Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2015

Johnston, et al.

Supporting Information II

Enantioselective Synthesis of D-a-Amino Amides from Aliphatic Aldehydes

Kenneth E. Schwieter and Jeffrey N. Johnston*

Department of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37235

SI-II-X

Figure 1. ¹ H NMR (400 MHz, CDCl ₃) of S1.	4
Figure 2. ¹³ C NMR (100 MHz, CDCl ₃) of S1.	5
Figure 3. ¹ H NMR (400 MHz, CDCl ₃) of S2.	6
Figure 4. ¹³ C NMR (100 MHz, CDCl ₃) of S2.	7
Figure 5. ¹ H NMR (400 MHz, CDCl ₃) of S3.	8
Figure 6. ¹³ C NMR (100 MHz, CDCl ₃) of S3.	9
Figure 7. ¹ H NMR (400 MHz, CDCl ₃) of S4.	10
Figure 8. ¹³ C NMR (100 MHz, CDCl ₃) of S4.	11
Figure 9. ¹ H NMR (400 MHz, CDCl ₃) of S5.	12
Figure 10. ¹³ C NMR (100 MHz, CDCl ₃) of S5.	13
Figure 11. ¹ H NMR (400 MHz, CDCl ₃) of S6	14
Figure 12. ¹³ C NMR (100 MHz, CDCl ₃) of S6.	15
Figure 13. ¹ H NMR (400 MHz, CDCl ₃) of S7	16
Figure 14. ¹³ C NMR (100 MHz, CDCl ₃) of S7.	17
Figure 15. ¹ H NMR (600 MHz, CDCl ₃) of 4	18
Figure 16. ¹³ C NMR (150 MHz, CDCl ₃) of 4	19
Figure 17. ¹ H NMR (600 MHz, CDCl ₃) of 7	20
Figure 18. ¹³ C NMR (150 MHz, CDCl ₃) of 7	21
Figure 19. ¹ H NMR (600 MHz, CDCl ₃) of 8	22
Figure 20. ¹³ C NMR (150 MHz, CDCl ₃) of 8	23
Figure 21. ¹ H NMR (600 MHz, CDCl ₃) of 9	24
Figure 22. ¹³ C NMR (150 MHz, CDCl ₃) of 9	25
Figure 23. ¹ H NMR (600 MHz, CDCl ₃) of 10	26
Figure 24. ¹³ C NMR (150 MHz, CDCl ₃) of 10	27
Figure 25. ¹ H NMR (600 MHz, CDCl ₃) of 11	28
Figure 26. ¹³ C NMR (150 MHz, CDCl ₃) of 11	29
Figure 27. ¹ H NMR (600 MHz, CDCl ₃) of 12	30
Figure 28. ¹³ C NMR (150 MHz, CDCl ₃) of 12	31
Figure 29. ¹ H NMR (600 MHz, CDCl ₃) of 13	32
Figure 30. ¹³ C NMR (150 MHz, CDCl ₃) of 13	33
Figure 31. ¹ H NMR (600 MHz, CDCl ₃) of 14	34
Figure 32. ¹³ C NMR (150 MHz, CDCl ₃) of 14	35
Figure 33. ¹ H NMR (600 MHz, CDCl ₃) of 15	36
Figure 34. ¹³ C NMR (150 MHz, CDCl ₃) of 15	37
Figure 35. ¹ H NMR (600 MHz, CDCl ₃) of 16	38
Figure 36. ¹³ C NMR (150 MHz, CDCl ₃) of 16	39
Figure 37. ¹ H NMR (600 MHz, CDCl ₃) of 17	40
Figure 38. ¹³ C NMR (150 MHz, CDCl ₃) of 17	41
Figure 39. ¹ H NMR (600 MHz, CDCl ₃) of 18	42

