards).

 $^{19}F{}^{1}H$ NMR spectrum of compound **9a** (CD₂Cl₂, upwards) and simulated spectrum (downwards).

2.13. Preparation of $[(CH_2)_2(Ph_2PF)_2][B(C_6F_5)_4]_2$ (9b)

 $2 [B(C_6F_5)_4]$

Freshly prepared $[Et_3Si][B(C_6F_5)_4]*2(C_7H_8)$ (283 mg, 0.29 mmol, $\begin{array}{c|c} F & F \\ \hline \oplus \\ Ph^{(1)}P \\ Ph^{(2)}P \\ Ph \end{array} \begin{array}{c} 1.7 \text{ eq.} \end{array} \text{ was added to a solution of } \textbf{9b} (81 \text{ mg, } 0.17 \text{ mmol, } 1.0 \text{ eq.}) \text{ in toluene (5 mL). The solution was stirred for 24 hours, the supernatant } \end{array}$ was removed, and the residue was washed with *n*-pentane (3 x 3 mL).

During this process, the oil turned into a white solid. The residue was 9b dissolved in CH_2Cl_2 (2 mL) and addition of *n*-pentane (3 mL) resulted in the precipitation of **9b**. The supernatant was removed and the residue was dried in vacuo to afford 9b as a white solid (242 mg, 93% yield).

¹**H NMR (CD₃CN, [ppm]):** δ = 3.69 (4H, m, CH₂), 7.85 (8H, m, *o*-Ph), 7.98 (8H, m, *m*-Ph), 8.07 (4H, t, p-Ph, ${}^{3}J_{CF} = 8$ Hz); ${}^{11}B{}^{1}H{}$ NMR (CD₃CN, [ppm]): $\delta = -16.7$ (s); ${}^{13}C{}^{1}H{}$ NMR (CD₃CN, [ppm]): $\delta = 18.5$ (2C, dd, CH₂, ${}^{1}J_{CP} = 60$ Hz, ${}^{2}J_{CF} = 11$ Hz), 115.5 (4C, dd, *i*-Ph, ${}^{1}J_{CP} = 103 \text{ Hz}, {}^{2}J_{CF} = 13 \text{ Hz}), 125.0 \text{ (8C, m(br), } i-C_{6}F_{5}), 131.7 \text{ (8C, d, } m-Ph, {}^{3}J_{CP} = 15 \text{ Hz}), 134.7$ (8C, dm, o-Ph, ${}^{2}J_{CP}$ = 13 Hz), 137.3 (16C, dm, C₆F₅, ${}^{1}J_{CF}$ = 241 Hz), 139.3 (8C, dm, C₆F₅, ${}^{1}J_{CF} = 244 \text{ Hz}$, 139.0 (4C, s, *p*-Ph), 149.1 (16C, d(br), C₆F₅ ${}^{1}J_{CF} = 235 \text{ Hz}$); ${}^{19}F{}^{1}H{}$ NMR (CD₃CN, [ppm]): $\delta = -168.3$ (16F, m, m-C₆F₅), -163.9 (8F, m, p-C₆F₅), -138.2 (2F, XX' part of AA'XX' spin system, ${}^{1}J_{AX} = {}^{1}J_{A'X'} = 1008$ Hz, ${}^{4}J_{A'X} = {}^{4}J_{AX'} = 0$ Hz, ${}^{5}J_{XX'} = 0$ Hz), -133.7 (16F, m, o-C₆F₅); ³¹P{¹H} NMR (CD₃CN, [ppm]): $\delta = 106.55$ (2P, AA' part of AA'XX' spin system, ${}^{3}J_{AA'}$ = 70 Hz); elemental analysis for C₇₃H₂₂B₂F₄₂P₂: calcd.: C 49.5, H 1.35, found: 49.8, H 1.9; **ESI MS**: m/z: 432.1 (calcd. for $[M-2F+H_2O_2]^+$: 432.1)

 $^{31}P{^{1}H}$ NMR spectrum of compound **9b** (CD₃CN, upwards) and simulated spectrum (downwards).

 $^{19}F{}^{1}H$ NMR spectrum of compound **9b** (CD₃CN, upwards) and simulated spectrum (downwards).

2.14. Preparation of $[(CH_2)_3(Ph_2PF)_2][B(C_6F_5)_4]_2$ (9c)

Freshly prepared $[Et_3Si][B(C_6F_5)_4]*2(C_7H_8)$ (176 mg, 0.18 mmol, 1.8 eq.) was added to a solution of **8c** (49 mg, 0.10 mmol, 1.0 eq.) in toluene (5 mL). The formation of a brown oil was observed. The supernatant was removed and the residue was washed with *n*-pentane (3 x 3 mL). During

9c this process, the oil turned into a white solid. The solid was dissolved in dichloromethane (2 mL) and addition of *n*-pentane (3 mL) resulted in the precipitation of **9c**. The supernatant was removed and the residue was dried *in vacuo* to afford **9c** as a white solid (154 mg, 95% yield).

