Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2015

Electronic Supplementary Information (ESI)

Bidirectional Photoswitching of Magnetic Properties at Room Temperature: Ligand-Driven Light-Induced Valence Tautomerism

Alexander Witt, Frank W. Heinemann, and Marat M. Khusniyarov*

Friedrich-Alexander-University of Erlangen-Nuremberg Department of Chemistry and Pharmacy Egerlandstr. 1, 91058 Erlangen Germany

*e-mail: marat.khusniyarov@fau.de

Evaluation of variable-temperature data

Scheme S1. Valence tautomeric (VT) equilibrium between redox isomers trans-6^{LS} and trans-6^{HS}.

Variable-temperature magnetic susceptibility data and variable-temperature electronic absorption spectra for *trans*-**6** and *cis*-**6** were fitted using expressions eq. (2) and eq. (3), respectively, derived from the van't Hoff equation eq. (1). The following quantities are used: equilibrium constant K_{eq} (Scheme S1), enthalpy change ΔH and entropy change ΔS for the equilibrium reaction, observed effective magnetic moment μ_{eff} , the high- and low-temperature limits of magnetic moment μ_{eff} (HT) and μ_{eff} (LT), respectively, observed absorption A_{obs} , the high- and low-temperature limits of absorption A(HT) and A(LT).

$$\ln K_{\rm eq} = -\frac{\Delta H}{RT} + \frac{\Delta S}{R} \tag{1}$$

$$\mu_{\rm eff} = \sqrt{\frac{e^{\left(-\frac{\Delta H}{RT} + \frac{\Delta S}{R}\right)} \mu_{\rm eff}^2(\rm HT) + \mu_{\rm eff}^2(\rm LT)}{e^{\left(-\frac{\Delta H}{RT} + \frac{\Delta S}{R}\right)} + 1}}$$
(2)

$$A_{\rm obs} = \frac{e^{\left(-\frac{\Delta H}{RT} + \frac{\Delta S}{R}\right)} A(\rm HT) + A(\rm LT)}{e^{\left(-\frac{\Delta H}{RT} + \frac{\Delta S}{R}\right)} + 1}$$
(3)

Titration with 4-stypy and derivation of fitting functions

In ligand titration experiments monitored by the Evans ¹H NMR method, the outer and inner tubes contained solutions with equal amounts of added ligand. The diamagnetic corrections for *trans*-**6** as well as *cis*-**6** were determined from Pascal's constants ($\chi_{dia} = -5.45 \cdot 10^{-4}$ emu mol⁻¹).^[1] Sample preparation and data collection were both performed under strictly anaerobic conditions. The following considerations are applied: **6** = *trans*-**6** or *cis*-**6**, **6**^{LS} = *trans*-**6**^{LS} or *cis*-**6**^{LS}, **6**^{HS} = *trans*-**6**^{HS} or *cis*-**6**^{HS}, and **5** = *trans*-**5** or *cis*-**5**.

We can reasonably assume that a solution of **6** at RT contains three cobalt species in equilibrium: a six-coordinate lowspin cobalt(III) species **6**^{LS}, a six-coordinate high-spin cobalt(II) species **6**^{HS}, and a five-coordinate high-spin cobalt(II) species **5** (eq. (4)). The presence of hypothetic four-coordinate species can be ruled out since they are not thermodynamically stable in solution and build tetramers,^[2] which we did not observe.

$$5 \xrightarrow{K_{a}} {4-\text{stypy}} \left\{ 6^{\text{LS}} \xrightarrow{K_{eq}} {6^{\text{HS}}} \right\}$$

$$(4)$$

Upon addition of 4-*stypy* (*trans*- or *cis*-) to the appropriate complex solution the equilibrium is shifted towards the six-coordinate species 6^{LS} and 6^{HS} according to eq. (4).