Johnston, et al.	Supporting Information II
Figure 40. ¹³ C NMR (150 MHz, CDCl ₃) of 18	
Figure 41. ¹ H NMR (600 MHz, $CDCl_3$) of 19	
Figure 42. ¹³ C NMR (150 MHz, CDCl ₃) of 19	
Figure 43. ¹ H NMR (600 MHz, CDCl ₃) of 20	
Figure 44. ¹³ C NMR (150 MHz, CDCl ₃) of 20	
Figure 45. ¹ H NMR (600 MHz, CDCl ₃) of 21	
Figure 46. 13 C NMR (150 MHz, CDCl ₃) of 21	
Figure 47. 1 H NMR (600 MHz, CDCl ₃) of 22	
Figure 48. ¹³ C NMR (150 MHz, CDCl ₃) of 22	
Figure 49. ¹ H NMR (600 MHz, CDCl ₃) of 23	
Figure 50. 13 C NMR (150 MHz, CDCl ₃) of 23	53
Figure 51. ¹ H NMR (600 MHz, CDCl ₃) of 24	54
Figure 52. ¹³ C NMR (150 MHz, CDCl ₃) of 24	
Figure 53. ¹ H NMR (600 MHz, CDCl ₃) of 25	
Figure 54. 15 C NMR (150 MHz, CDCl ₃) of 25	
Figure 55. ${}^{1}_{12}$ H NMR (600 MHz, CDCl ₃) of 26	
Figure 56. 15 C NMR (150 MHz, CDCl ₃) of 26	
Figure 57. ¹ H NMR (600 MHz, CDCl ₃) of 27	60
Figure 58. ¹³ C NMR (150 MHz, $CDCl_3$) of 27	61
Figure 59. ¹ H NMR (600 MHz, CDCl ₃) of 28	62
Figure 60. ¹³ C NMR (150 MHz, CDCl ₃) of 28	63
Figure 61. ¹ H NMR (600 MHz, CDCl ₃) of 29	
Figure 62. ¹³ C NMR (150 MHz, CDCl ₃) of 29	
Figure 63. ¹ H NMR (600 MHz, CDCl ₃) of 30	
Figure 64. ¹⁵ C NMR (150 MHz, CDCl ₃) of 30	
Figure 65. ¹ H NMR (600 MHz, CDCl ₃) of 31	
Figure 66. ¹⁵ C NMR (150 MHz, CDCl ₃) of 31	
Figure 67. ¹ H NMR (600 MHz, CDCl ₃) of 32.	
Figure 68. ¹¹ C NMR (150 MHz, CDCl ₃) of 32	
Figure 69. ¹ H NMR (600 MHz, CDCl ₃) of 33	
Figure /0. C NMR (150 MHz, CDCl ₃) of 33	
Figure /1. H NMR (600 MHz, CDCl ₃) of 34	
Figure 72. C NMR (150 MHz, CDCl ₃) of 54	
Figure 73. H NMR (000 MHZ, CDCl ₃) of 55	
Figure 74. C NMR (150 MHz, CDCl ₃) of 55	
Figure 75. H INMR (000 MHZ, CDCl ₃) of 50	
Figure 70. C NMR (150 MHz, CDCl ₃) of 50	
Figure 78 13 C NMP (150 MHz, CDC1 ₃) of 37	
Figure 70 ¹ U NMP (600 MHz CDC1) of 44	
Figure 80 13 C NMP (150 MHz, CDCl ₃) of 44	
Figure 81 1 H NMP (600 MHz CDCL) of 46	
Figure 82 13 C NMR (150 MHz, CDCl ₂) of 46	
Figure 83 HPI C trace of 4	0J &K
Figure 84 HPLC trace of 7	
Figure 85 HPLC trace of 8	
Figure 86 HPLC trace of 9	
Figure 87 HPLC trace of 10	۵۵ ۵۷
Figure 88 HPLC trace of 11	Q1

Johnston, et al.	Supporting Information II
Figure 89. HPLC trace of 12.	
Figure 90. HPLC trace of 13.	
Figure 91. HPLC trace of recrystallized 13.	94
Figure 92. HPLC trace of 14.	
Figure 93. HPLC trace of 15	
Figure 94. HPLC trace of 16	
Figure 95. HPLC trace of 17	
Figure 96. HPLC trace of 18.	
Figure 97. HPLC trace of 19.	
Figure 98. HPLC trace of 20.	
Figure 99. HPLC trace of 21	
Figure 100. HPLC trace of 22	
Figure 101. HPLC trace of 23	
Figure 102. HPLC trace of 24	
Figure 103. HPLC trace of 25	
Figure 104. HPLC trace of 26	
Figure 105. HPLC trace of 27	
Figure 106. HPLC trace of 28	
Figure 107. HPLC trace of 29	
Figure 108. HPLC trace of 30	
Figure 109. HPLC trace of 31	
Figure 110. HPLC trace of 32	
Figure 111. HPLC trace of 33	
Figure 112. HPLC trace of 34	
Figure 113. HPLC trace of 35	
Figure 114. HPLC trace of 36	
Figure 115. HPLC trace of 37	