¹H NMR (CD₂Cl₂, [ppm]): $\delta = 2.25$ (2H, m (br), CH₂), 3.20 (4H, br, P-CH₂), 7.78 (8H, br, *o*-Ph), 7.81 (8H, br, *m*-Ph), 8.11 (4H, br, *p*-Ph); ¹¹B{¹H} NMR (CD₂Cl₂, [ppm]): $\delta = -16.7$ (s); ¹³C{¹H} NMR (CD₂Cl₂, [ppm]): $\delta = 14.1$ (1C, br, CH₂), 25.9 (2C, d (br), CH₂, ¹*J*_{CP} = 63 Hz), 113.8 (4C, dd, *i*-Ph, ¹*J*_{CP} = 108 Hz, ²*J*_{CF} = 18 Hz), 123.8 (8C, m(br), *i*-C₆F₅), 131.8 (8C, m, *m*-Ph), 134.9 (8C, dm, *o*-Ph, ²*J*_{CP} = 14 Hz), 136.6 (16C, dm, C₆F₅, ¹*J*_{CF} = 249 Hz), 138.5 (8C, dm, C₆F₅, ¹*J*_{CF} = 246 Hz), 148.4 (16C, d(br), C₆F₅ ¹*J*_{CF} = 244 Hz); ¹⁹F{¹H} NMR (CD₂Cl₂, [ppm]): $\delta = -167.2$ (16F, m, *m*-C₆F₅), -163.1 (8F, m, *p*-C₆F₅), -138.9 (2F, XX' part of AA'XX' spin system, ¹*J*_{AX} = ¹*J*_{A'X'} = 1002 Hz, ⁵*J*_{A'X} = ⁵*J*_{AX'} = -1 Hz, ⁶*J*_{XX'} = 0 Hz), -133.0 (16F, m, *o*-C₆F₅); ³¹P{¹H} NMR (CD₂Cl₂, [ppm]): $\delta = 104.88$ (2P, AA' part of AA'XX' spin system, ⁴*J*_{AA'} = 7.5 Hz); elemental analysis for C₇₅H₂₆B₂F₄₂P₂: calcd.: C 49.8, H 1.45, found: C 49.6, H 1.8; ESI MS: m/z: 445.1 (calcd. for [M-2F+HO₂]⁺: 459.2).

 $^{31}P\{^{1}H\} \ NMR \ spectrum \ of \ compound \ \textbf{9c} \ (CD_2Cl_2, upwards) \ and \ simulated \ spectrum \ (downwards).$

 $^{19}F{}^{1}H$ NMR spectrum of compound **9c** (CD₂Cl₂, upwards) and simulated spectrum (downwards).

2.15. Preparation of $[(CH_2)_4(Ph_2PF)_2][B(C_6F_5)_4]_2$ (9d)

Freshly prepared $[Et_3Si][B(C_6F_5)_4]*2(C_7H_8)$ (254 mg, 0.26 mmol, 1.7 eq.) was added to a solution of **8d** (75 mg, 0.15 mmol, 1.0 eq.) in toluene (5 mL). The formation of a brown oil was observed. The supernatant was removed and the residue was washed with *n*-pentane (3 x 3 mL). During

9d this process, the oil turned into a white solid. The residue was dissolved in dichloromethane (2 mL) and addition of *n*-pentane (3 mL) resulted in the precipitation of **9d**. The supernatant was removed and the residue was dried *in vacuo* to afford **9d** as a white solid (201 mg, 85% yield).

¹H NMR (CD₃CN, [ppm]): $\delta = 1.90$ (4H, m, CH₂), 3.27 (4H, m, P-CH₂), 7.80 (8H, m, *o*-Ph), 7.92 (8H, m, *m*-Ph), 8.11 (4H, tm, *p*-Ph, ³*J*_{CH} = 8 Hz); ¹¹B{¹H} NMR (CD₂Cl₂, [ppm]): $\delta = -16.6$ (s); ¹³C{¹H} NMR (CD₃CN, [ppm]): $\delta = 22.0$ (2C, dd, CH₂, ²*J*_{CP} = 19 Hz, ³*J*_{CF} = 4 Hz), 24.3 (2C, ddm, P-CH₂, ¹*J*_{CP} = 61 Hz, ²*J*_{CF} = 12 Hz), 117.3 (4C, dd, *i*-Ph, ¹*J*_{CP} = 101 Hz, ²*J*_{CF} = 12 Hz), 124.9 (8C, m(br), *i*-C₆F₅), 131.4 (8C, d, *m*-Ph, ³*J*_{CP} = 14 Hz), 134.2 (8C, dd, *o*-Ph, ²*J*_{CP} = 12 Hz, ³*J*_{CF} = 1 Hz), 137.4 (16C, dm, C₆F₅, ¹*J*_{CF} = 244 Hz), 139.3 (8C, dm, C₆F₅, ¹*J*_{CF} = 244 Hz), 139.0 (4C, m, *p*-Ph), 149.2 (16C, d(br), C₆F₅), -139.3 (2F, XX' part of AA'XX' spin system, ¹*J*_{AX} = ¹*J*_{A'X'} = 999 Hz, ⁶*J*_{A'X} = ⁶*J*_{AX'} = 0 Hz, ⁷*J*_{XX'} = 0 Hz), -133.0 (16F, m, *o*-C₆F₅); ³¹P{¹H} NMR (CD₂Cl₂, [ppm]): δ = 106.13 (2P, AA' part of AA'XX' spin system, ⁵*J*_{AA'} = 0 Hz); elemental analysis for C₇₆H₂₈B₂F₄₂P₂: calcd.: C 50.1, H 1.55, found: C 50.2, H 1.54; ESI MS: m/z: 459.1640 (calcd. for [M-2F+HO₂]⁺: 459.1637).

 $^{31}P\{^{1}H\}$ NMR spectrum of compound 9d (CD_2Cl_2).

 $^{19}F\{^{1}H\}$ NMR spectrum of compound 9d (CD_2Cl_2).

2.16. Preparation of $[(CH_2)_5(Ph_2PF)_2][B(C_6F_5)_4]_2$ (9e)

 $2 [B(C_6F_5)_4]$ 9e

supernatant was removed and the residue was washed with *n*-pentane

(3 x 3 mL). During this process, the oil turned into a white solid. The residue was dissolved in dichloromethane (2 mL) and addition of *n*-pentane (3 mL) resulted in the precipitation of 9e. The supernatant was removed and the residue was dried in vacuo to afford 9e as a white solid (301 mg, 94% yield).