The VT equilibrium between redox isomers 6^{LS} and 6^{HS} depends on temperature, however the ratio between the redox isomers remains constant at constant (room) temperature regardless of 4-*stypy* concentration (eq. (5)).

$$\frac{\left[\mathbf{6}^{\mathrm{HS}}\right]}{\left[\mathbf{6}^{\mathrm{LS}}\right]_{T=\mathrm{const.}}} = K_{\mathrm{eq}}$$
(5)

Therefore, 6^{LS} and 6^{HS} can be taken as a six-coordinate pseudo-species $6 \equiv \{6^{HS} \leftrightarrow 6^{LS}\}$, the concentration of which is increased upon titration with 4-*stypy*. This assumption is strongly supported by the observation of an isosbestic point in a series of electronic spectra upon titration. The association constant K_a is defined as:

$$K_{a} = \frac{[\mathbf{6}]}{[\mathbf{5}] \cdot [\mathbf{L}]} \tag{6}$$

, where L = 4-stypy.

Then the total concentration of cobalt species $[Co]_t (6 + 5)$ and 4-*stypy* ligand $[L]_t$ (associated + dissociated) can be expressed as:

$$[\mathbf{6}] + [\mathbf{5}] = [\mathbf{Co}]_t \tag{7}$$

$$[\mathbf{6}] + [\mathbf{L}] = [\mathbf{L}]_{t} \tag{8}$$

By substituting [5] and [L] in eq. (6) with eq. (7) and eq. (8), we obtain

$$K_{a} = \frac{[\mathbf{6}]}{([\operatorname{Co}]_{t} - [\mathbf{6}]) \cdot ([\mathrm{L}]_{t} - [\mathbf{6}])}$$
(9)

Given the observed (total) *molar* magnetic susceptibility of solution, χ_{obs} , is the *weighted* sum of the molar magnetic susceptibilities of five-coordinate species 5, $\chi(5)$, and six-coordinate quasi-species 6, $\chi(6)$, which is composed of $\chi(6^{LS})$ and $\chi(6^{HS})$, χ_{obs} can be expressed as

$$\chi_{\text{obs}} = \chi(\mathbf{6}) \frac{[\mathbf{6}]}{[\text{Co}]_{t}} + \chi(\mathbf{5}) \left(1 - \frac{[\mathbf{6}]}{[\text{Co}]_{t}}\right) = \frac{[\mathbf{6}]}{[\text{Co}]_{t}} \left(\chi(\mathbf{6}) - \chi(\mathbf{5})\right) + \chi(\mathbf{5})$$
(10)

Eq. (10) can be solved and substituted for [6] in eq. (9) to give the final eq. (11) that was used to fit the magnetic susceptibility of solution χ_{obs} as a function of ligand concentration $[L]_t$.

$$\chi_{abs} = \frac{(\chi(\mathbf{5}) - \chi(\mathbf{6}))\sqrt{[Co]^2 K_a^2 - 2[Co]_k K_a^2 [L]_k + 2[Co]_k K_a + K_a^2 [L]_s^2 + 2K_a [L]_k + 1 - [Co]_k \chi(\mathbf{5})K_a - [Co]_k \chi(\mathbf{6})K_a + \chi(\mathbf{5})K_a [L]_k - \chi(\mathbf{6})K_a [L]_k + \chi(\mathbf{5}) - \chi(\mathbf{6})}{2[Co]_k K_a}$$
(11)

Similarly, the dependence of the 750 nm absorption band on the amount of added 4-stypy ligand can be derived:

Since free 4-*stypy* does not contribute to the absorption at 750 nm, the observed (total) absorption, A_{obs} , is the sum of the respective absorptions of **5**, **6**^{HS}, and **6**^{LS}. Since the temperature was kept constant, the ratio between **6**^{HS} and **6**^{LS} remains unchanged during titration. Hence, the shift in the equilibrium between **5** and a quasi-species **6** = {**6**^{HS} \leftrightarrow **6**^{LS}} can be described with molar extinction coefficients ε (**5**) and ε (**6**) respectively:

$$A_{obs} = \varepsilon(\mathbf{6})[\mathbf{6}] + \varepsilon(\mathbf{5})[\mathbf{5}] = \varepsilon(\mathbf{5})([\operatorname{Co}]_{t} - [\mathbf{5}]) + \varepsilon(\mathbf{6})[\mathbf{6}] = [\mathbf{6}](\varepsilon(\mathbf{6}) - \varepsilon(\mathbf{5})) + \varepsilon(\mathbf{5})[\operatorname{Co}]_{t}$$
(12)