Johnston, et al. **Figure 1.** ¹H NMR (400 MHz, CDCl₃) of **S1.**

Johnston, et al. **Figure 2.** ¹³C NMR (100 MHz, CDCl₃) of **S1.**

Johnston, et al. **Figure 3.** ¹H NMR (400 MHz, CDCl₃) of **S2**.

Johnston, et al. **Figure 4.** ¹³C NMR (100 MHz, CDCl₃) of **S2**.

Johnston, et al. **Figure 5.** ¹H NMR (400 MHz, CDCl₃) of **S3.**

Johnston, et al. **Figure 7.** ¹H NMR (400 MHz, CDCl₃) of **S4.**

Johnston, et al. **Figure 9.** ¹H NMR (400 MHz, CDCl₃) of **S5.**

Johnston, et al. **Figure 10.** ¹³C NMR (100 MHz, CDCl₃) of **S5.**

Johnston, et al. **Figure 11.** ¹H NMR (400 MHz, CDCl₃) of **S6.**

Johnston, et al. **Figure 12.** ¹³C NMR (100 MHz, CDCl₃) of **S6**.

Johnston, et al. **Figure 13.** ¹H NMR (400 MHz, CDCl₃) of **S7.**

Johnston, et al. **Figure 14.** ¹³C NMR (100 MHz, CDCl₃) of **S7.**

Johnston, et al. **Figure 15**. ¹H NMR (600 MHz, CDCl₃) of **4**.

Johnston, et al. **Figure 16**. ¹³C NMR (150 MHz, CDCl₃) of **4**.

Johnston, et al. **Figure 17.** ¹H NMR (600 MHz, CDCl₃) of **7**

Johnston, et al. **Figure 18.** ¹³C NMR (150 MHz, CDCl₃) of **7**

Johnston, et al. **Figure 19.** ¹H NMR (600 MHz, CDCl₃) of **8.**

Johnston, et al. **Figure 20.** ¹³C NMR (150 MHz, CDCl₃) of **8**

Supporting Information II

Johnston, et al. **Figure 21.** ¹H NMR (600 MHz, CDCl₃) of **9.**

Johnston, et al. **Figure 22.** ¹³C NMR (150 MHz, CDCl₃) of **9.**

Johnston, et al. **Figure 23**. ¹H NMR (600 MHz, CDCl₃) of **10**.

Johnston, et al. **Figure 24.** ¹³C NMR (150 MHz, CDCl₃) of **10**.

•

Johnston, et al. **Figure 25**. ¹H NMR (600 MHz, CDCl₃) of **11**.

Johnston, et al. **Figure 26**. ¹³C NMR (150 MHz, CDCl₃) of **11**.

Johnston, et al. **Figure 27.** ¹H NMR (600 MHz, CDCl₃) of **12.**

Johnston, et al. **Figure 28.** ¹³C NMR (150 MHz, CDCl₃) of **12.**

Johnston, et al. **Figure 29.** ¹H NMR (600 MHz, CDCl₃) of **13.**

Johnston, et al. **Figure 30**. ¹³C NMR (150 MHz, CDCl₃) of **13**.

Johnston, et al. **Figure 31.** ¹H NMR (600 MHz, CDCl₃) of **14.**

Johnston, et al. **Figure 32**. ¹³C NMR (150 MHz, CDCl₃) of **14**.

Johnston, et al. **Figure 33.** ¹H NMR (600 MHz, CDCl₃) of **15.**

Johnston, et al. **Figure 34**. ¹³C NMR (150 MHz, CDCl₃) of **15**.