¹**H** NMR (CD₂Cl₂, [ppm]): $\delta = 1.73$ (6H, m (br), CH₂), 2.96 (4H, br, P-CH₂), 7.78 (16H, br, o-Ph, *m*-Ph), 8.03 (4H, br, *p*-Ph); ¹¹B{¹H} NMR (CD₂Cl₂, [ppm]): $\delta = -16.7$ (s); ¹³C{¹H} NMR (**CD₂Cl₂, [ppm]**): $\delta = 20.81$ (1C, br, CH₂), 25.1 (2C, d (br), CH₂, ${}^{1}J_{CP} = 69$ Hz), $\delta 31.38$ (2C, br, CH₂), 115.3 (4C, dm, *i*-Ph, ${}^{1}J_{CP}$ = 102 Hz), 124.3 (8C, m(br), *i*-C₆F₅), 131.5 (8C, d, *m*-Ph, ${}^{2}J_{CP}$ = 14 Hz), 132.8 (8C, d, o-Ph, ${}^{2}J_{CP} = 11$ Hz), 136.7 (16C, dm, C₆F₅, ${}^{1}J_{CF} = 240$ Hz), 138.6 (8C, dm, $C_{6}F_{5}$, ${}^{1}J_{CF} = 246$ Hz), 139.2 (8C, s, *p*-Ph), 148.5 (16C, d(br), $C_{6}F_{5}$, ${}^{1}J_{CF} = 238$ Hz); ${}^{19}F{}^{1}H{}$ NMR $(CD_2Cl_2, [ppm]): \delta = -167.3 (16F, m, m-C_6F_5), -163.3 (8F, m, p-C_6F_5), -139.7 (2F, XX') part of$ AA'XX' spin system, ${}^{1}J_{AX} = {}^{1}J_{A'X'} = 998$ Hz, ${}^{7}J_{A'X} = {}^{7}J_{AX'} = 0$ Hz, ${}^{8}J_{XX'} = 0$ Hz), -133.0 (16F, m, o-C₆F₅); ³¹P{¹H} NMR (CD₂Cl₂, [ppm]): $\delta = 107.0$ (2P, AA' part of AA'XX' spin system, ${}^{6}J_{AA'} = 0$ Hz); elemental analysis for $C_{77}H_{30}B_{2}F_{42}P_{2}$: calcd.: C 50.4, H 1.6, found: C 51.4, H 1.1; **ESI MS**: m/z: 473.2 (calcd. for [M–2F+HO₂]⁺: 473.2).

 $^{31}P\{^{1}H\}$ NMR spectrum of compound $\boldsymbol{9e}$ (CD_2Cl_2).

 $^{19}F\{^{1}H\}$ NMR spectrum of compound $\boldsymbol{9e}$ (CD_2Cl_2).

2.17. ³¹P{¹H} and ¹⁹F{¹H} NMR parameters of 8a-e and 9a-e

Fx

F_{X'}

	P F	Ph,,, Ph≁ PA ← F	P <mark>A'</mark> ▼Ph	Phine PA C P	⊕ ₄∵‴Ph ▲Ph	
		8a	-e	9а-е		
8	Spin system	m AA' X_2 X	Χ ₂ '			
	A $({}^{31}P)$	$X(^{19}F)$	${}^{1}J_{\mathrm{AX}} = {}^{1}J_{\mathrm{A'X'}}$	${}^{n+2}J_{AX} = {}^{n+2}J_{A'X}$	$^{\mathrm{n+1}}J_{\mathrm{AA}^{\circ}}$	$^{\mathrm{n+3}}J_{\mathrm{XX}^{\circ}}$
a	-46.8	-27.7	664	-18	26	-7
b	-43.6	-39.7	653	-6	115	-
c	-43.2	-39.0	644	-2	12	-
d	-42.4	-38.9	641	-	-	-
e	-42.1	-38.9	641	-	-	-
9	Spin system	m AA'XX	د			
	A $({}^{31}P)$	$X(^{19}F)$	${}^{1}J_{\mathrm{AX}} = {}^{1}J_{\mathrm{A'X'}}$	${}^{n}J_{AX} = {}^{n}J_{A^{c}X}$	${}^{\mathrm{n}}J_{\mathrm{AA}^{\mathrm{c}}}$	$^{\mathrm{n}}J_{\mathrm{XX}^{\circ}}$
a	94.5	-126.3	1024	3	20	12
b	106.4	-134.8	1008	-	70	-
c	104.9	-138.9	1002	-1	8	-
d	106.1	-139.4	999	-	-	-
e	107.0	-139.7	997	-	_	-

F_v

F_v

Note: Compounds **8a-c** and **9a-c** showed higher order resonances and their ³¹P and ¹⁹F NMR parameters (CD_2Cl_2) were obtained by means of full-lineshape iteration, ^[S7] spectra for **9b** were recorded in CD_3CN solution.

Discussion: The ³¹P NMR resonances of phosphoranes **8a-e** are shifted to higher field with increased length of the (oligo)methylene-linker. A similar trend is observed for the ¹⁹F NMR chemical shifts of bisphosphonium ions **9a-e**. For both substance classes, a decrease in the value of the ¹*J*_{PF} coupling constant occurs with an increase in (oligo)methylene-linker length. Commonly, highly electrophilic phosphonium ions show ¹*J*_{PF} coupling constants above 1000 Hz.^[S8] Thus, significant electrophilicity is anticipated for methylene-bridged compound **9a** (¹*J*_{AX} = 1024 Hz) and a stepwise decreases upon utilization of longer (oligo)methylene-linkers seems likely. Only methylene bridged compounds **8a/9a** reveal a significant coupling between fluorine atoms (⁴*J*_{XX}, = -7 Hz and 12 Hz) and observable P-P couplings occur up to propylene-linked compounds **8c/9c**. Remarkable large P-P coupling constants are observed for ethylene-

linked compounds **8b/9b** (${}^{3}J_{AA'}$ = 114 Hz and 70 Hz) which might indicate a weak through space interaction between both P moieties.^[S9]