•

Johnston, et al. **Figure 35.** ¹H NMR (600 MHz, CDCl₃) of **16.**

Johnston, et al. **Figure 36.** ¹³C NMR (150 MHz, CDCl₃) of **16.**

Johnston, et al. **Figure 37.** ¹H NMR (600 MHz, CDCl₃) of **17.**

Johnston, et al. **Figure 38.** ¹³C NMR (150 MHz, CDCl₃) of **17.**

Johnston, et al. **Figure 39.** ¹H NMR (600 MHz, CDCl₃) of **18.**

Johnston, et al. **Figure 40**. ¹³C NMR (150 MHz, CDCl₃) of **18**.

Supporting Information II

Johnston, et al. **Figure 41.** ¹H NMR (600 MHz, CDCl₃) of **19.**

Johnston, et al. **Figure 42.** ¹³C NMR (150 MHz, CDCl₃) of **19.**

`

Johnston, et al. **Figure 43.** ¹H NMR (600 MHz, CDCl₃) of **20.**

Johnston, et al. **Figure 44**. ¹³C NMR (150 MHz, CDCl₃) of **20**.

Johnston, et al. **Figure 45.** ¹H NMR (600 MHz, CDCl₃) of **21.**

N02

Johnston, et al. **Figure 46.** ¹³C NMR (150 MHz, CDCl₃) of **21.**

Johnston, et al. **Figure 47.** ¹H NMR (600 MHz, CDCl₃) of **22.**

Johnston, et al. **Figure 48.** ¹³C NMR (150 MHz, CDCl₃) of **22.**

Johnston, et al. **Figure 49.** ¹H NMR (600 MHz, CDCl₃) of **23.**

Johnston, et al. **Figure 50.** ¹³C NMR (150 MHz, CDCl₃) of **23.**

Johnston, et al. **Figure 51.** ¹H NMR (600 MHz, CDCl₃) of **24.**

Johnston, et al. **Figure 52.** ¹³C NMR (150 MHz, CDCl₃) of **24.**

•

Johnston, et al. **Figure 53.** ¹H NMR (600 MHz, CDCl₃) of **25**

Johnston, et al. **Figure 54.** ¹³C NMR (150 MHz, CDCl₃) of **25**

Johnston, et al. **Figure 55.** ¹H NMR (600 MHz, CDCl₃) of **26.**

Johnston, et al. **Figure 56.** ¹³C NMR (150 MHz, CDCl₃) of **26.**

Johnston, et al. **Figure 57.** ¹H NMR (600 MHz, CDCl₃) of **27.**

Johnston, et al. **Figure 58.** ¹³C NMR (150 MHz, CDCl₃) of **27.**

Johnston, et al. **Figure 59.** ¹H NMR (600 MHz, CDCl₃) of **28.**

Β.

Johnston, et al. **Figure 60.** ¹³C NMR (150 MHz, CDCl₃) of **28.**

•

Johnston, et al. **Figure 61.** ¹H NMR (600 MHz, CDCl₃) of **29.**

Johnston, et al. **Figure 62.** ¹³C NMR (150 MHz, CDCl₃) of **29.**

Johnston, et al. **Figure 63.** ¹H NMR (600 MHz, CDCl₃) of **30.**

Johnston, et al. **Figure 64.** ¹³C NMR (150 MHz, CDCl₃) of **30.**

Johnston, et al. **Figure 65.** ¹H NMR (600 MHz, CDCl₃) of **31.**

=

Johnston, et al. **Figure 66.** ¹³C NMR (150 MHz, CDCl₃) of **31.**

•

Johnston, et al. **Figure 67.** ¹H NMR (600 MHz, CDCl₃) of **32.**

Johnston, et al. **Figure 68.** ¹³C NMR (150 MHz, CDCl₃) of **32.**

Ч

Johnston, et al. **Figure 69.** ¹H NMR (600 MHz, CDCl₃) of **33.**

Johnston, et al. **Figure 70.** ¹³C NMR (150 MHz, CDCl₃) of **33.**

Johnston, et al. **Figure 71.** ¹H NMR (600 MHz, CDCl₃) of **34**

Johnston, et al. **Figure 72.** ¹³C NMR (150 MHz, CDCl₃) of **34**

Johnston, et al. **Figure 73.** ¹H NMR (600 MHz, CDCl₃) of **35.**

Johnston, et al. **Figure 74.** ¹³C NMR (150 MHz, CDCl₃) of **35.**

Johnston, et al. **Figure 75.** ¹H NMR (600 MHz, CDCl₃) of **36.**

Johnston, et al. **Figure 76.** ¹³C NMR (150 MHz, CDCl₃) of **36.**

Johnston, et al. **Figure 77.** ¹H NMR (600 MHz, CDCl₃) of **37.**

Johnston, et al. **Figure 78.** ¹³C NMR (150 MHz, CDCl₃) of **37.**

Johnston, et al. **Figure 79.** ¹H NMR (600 MHz, CDCl₃) of **44.**

Johnston, et al. **Figure 80.** ¹³C NMR (150 MHz, CDCl₃) of **44.**

Johnston, et al. **Figure 81.** ¹H NMR (600 MHz, CDCl₃) of **46.**

Johnston, et al. **Figure 82**. ¹³C NMR (150 MHz, CDCl₃) of **46**.

Boc

Ph

.н

NO2

Signal 1: DAD1 C, Sig=210,8 Ref=360,100

Peak #	RT [min]	Width [min]	Area	Area %
1	16.000	0.713	8378.103	43.04
3	20.256	0.805	10667.901	54.80
4	22.760	0.732	232.792	1.20

Signal 1: DAD1 C, Sig=210,8 Ref=360,100

Peak #	RT [min]	Width [min]	Area	Area %
1	17.959	0.814	6502.464	24.39
2	19.994	0.841	6582.387	24.69
3	22.462	0.868	6996.328	26.24
4	25.037	0.980	6584.132	24.69

Johnston, et al. **Figure 84.** HPLC trace of **7.**

Peak #	RT [min]	Width [min]	Area	Area %
1	20.419	0.776	12605.589	52.26
2	21.707	0.779	10006.817	41.49
3	34.691	0.151	976.129	4.05
4	35.010	0.496	532.862	2.21

Peak # 	RT [min]	Width [min]	Area	Area %
1 2	20.727 22.039	0.705 0.708	5527.214 5041.059	26.05 23.76
3	34.574	0.119	5125.187	24.15
4	35.821	1.204	5525.594	26.04

Signal 1: DAD1 C, Sig=210,8 Ref=360,100

Peak #	RT [min]	Width [min]	Area	Area %
1	7.615	0.312	7331.742	44.10 53.26
3	9.270	0.319	252.585	1.52
	11.150	0.372	100.220	1.12

Peak #	RT [min]	Width [min]	Area	Area %
1	7.418	0.302	4589.519	23.19
2	8.050	0.298	5253.340	26.54
3	9.015	0.339	4748.808	23.99
4	10.840	0.458	5203.492	26.29

Johnston, et al. **Figure 86.** HPLC trace of **9.**

Supporting Information II

Signal 1: DAD1 C, Sig=210,8 Ref=360,100

Peak #	RT [min]	Width [min]	Area	Area %
1	11.402	0.242	3048.868	42.63
2	12.240	0.764	2804.731	39.22
3	17.199	0.676	606.170	8.48
4	23.545	1.626	691.953	9.68

Peak #	RT [min]	Width [min]	Area	Area %
1	11.421	0.156	1431.929	29.05
2	12.423	0.693	1078.494	21.88
3	17.735	0.964	1040.948	21.12
4	24.788	1.510	1377.935	27.95

Signal 1: DAD1 C, Sig=210,8 Ref=360,100

1 6.074 0.269 2120.699 42.50 2 6.753 0.331 142.202 2.85 3 8.080 0.282 2569.699 51.50	Peak #	RT [min]	Width [min]	Area	Area %
4 11.595 0.474 157.058 3.1	1	6.074	0.269	2120.699	42.50
	2	6.753	0.331	142.202	2.85
	3	8.080	0.282	2569.699	51.50
	4	11.595	0.474	157.058	3.15

Peak #	RT [min]	Width [min]	Area	Area %
1	5.843	0.205	1164.348	22.23
2	6.370	0.266	1151.221	21.98
3	7.601	0.247	1483.777	28.33
4	10.626	0.438	1437.213	27.45

Johnston, et al. **Figure 88.** HPLC trace of **11.**

Signal 1: DAD1 D, Sig=230,16 Ref=360,100

Peak #	RT [min]	Width [min]	Area	Area %
1	8.341	0.225	14160.931	98.00
2	8.929	0.216	288.657	2.00

Peak #	RT [min]	Width [min]	Area	Area	8
1	8.472	0.222	4244.789	49.	50
2	9.055	0.284	4330.040	50.	50

Johnston, et al. **Figure 89.** HPLC trace of **12.**

.н

νO2

Boc.