2.18. Preparation of Ph₃PF₂^[S10]

XeF₂ (56 mg, 0.33 mmol, 1.1 eq.) was added portion wise to a solution of Ph-P triphenylphosphine (79 mg, 0.30 mmol, 1.0 eq.) in CH₂Cl₂ (10 mL). The reaction ture was stirred for 30 min at ambient temperature. Removal of all volatiles in vacuo gave Ph₃PF₂ as colourless solid (92 mg, 99%). Multi-nuclear magnetic resonance experiments were in accordance to literature reported values.^[S10]

¹H NMR (CD₂Cl₂, [ppm]): $\delta = 7.42 - 7.58$ (9H, m), 7.94 - 8.06 (6H, m); ¹⁹F{¹H} NMR (CD₂Cl₂, [ppm]): $\delta = -39.6$ (d, ${}^{1}J_{FP} = 660$ Hz); ${}^{31}P{}^{1}H$ NMR (CD₂Cl₂, [ppm]): $\delta = -54.9$ (t, ${}^{1}J_{\rm PF} = 660$ Hz).

2.19. Preparation of [Ph₃PF][B(C₆F₅)₄]^[S11]

Freshly prepared [Et₃Si][B(C₆F₅)₄]*2(C₇H₈) (139 mg, 0.14 mmol, 1.0 eq.) was colourless precipitate. The supernatant was removed and the residue was

washed with *n*-pentane (3 x 3 mL). Removal of all volatiles in vacuo gave $[Ph_3F][B(C_6F_5)_4]$ as a colourless, microcrystalline solid (119 mg, 87% yield). Multi-nuclear magnetic resonance experiments were in accordance to literature reported values of related AsF₆⁻ and BF₄⁻⁻salts.^[S11] ¹**H** NMR (CD₂Cl₂, [ppm]): $\delta = 7.72 - 7.88$ (12H, *m*-/*o*-Ph), 8.02 - 8.10 (3H, *p*-Ph); ¹¹B{¹H} **NMR** (**CD**₂**Cl**₂, [**ppm**]): $\delta = -16.7$ (s); ¹³**C**{¹**H**} **NMR** (**CD**₂**Cl**₂, [**ppm**]): $\delta = 131.3$ (6C, d, *o*-/*m*-Ph, *J*_{CP} = 14.4 Hz), 134.3 (6C, dd, *o*-/*m*-Ph, *J*_{CP} = 13.2 Hz, *J*_{CF} = 1.1 Hz), 139.0 (3C, dd, *p*-Ph, $J_{\text{CP/F}} = 2.7 \text{ Hz}, 1.8 \text{ Hz}), 116.5 \text{ (3C, dd, } i\text{-Ph, } {}^{1}J_{\text{CP}} = 109.0 \text{ Hz}, {}^{2}J_{\text{CF}} = 14.6 \text{ Hz}), 131.3 \text{ (6C, d, } o\text{-/m-}$ Ph, $J_{CP} = 14.6$ Hz), 134.3 (6C, dd, o - /m-Ph, $J_{CP} = 13.1$ Hz, $J_{CF} = 1.3$ Hz), 136.7 (8C, d(br), C₆F₅, ${}^{1}J_{CF} = 245 \text{ Hz}$), 138.6 (4C, d(br), C₆F₅, ${}^{1}J_{CF} = 247 \text{ Hz}$), 139.0 (3C, dd, *p*-Ph, ${}^{4}J_{CP} = 2.8 \text{ Hz}$, ${}^{5}J_{CF} = 1.7 \text{ Hz}$, 148.5 (8C, d(br), C₆F₅, ${}^{1}J_{CF} = 241 \text{ Hz}$); ${}^{19}F{}^{1}H$ NMR (CD₂Cl₂, [ppm]): $\delta = -167.6 (8F, m, m-C_6F_5), -163.7 (4F, t, p-C_6F_5, {}^{3}J_{FF} = 20 \text{ Hz}), -133.2 (8F, m, o-C_6F_5), -128.1$ (d, ${}^{1}J_{\text{FP}} = 997 \text{ Hz}$); ${}^{31}P{}^{1}H$ NMR (CD₂Cl₂, [ppm]): $\delta = -94.8 \text{ (d, } {}^{1}J_{\text{FF}} = 997 \text{ Hz}$).

2.20. Reaction of 5, [Ph₃PF][B(C₆F₅)₄], and 9a-e with Et₃PO (Gutmann-Beckett test)

Et₃PO (4 mg, 0.03 mmol, 1.0 eq.) was added to solutions of **5** (57 mg, 0.03 mmol, 1.0 eq.), [Ph₃PF][B(C₆F₅)₄], (58 mg, 0.06 mmol, 1.0 eq.) or **9a-e** (**a**: 53 mg, **b**: 54 mg, **c**: 54 mg, **d**: 55 mg, **e**: 55 mg, 0.03 mmol, 1.0 eq.) in CD₂Cl₂ (1 mL). The reaction mixtures were monitored by means of ³¹P and ¹⁹F NMR spectroscopy for 20 h at ambient temperature. The formation of $\mathbf{6}^{[S8b]}$ and Ph₃PO^[S12] was confirmed by comparison with literature known NMR data.