Peak #	RT [min]	Width [min]	Area	Area %
1	7.691	0.200	11584.120	93.36
2	8.551		824.098	6.64

Based on literature assay.¹

¹ Palomo, C.; Oiarbide, M.; Laso, A.; López, R. J. Am. Chem. Soc. 2005, 127, 17622

Signal 1: DAD1 C, Sig=210,8 Ref=360,100

Peak #	RT [min]	Width [min]	Area	Area %
1	8.276	0.401	180.828	2.29
2	9.344	0.354	4068.313	51.42
3	10.250	0.208	166.412	2.10
4	10.990	0.297	3496.621	44.19

Peak #	RT [min]	Width [min]	Area	Area %
1	7.521	0.309	2455.734	25.30
2	8.419	0.294	2563.828	26.41
3	9.312	0.131	2386.716	24.59
4	9.843	0.173	2300.407	23.70

Johnston, et al. **Figure 91.** HPLC trace of recrystallized **13**.

ΝO₂

Boc

C₁₀H₂

Peak #	RT [min]	Width [min]	Area	Area %
1	7.867	0.222	11.722	0.20
2	9.042	0.382	2168.692	37.85
3	9.780	0.238	30.617	0.53
4	10.559	0.368	3518.577	61.41

Johnston, et al. **Figure 92.** HPLC trace of **14.**

Signal 1: DAD1 C, Sig=210,8 Ref=360,100

Peak #	RT [min]	Width [min]	Area	Area	용
1	8.557	0.243	187.354	2.	11
2	9.292	0.271	8712.142	97.	89

Peak #	RT [min]	Width [min]	Area	Area %
1	8.504	0.245	4223.312	49.88
2	9.241	0.251	4243.221	50.12

Johnston, et al. **Figure 93.** HPLC trace of **15.**

Peak #	RT [min]	Width [min]	Area	Area %
1 2	6.774	0.319	5552.345 6727.819	42.40
3	9.138 10.150	0.407	368.636 445.921	2.82 3.41

Peak #	RT [min]	Width [min]	Area	Area %
1	6.740	0.312	2255.689	24.71
2	7.238	0.305	2247.246	24.61
3	9.032	0.386	2245.698	24.60
4	10.010	0.390	2381.641	26.09

Johnston, et al. **Figure 94.** HPLC trace of **16.**

Signal 1: DAD1 C, Sig=210,8 Ref=360,100

Peak #	RT [min]	Width [min]	Area	Area %
1	10.755	0.297	12554.079	93.23
2	12.343	0.331	911.479	6.77

Peak #	RT [min]	Width [min]	Area	Area %
1	10.498	0.279	2143.544	50.28
2	12.475	0.388	2119.343	49.72

Johnston, et al. **Figure 95.** HPLC trace of **17.**

,H

ΝO₂

Boc.

Signal 1: DAD1 D, Sig=230,16 Ref=360,100

Peak #	RT [min]	Width [min]	Area	Area %
1	8.088	0.214	3048.847	92.85
2	8.881	0.244	234.871	7.15

Peak #	RT [min]	Width [min]	Area	Area %
1	8.045	0.207	1473.206	51.15
2	8.806	0.260	1406.843	48.85

Johnston, et al. **Figure 96.** HPLC trace of **18.**

Peak #	RT [min]	Width [min]	Area	Area %
1	7.835	0.214	4458.328	95.20
2	8.886	0.252	224.879	4.80

Peak #	RT [min]	Width [min]	Area	Area %
1	7.539	0.207	2098.937	50.08
2	8.607	0.277	2092.085	49.92

Johnston, et al. **Figure 97.** HPLC trace of **19.**

Signal 1: DAD1 C, Sig=210,8 Ref=360,100

Peak #	RT [min]	Width [min]	Area	Area	8
1	6.695	0.183	7051.388	94.	05
2	7.443	0.209	446.144	5.	95