5 + Et₃PO (1 h):

¹⁹**F**{¹**H**} **NMR** (**CD**₂**Cl**₂, [**ppm**]): $\delta = -117.2$ (d, **5**, ${}^{1}J_{FP} = 991$ Hz); ³¹**P**{¹**H**} **NMR** (**CD**₂**Cl**₂, [**ppm**]): $\delta = 60.5$ (s(br), Et₃PO), 96.7 (dd, **5**, ${}^{1}J_{PF} = 991$ Hz, ${}^{5}J_{PF} = 13$ Hz). **5** + Et₃PO (20 h):

¹⁹**F NMR** (**CD**₂**Cl**₂, [**ppm**]): $\delta = -158.5$ (dsept., **6**, ¹*J*_{FP} = 964 Hz, ³*J*_{FH} = 12 Hz), -24.5 (d(br), **7**, ¹*J*_{FP} = 697.0 Hz); ³¹**P**{¹**H**} **NMR** (**CD**₂**Cl**₂, [**ppm**]): $\delta = -34.5$ (dd, **7**, ¹*J*_{FP} = 697 Hz, ²*J*_{PP} = 23 Hz), 47.1 (dd, **7**, ²*J*_{PP} = 23 Hz, ³*J*_{PF} = 2 Hz), 147.9 (d, **6**, ¹*J*_{PF} = 964 Hz).

 $[Ph_3PF][B(C_6F_5)_4] + Et_3PO(1 h):$

¹⁹**F**{¹**H**} **NMR** (**CD**₂**Cl**₂, [**ppm**]): $\delta = -128.1$ (d, [**Ph**₃**PF**]⁺, ¹*J*_{FP} = 998 Hz); ³¹**P**{¹**H**} **NMR** (**CD**₂**Cl**₂, [**ppm**]): $\delta = 51.1$ (s(br), Et₃**PO**), 94.8 (d, [**Ph**₃**PF**]⁺, ¹*J*_{PF} = 998 Hz).

 $[Ph_3PF][B(C_6F_5)_4] + Et_3PO (20 h):$

¹⁹**F NMR** (**CD**₂**Cl**₂, [**ppm**]): $\delta = -158.5$ (dsept., **6**, ${}^{1}J_{FP} = 988$ Hz, ${}^{3}J_{FH} = 12$ Hz), -128.1 (d, [Ph₃PF]⁺, ${}^{1}J_{FP} = 998$ Hz); ³¹P{¹H} **NMR** (**CD**₂**Cl**₂, [**ppm**]): $\delta = -28.0$ (s, Ph₃PO), 94.8 (d, [Ph₃PF]⁺, ${}^{1}J_{PF} = 998$ Hz), 147.4 (d, **6**, ${}^{1}J_{PF} = 988$ Hz).

9a + Et₃PO (1 h): ¹⁹F{¹H} NMR (CD₂Cl₂, [ppm]): $\delta = -99.4$ (dm, 11, ${}^{1}J_{FP} = 1014$ Hz); ³¹P{¹H} NMR (CD₂Cl₂, [ppm]): $\delta = 74.1$ (s(br), 10), 81.2 (dm), 11, ${}^{1}J_{PF} = 1014$ Hz).

 $^{31}P\{^{1}H\}$ NMR spectrum of the reaction of 9a and Et_3PO (CD_2Cl_2).

Note:

The deprotonation of **9a** was independently investigated using *t*-Bu₃P as a base. Quantitative transformation to $[t-Bu_3PH]^+$ and **11** was observed according to ¹H, ¹⁹F{¹H} and ³¹P NMR spectroscopy.

9a + *t*-Bu₃P: ¹⁹F NMR (CD₂Cl₂, [ppm]): $\delta = -99.6$ (ddm, **11**, ${}^{1}J_{FP} = 1013$ Hz, ${}^{3}J_{FH} = 5.6$ Hz); ³¹P{¹H} NMR (CD₂Cl₂, [ppm]): $\delta = 81.5$ (dm, **11**, ${}^{1}J_{PF} = 1013$ Hz), 61.0 (s(br), [*t*-Bu₃PH]⁺) ³¹P NMR (CD₂Cl₂, [ppm]): $\delta = 81.5$ (d(br), **11**, ${}^{1}J_{PF} = 1013$ Hz), 61.0 (dm, ${}^{1}J_{PH} = 426$ Hz, [*t*-Bu₃PH]⁺) **9b** + Et₃PO (1 h):

¹⁹**F**{¹**H**} **NMR** (**CD**₂**Cl**₂, [**ppm**]): $\delta = -159.1$ (d(br), **6**, ${}^{1}J_{FP} = 963$ Hz), -44.8 (d(br), **12b**, ${}^{1}J_{FP} = 720$ Hz); ³¹**P**{¹**H**} **NMR** (**CD**₂**Cl**₂, [**ppm**]): $\delta = 2.2$ (dd, **12b**, ${}^{1}J_{FP} = 720$ Hz, ${}^{3}J_{PP} = 7$ Hz), 53.1 (dd, **12b**, ${}^{3}J_{PP} = 7$ Hz, ${}^{4}J_{PF} = 2$ Hz), 147.4 (d, **6**, ${}^{1}J_{PF} = 963$ Hz).

³¹P{¹H} NMR spectrum of the reaction of **9b** and Et₃PO (CD₂Cl₂). * indicates some amounts of $(CH_2)_2(Ph_2PO)_2$.^[S14]

9c + Et₃PO (1 h):

¹⁹F{¹H} NMR (CD₂Cl₂, [ppm]): $\delta = -159.2$ (d, 6, ${}^{1}J_{FP} = 967$ Hz), -86.4 (d, 12c, ${}^{1}J_{FP} = 823$ Hz); ³¹P{¹H} NMR (CD₂Cl₂, [ppm]): $\delta = 44.05$ (d, 12c, ${}^{4}J_{PP} = 12$ Hz), 45.2 (dd, 12c, ${}^{1}J_{PF} = 823$ Hz, ⁴ $J_{PP} = 12$ Hz), 148.0 (d, 6, ${}^{1}J_{PF} = 967$ Hz).

 ${}^{31}P{}^{1}H$ NMR spectrum of the reaction of **9c** and Et₃PO (CD₂Cl₂).

9d + Et₃PO (1 h):

¹⁹**F**{¹**H**} **NMR** (**CD**₂**Cl**₂, [**ppm**]): $\delta = -139.6$ (dt, **9d**, ${}^{1}J_{\text{FP}} = 994$ Hz), ³¹**P**{¹**H**} **NMR** (**CD**₂**Cl**₂, [**ppm**]): $\delta = 58.0$ (s(br), Et₃PO), 96.7 (dd, **9d**, ${}^{1}J_{\text{PF}} = 994$ Hz).

 $9d + Et_3PO (20 h)$:

¹⁹**F**{¹**H**} **NMR** (**CD**₂**Cl**₂, [**ppm**]): $\delta = -159.2$ (d(br), **6**, ${}^{1}J_{FP} = 969$ Hz), -136.2 (dt, **12d**, ${}^{1}J_{FP} = 990$ Hz), 31 **P**{¹**H**} **NMR** (**CD**₂**Cl**₂, [**ppm**]): $\delta = 33.1$ (s, **12d**), 109.6 (d, **12d**, ${}^{1}J_{PF} = 990$ Hz), 149.8 (d, **6**, ${}^{1}J_{PF} = 969$ Hz).

 $^{31}P{^{1}H}$ NMR spectrum of the reaction of **9d** and Et₃PO (CD₂Cl₂). * indicates some amounts of (CH₂)₄(Ph₂PO)₂.

9e + Et₃PO (1 h):

¹⁹**F**{¹**H**} **NMR** (**CD**₂**Cl**₂, [**ppm**]): $\delta = -139.6$ (d, **9e**, ${}^{1}J_{FP} = 991$ Hz), -139.6 (d, **12e**, ${}^{1}J_{FP} = 991$ Hz); ³¹**P**{¹**H**} **NMR** (**CD**₂**Cl**₂, [**ppm**]): $\delta = 31.8$ (d, **12e**), 52.8 (s(br), Et₃PO), 108.0 (d, **12e**, ${}^{1}J_{PF} = 991$ Hz), 107.2 (d, **9e**, ${}^{1}J_{PF} = 991$ Hz).

³¹P{¹H} NMR spectrum of the reaction of **9e** and Et₃PO (CD₂Cl₂). * indicates some amounts of $(CH_2)_5(Ph_2PO)_2$ and **8e**

2.21. Friedel-Crafts dimerization of 1,1-diphenylethylene with 5, [Ph₃PF][B(C₆F₅)₄] and 9a-e as catalyst

Catalyst **5** (8 mg, 2 mol%), $[Ph_3PF][B(C_6F_5)_4]$ (8 mg, 4 mol%) or **9a-e** (6mg, 2 mol%) were added to a solution of 1,1-diphenylethylene (32 mg, 0.2 mmol) in CD₂Cl₂ (0.7 mL) at ambient temperature. The reaction mixture was left at ambient temperature for 24 h and investigated by

NMR spectroscopy. For catalyst **5**, all volatiles were removed *in vacuo* and the remaining residue was suspended in *n*-pentane. The mixture was filtered through a celite plug and the solvent was removed *in vacuo* giving 1-methyl-1,3,3-triphenyl-2,3-dihydro-1H-indene as a colourless solid (34 mg, 94% yield).^[S8b]

¹**H** NMR (C₆D₆, [ppm]): δ = 1.48 (3H, s, CH₃), 3.02 (1H, d, CH₂, ³*J*_{HH} = 13.5 Hz), 3.42 (1H, d, CH₂, ³*J*_{HH} = 13.5 Hz), 6.90 - 7.23 (19H, m); ¹³C{¹H} (C₆D₆, [ppm]): δ = 29.1 (1C, s, CH₃), 51.5 (1C, s, CH₂), 61.4 (1C, s, CPh), 61.8 (1C, s, CPh), 125.4 (1C, s, Ph), 125.9 (1C, s, Ph), 126.0 (1C, s, Ph), 126.3 (1C, s, Ph), 127.3 (1C, s, Ph), 127.3 (2C, s, Ph), 127.9 (2C, s, Ph), 128.0 (2C, s, Ph), 128.3 (2C, s, Ph), 128.3 (2C, s, Ph), 129.1 (2C, s, Ph), 129.3 (2C, s, Ph), 147.9 (1C, s, Ph), 149.1 (1C, s, Ph), 149.7 (1C, s, Ph), 151.0 (1C, s, Ph).

2.22 Dehydrocoupling of Et₃SiH and Phenol with 5, [Ph₃PF][B(C₆F₅)₄] and 9a-e as catalysts.

PhOH +
$$Et_3SiH$$
 $< cat > \\ CD_2Cl_2 \\ 1 h/24 h \\ -H_2$
 PhOSiEt_3

 5
 (2 mol%): 89% conversion (80% isolated yield)

 [Ph_3PF]⁺
 (4 mol%): < 1% conversion

 9a
 (2 mol%): 99% conversion

 9b
 (2 mol%): 85% conversion

 9c
 (2 mol%): 30% conversion

 9d
 (2 mol%): 19% conversion

 9e
 (2 mol%): <1% conversion

Catalyst **5** (4 mg, 2 mol%), **9a-e** (6 mg, 2 mol%), or $[Ph_3PF][B(C_6F_5)_4]$ (4 mg, 4 mol%) were added to a solution of Et₃SiH (17 µL, 0.10 mmol) and PhOH (9 mg, 0.10 mmol) in CD₂Cl₂ (0.7 mL) at ambient temperature. The reaction mixture was left at ambient temperature for one hour (**5**, **9a**) or 24 h ($[Ph_3PF]^+$) or heated to 50 °C for 24 h for **9b-e** and investigated by NMR spectroscopy. For catalyst **5**, all volatiles were removed *in vacuo* and the remaining residue was suspended in *n*-pentane. The mixture was filtered through a celite plug and the solvent was removed *in vacuo* giving triethyl(phenoxy)silane as a colourless oil (17 mg, 80% yield).^[S14]

¹**H** NMR (C₆D₆, [ppm]): $\delta = 0.66$ (6H, quart., CH₂, ³J_{HH} = 7.8 Hz), 0.96 (9H, t, CH₃, ³J_{HH} = 7.8 Hz), 6.85 (1H, t, *p*-Ph, ³J_{HH} = 7.1 Hz), 6.89 - 6.94 (2H, m, *o*-/*m*-Ph), 7.07 - 7.15 (2H, m, *o*-/*m*-Ph); ¹³C{¹H} (C₆D₆, [ppm]): $\delta = 5.4$ (3C, s, CH₂), 6.9 (3C, s, CH₃), 120.3 (2C, s, *o*-/*m*-Ph), 121.7 (1C, s, *p*-Ph), 129.8 (2C, s, *o*-/*m*-Ph), 156.2 (1C, s, *i*-Ph).