Peak #	RT [min]	Width [min]	Area	Area %
1	6.748	0.183	3230.231	49.58
2	7.501	0.243	3284.427	50.42

Signal 1: DAD1 C, Sig=210,8 Ref=360,100

Peak #	RT [min]	Width [min]	Area	Area %
1	8.276	0.365	4606.396	42.19
2	9.545	0.439	5080.101	46.53
3	10.382	0.461	550.527	5.04
4	11.742	0.495	681.689	6.24

Peak #	RT [min]	Width [min]	Area	Area %
1 2 3	8.090 9.373 10.185	0.370 0.422 0.444	3308.149 3063.356 3308.714	25.96 24.04 25.97
				24.02

Johnston, et al. **Figure 99.** HPLC trace of **21.**

Signal 1: DAD1 C, Sig=210,8 Ref=360,100

Peak #	RT [min]	Width [min]	Area	Area %
1	6.532	0.146	1589.153	13.18
2	7.939	0.152	10468.359	86.82

Peak #	RT [min]	Width [min]	Area	Area %
1	6.577	0.170	2928.512	51.42
2	8.040	0.105	2766.864	48.58

Johnston, et al. **Figure 100.** HPLC trace of **22.**

Signal 1: DAD1 C, Sig=210,8 Ref=360,100

Peak	RT	Width	Area	Area 🖇
#	[min]	[min]		
1	9.704	0.479	629.836	1.53
2	15.928	0.835	40410.633	98.47

1 9.882			
2 15.667).397 6	5774.301	50.15
).621 6	5733.175	49.85

Johnston, et al. **Figure 101.** HPLC trace of **23.**

Signal 1: DAD1 C, Sig=210,8 Ref=360,100

Peak # 	RT [min]	Width [min]	Area	Area %
1	5.857	0.235	660.275	5.87
2	9.836	0.389	10593.490	94.13

Peak #	RT [min]	Width [min]	Area	Area %
1	6.153	0.263	7704.800	51.75
2	10.294	0.382	7183.816	48.25

Johnston, et al. **Figure 102.** HPLC trace of **24.**

Signal 1: DAD1 C, Sig=210,8 Ref=360,100

Peak #	RT [min]	Width [min]	Area	Area	8
1	5.515	0.193	357.410	2.	79
2	8.312	0.324	12456.632	97.	21

Peak #	RT [min]	Width [min]	Area	Area %
1	5.542	0.225	6136.816	52.31
2	8.367	0.303	5595.277	47.69

Johnston, et al. **Figure 103.** HPLC trace of **25.**

Signal 1: DAD1 C, Sig=210,8 Ref=360,100

Peak #	RT [min]	Width [min]	Area	Area	%
1 2	6.239 9.235	0.270 0.374	2828.864 13663.194	17. 82.	15 85

Peak #	RT [min]	Width [min]	Area	Area %
1	6.185	0.272	2718.587	51.22
2	9.272	0.362	2588.798	48.78

Johnston, et al. **Figure 104.** HPLC trace of **26.**

Supporting Information II

Signal 1: DAD1 C, Sig=210,8 Ref=360,100

Peak #	RT [min]	Width [min]	Area	Area %
1	6.975	0.324	293.220	6.88
2	10.526		3970.541	93.12

Peak #	RT [min]	Width [min]	Area	Area %
1	6.869	0.298	2013.638	50.98
2	10.465	0.453	1936.296	49.02

Johnston, et al. **Figure 105.** HPLC trace of **27.**

Signal 1: DAD1 C, Sig=210,8 Ref=360,100

Peak #	RT [min]	Width [min]	Area	Area %
1	6.371	0.212	297.915	2.37
2	11.336	0.456	12260.380	97.63

Peak #	RT [min]	Width [min]	Area	Area %
1	6.405	0.256	14290.754	48.85
2	11.393	0.479	14966.102	51.15
Johnston, et al. **Figure 106.** HPLC trace of **28.**

Signal 1: DAD1 C, Sig=210,8 Ref=360,100

Peak #	RT [min]	Width [min]	Area	Area %
1	6.248	0.216	633.736	3.88
2	11.181	0.443	15711.052	96.12