2.23. Hydrosilylation of 1,1-diphenylethylene with Et_3SiH using 5, $[Ph_3PF][B(C_6F_5)_4]$ or 9a-e as catalysts

Catalyst **5** (4 mg, 2 mol%), $[Ph_3PF][B(C_6F_5)_4]$ (4 mg, 4 mol%) or **9a-e** (6 mg, 2 mol%) were added to a solution of Et₃SiH (18 µL, 0.10 mmol) and 1,1-diphenylethylene (18 mg, 0.10 mmol) in CD₂Cl₂ (0.7 mL). The reaction mixtures were heated to 50 °C for 24 h and investigated by NMR spectroscopy. For catalyst **5**, all volatiles were removed *in vacuo* and the remaining residue was suspended in *n*-pentane. The mixture was filtered through a celite plug and the solvent was removed *in vacuo* giving (2,2-diphenylethyl)triethylsilane as a colourless oil (20 mg, 67% vield).^[16]

¹**H** NMR (C₆D₆, [ppm]): $\delta = 0.33$ (6H, quart., SiCH₂CH₃, ³J_{HH} = 7.8 Hz), 0.83 (9H, t, SiCH₂CH₃, ³J_{HH} = 7.9 Hz), 1.34 (2H, s, CH₂, ³J_{HH} = 7.9 Hz), 4.03 (1H, t, CH, ³J_{HH} = 7.9 Hz), 6.94 - 7.00 (2H, m, *p*-Ph), 7.05 - 7.10 (4H, m, *m*-Ph), 7.17 - 7.21 (4H, m, *m*-Ph); ¹³C{¹H} (C₆D₆, [ppm]): $\delta = 3.9$ (3C, s, SiCH₂CH₃), 7.7 (3C, s, SiCH₂CH₃), 19.4 (1C, s, CH₂), 47.6 (1C, s, CH), 126.3 (2C, s, *p*-Ph), 127.9 (4C, s, *m*-/*o*-Ph), 128.7 (4C, s, *m*-/*o*-Ph), 147.8 (2C, s, *i*-Ph).

2.24. Hydrodeoxygenation of benzophenone in the presence of Et_3SiH using 5, $[Ph_3PF][B(C_6F_5)_4]$ and 9a-e as catalysts

Catalyst **5** (4 mg, 2 mol%), $[Ph_3PF][B(C_6F_5)_4]$ (4 mg, 4 mol%) or **9a-e** (6 mg, 2 mol%) were added to a solution of Et₃SiH (18 µL, 0.10 mmol) and benzophenone (18 mg, 0.10 mmol) in CD₂Cl₂ (0.7 mL). The reaction mixtures were left at ambient temperature for one hour or heated to 50 °C for 36 h for **9c-e** and investigated by NMR spectroscopy. For catalyst **5**, all volatiles were removed *in vacuo* and the remaining residue was suspended in *n*-pentane. The mixture was purified by flash chromatography using a silica column (3 cm). The obtained *n*-pentane fraction contained mainly Et₃SiOSiEt₃ and the product was obtained using Et₂O as an eluent. Removal of all volatiles *in vacuo* gave diphenylmethane as colourless oil (10 mg, 59% yield).

¹**H** NMR (C₆D₆ [ppm]): δ = 3.74 (2H, s, PhCH₂), 7.01 - 7.07 (6H, m, Ph), 7.09 - 7.14 (4H, m, Ph); ¹³C{¹H} (C₆D₆, [ppm]): δ = 42.2 (1C, s, CH₂), 126.3 (1C, s, *p*-Ph), 128.7 (2C, s, *o*-/*m*-Ph), 129.3 (2C, s, *o*-/*m*-Ph), 141.5 (1C, s, *i*-Ph).

2.25. Hydrodefluorination of fluoropentane in the presence of Et_3SiH using 5, [Ph₃PF][B(C₆F₅)₄] and 9a-e as catalysts

Catalyst **5** (4 mg, 2 mol%), $[Ph_3PF][B(C_6F_5)_4]$ (4 mg, 4 mol%) or **9a-e** (6 mg, 2 mol%) were added to a solution of Et₃SiH (21 µL, 0.12 mmol) and fluoropentane (12 µL, 0.10 mmol) in CD₂Cl₂ (0.7 mL). The reaction mixtures were heated to 50 °C for 24 h and investigated by NMR spectroscopy.^[S15] Conversion was determined by means of ¹⁹F NMR spectroscopy (Consumption of fluoropentane and formation of Et₃SiF).