Peak #	RT [min]	Width [min]	Area	Area %
1	6.259	0.248	5936.624	49.35
2	11.348	0.438	6093.895	50.65

Johnston, et al. **Figure 107.** HPLC trace of **29.**

Signal 1: DAD1 C, Sig=210,8 Ref=360,100

Peak # 	RT [min]	Width [min]	Area	Area %
1	4.838	0.070	328.407	3.35
2	8.361	0.340	9477.934	96.65

Peak #	RT [min]	Width [min]	Area	Area %
1	4.955	0.069	800.514	50.01
2	8.696	0.329	800.144	49.99

Johnston, et al. **Figure 108.** HPLC trace of **30.**

Signal 1: DAD1 C, Sig=210,8 Ref=360,100

Peak #	RT [min]	Width [min]	Area	Area %
1	7.616	0.266	116.611	1.38
2	13.271	0.577	8324.212	98.62

Peak #	RT [min]	Width [min]	Area	Area %
1	7.998	0.319	4127.397	53.02
2	13.686	0.551	3657.124	46.98

Johnston, et al. **Figure 109.** HPLC trace of **31.**

Signal 1: DAD1 C, Sig=210,8 Ref=360,100

Peak #	RT [min]	Width [min]	Area	Area %
1	9.487	0.334	70.269	2.19
2	15.314	0.697	3140.238	97.81

Peak #	RT [min]	Width [min]	Area	Area %
1	9.768	0.448	4972.060	47.41
2	15.479	0.688	5514.219	52.59

Johnston, et al. **Figure 110.** HPLC trace of **32.**

Signal 1: DAD1 C, Sig=210,8 Ref=360,100

Peak #	RT [min]	Width [min]	Area	Area %
1	9.032	0.392	1229.454	6.49
2	14.309	0.583	17709.516	93.51

Peak #	RT [min]	Width [min]	Area	Area %
1	8.384	0.384	13109.295	38.16
2	13.501	0.586	21245.809	61.84

Johnston, et al. Figure 111. HPLC trace of 33.

Supporting Information II

Signal 1: DAD1 C, Sig=210,8 Ref=360,100

Peak #	RT [min]	Width [min]	Area	Area %
1	6.784	0.242	355.052	4.85
2	11.396	0.469	6966.001	95.15

Peak #	RT [min]	Width [min]	Area	Area %
1	6.635	0.264	8455.787	46.75
2	11.102	0.453	9631.794	53.25

Johnston, et al. **Figure 112.** HPLC trace of **34.**

Signal 1: DAD1 C, Sig=210,8 Ref=360,100

# [n	11n] 	[min] 		
1	5.600	0.203	234.552	2.74
2	7.391	0.250 8	330.422	97.26

Peak #	RT [min]	Width [min]	Area	Area %
1	5.617	0.239	6593.606	51.26
2	7.391		6270.104	48.74

Johnston, et al. **Figure 113.** HPLC trace of **35.**

Signal 1: DAD1 C, Sig=210,8 Ref=360,100

Peak #	RT [min]	Width [min]	Area	Area %
1	6.535	0.209	541.696	5.62
2	9.335	0.363	9093.938	94.38

Peak #	RT [min]	Width [min]	Area	Area %
1	6.456	0.233	1909.106	36.61
2	9.206	0.334	3306.083	63.39

Johnston, et al. **Figure 114.** HPLC trace of **36.**

Signal 1: DAD1 C, Sig=210,8 Ref=360,100

Peak #	RT [min]	Width [min]	Area	Area %
1	7.497	0.275	813.074	11.37
2	11.307	0.461	6337.186	88.63

Peak #	RT [min]	Width [min]	Area	Area %
1	7.681	0.308	1689.121	33.52
2	11.666		3350.754	66.48

Johnston, et al. **Figure 115.** HPLC trace of **37.**

Signal 1: DAD1 C, Sig=210,8 Ref=360,100

Peak #	RT [min]	Width [min]	Area	Area	÷
1	9.735	0.387	1636.389	11.	46
2	12.214	0.531	12641.171	88.	54

Peak #	RT [min]	Width [min]	Area	Area %
1	10.142	0.404	2104.111	50.15
2	12.675	0.511	2091.183	49.85