3. Crystallographic Details

	2	3	4 *(CH ₂ Cl ₂)
formula	$C_{34}H_{26}BF_4P_2$	$C_{58}H_{26}BF_{21}P_2$	$C_{59.25}H_{28.50}BCl_{2.50}F_{23}P_2$
$M_r [g mol^{-1}]$	572.49	1194.54	1338.70
colour, habit	colourless, block	colourless, block	colourless, block
crystal system	monoclinic	monoclinic	monoclinic
Space group	$P2_1/n$	$P2_1$	$P2_1/c$
a [Å]	9.206(1)	8.426(1)	18.800(1)
b [Å]	16.745(1)	21.123(3)	17.137(1)
c [Å]	17.632(1)	13.804(2)	17.800(1)
α[°]	90	90	90
β [°]	101.286(3)	95.06(1)	102.564(2)
γ[°]	90	90	90
$V [Å^3]$	2655.6(3)	2447(1)	5597.6(5)
Z	4	2	4
T [K]	149(2)	150(2)	149(2)
Crystal size [mm]	0.20x0.20x0.20	0.20x0.10x0.10	0.40x0.20x0.20
$\rho_{\rm c} [\rm g \ cm^{-3}]$	1.427	1.621	1.589
F(000)	1184	1196	2674
θ_{\min} [°]	1.69	1.48	1.63
θ_{\max} [°]	27.55	27.46	27.55
	$-11 \le h \le 11$	$-10 \le h \le 10$	$-24 \leq h \leq 24$
Index range	$-20 \le k \le 21$	$-27 \leq k \leq 27$	$-20 \leq k \leq 22$
	$-22 \le l \le 22$	$-17 \le l \le 17$	$-22 \le l \le 23$
μ [mm ⁻¹]	0.215	0.212	0.315
absorption correction	SADABS	SADABS	SADABS
reflections collected	24302	41120	50339
reflections unique	6136	10858	12911
R _{int}	0.079	0.0787	0.0441
reflection obs.	3558	7111	8847
[F>3σ(F)]	5550	/111	0042
residual density	0.663,	0.264,	0.419,
[e Å ⁻³]	-0.287	-0.266	-0.357
parameters	361	739	757
GOOF	1.011	0.983	0.989
$R_1 [I > 2\sigma(I)]$	0.0602	0.0480	0.0458
wR ₂ (all data)	0.1615	0.0852	0.1170
CCDC	1041558	1041560	1041561

Table 3.1. Crystallographic data and details of the structure refinements of compounds 2, 3 and 4*(CH₂Cl₂)

	8 a
formula	$C_{25}H_{22}F_4P_2$
$M_r [g mol^{-1}]$	460.37
color, habit	colourless, block
crystal system	monoclinic
Space group	<i>C</i> 2
a [Å]	21.097(2)
b [Å]	8.388(1)
c [Å]	6.357(1)
α[°]	90
β [°]	102.383(3)
γ[°]	90
V [Å ³]	1098.7(2)
Z	2
T [K]	150(2)
Crystal size [mm]	0.20x0.20x0.10
$ ho_{ m c} [m gcm^{-3}]$	1.391
F(000)	476
θ _{min} [°]	1.98
θ _{max} [°]	27.51
	$-27 \leq h \leq 27$
Index range	$-10 \le k \le 10$
- 1-	$-8 \le l \le 8$
μ [mm ⁻¹]	0.242
absorption correction	SADABS
reflections collected	8224
reflections unique	2417
R _{int}	0.0247
reflection obs.	2243
[F>3o(F)]	22.13
residual density	0.275,
[e Å ⁻³]	-0.182
parameters	141
GOOF	1.048
$R_1 [I > 2\sigma(I)]$	0.0277
wR ₂ (all data)	0.0660
CCDC	1041559

 Table 3.2. Crystallographic data and details of the structure refinement of compound 8a.

4. References

- [S1] D. F. Shriver, M. A. Drezdzon, *The manipulation of air sensitive compounds*, 1986, Wiley VCH, New York, USA.
- [S2] J. B. Lambert, S. Zhang, S. M. Ciro, Organometallics 1994, 2430.
- [S3] a) SAINT 7.23A, Bruker AXS, Inc.: Madison, Wisconsin, 2006; b) G. M. Sheldrick, SADABS, Bruker AXS, Inc.: Madison, Wisconsin, 2004.
- [S4] G. M. Sheldrick, SHELXL-97, Program for crystal structure determination, University of Göttingen, Germany, 1997.
- [S5] R. Appel, I. Ruppert, Chem. Ber. 1975, 108, 919.
- [S6] I. Ruppert, V. Bastian, Angew. Chem. 1977, 89, 763; Angew. Chem. Int. Ed. Engl. 1977, 16, 718.
- [S7] P. H. M. Budzelaar, gNMR for Windows (5.0.6.0) NMR Simulation Program, IvorySoft 2006.
- [S8] (a) C. B. Caputo, L. J. Hounjet, R. Dobrovetsky, D. W. Stephan, *Science* 2013, 341, 1374;
 (b) M. Holthausen, M. Mehta, D. W. Stephan, *Angew. Chem. Int. Ed.* 2014, 53, 6538.
- [S9] (a) K.-O. Feldmann and J. J. Weigand, J. Am. Chem. Soc. 2012, 134, 15443; (b) M. H.
 Holthausen, S. K. Surmiak, P. Jerabek, G. Frenking and J. J. Weigand, Angew. Chem. Int.
 Ed. 2013, 52, 11078.
- [S10] G. S. Reddy, R. Schmutzler, Z. Naturforsch. B. 1970, 25, 1199.
- [S11] F. Seel, H.-J. Bassler, Z. Anorg. Allg. Chem. 1975, 418, 263.
- [S12] G. E. Maciel, R. V. James, Inorg. Chem. 1964, 3, 1650.
- [S13] W. Peng, J. M. Shreeve, J. Fluorine Chem. 2005, 126, 1054.
- [S14] M. Pèrez, C. B. Caputo, R. Dobrovetsky, D. W. Stephan, Proc. Natl. Acad. Sci. USA 2014, 111, 10917.
- [S15] M. Pèrez, L. J. Hounjet, C. B. Caputo, R. Dobrovetsky, D. W. Stephan, J. Am. Chem. Soc. 2013, 135, 18308.