Eq. (12) can be solved and substituted for [6] in eq. (9) to yield the final eq. (13) that was used to fit the absorption at 750 nm, A_{obs} , as a function of ligand concentration [L]_t:

$$A_{abs} = \frac{(\varepsilon(\mathbf{5}) - \varepsilon(\mathbf{6}))\sqrt{[Co]_{j}^{2}K_{a}^{2} - 2[Co]_{t}K_{a}^{2}[L]_{t} + 2[Co]_{t}K_{a} + K_{a}^{2}[L]_{j}^{2} + 2K_{a}[L]_{t} + 1 + [Co]_{t}\varepsilon(\mathbf{5})K_{a} + [Co]_{t}\varepsilon(\mathbf{6})K_{a} - \varepsilon(\mathbf{5})K_{a}[L]_{t} + \varepsilon(\mathbf{6})K_{a}[L]_{t} - \varepsilon(\mathbf{5}) + \varepsilon(\mathbf{6})}{2K_{a}}$$
(13)

The degree of dissociation defined as

$$\alpha = 100\% \frac{[\mathbf{5}]}{[\mathbf{5}] + [\mathbf{6}]} \tag{14}$$

can be easily calculated via

$$\alpha = 100\% \cdot \frac{-1 + \sqrt{1 + 4K_{a}[\text{Co}]_{t}}}{2K_{a}[\text{Co}]_{t}}$$
(15)

Figures and tables

Figure S1. Molecular structure of *trans-6* determined at 120 K. Thermal ellipsoids are drawn at 50 % probability. Hydrogen atoms are omitted for clarity.

Figure S2. Molecular structure of *trans-6* determined at 295 K. Thermal ellipsoids are drawn at 50 % probability. Hydrogen atoms are omitted for clarity.

Figure S3. Molecular structure of *trans-6* determined at 305 K. Thermal ellipsoids are drawn at 50 % probability. Hydrogen atoms are omitted for clarity.

	120 K	295 K
Co1–N1	1.938(1)	1.933(5)
Co1-N2	1.945(1)	1.925(5)
Co101	1.910(1)	1.904(1)
Co1O2	1.916(1)	1.902(1)
Co1-O3	1.863(1)	1.867(1)
Co1O4	1.854(1)	1.867(1)
C101	1.300(2)	1.304(2)
C6–O2	1.297(2)	1.298(2)
C15–O3	1.349(2)	1.342(2)
C20–O4	1.354(2)	1.342(2)
C1-C6	1.443(2)	1.444(2)
C1–C2	1.409(2)	1.400(2)
C2–C3	1.373(2)	1.371(2)
C3–C4	1.431(2)	1.425(2)
C4–C5	1.372(2)	1.371(2)
C5–C6	1.435(2)	1.425(2)
C15-C20	1.412(2)	1.415(2)
C15–C16	1.390(2)	1.385(2)
C16–C17	1.397(2)	1.388(2)
C17–C18	1.393(2)	1.402(2)
C18–C19	1.405(2)	1.392(2)
C19–C20	1.400(2)	1.406(2)

Table S1. Selected bond lengths	[Ă	Å] of trans-6 determined	by	/ X-ray	crystalle	ography	at 12	20 and 2	295	Κ.
---------------------------------	----	--------------------------	----	---------	-----------	---------	-------	----------	-----	----

C17 C18 C16 C19 C15 C20 O3 O4 N1 CC1 C0 O1 C6 C1 C6 C2 C4 C3

Table S2. Selected bond lengths [Å] of trans-6 determined by X-ray crystallography at 305 K.

	305 K
Co1–N1	1.912(5)
Co101	1.886(1)
Co1–O2	1.887(1)
C101	1.324(2)
C6–O2	1.323(2)
C1–C6	1.426(2)
C1–C2	1.394(2)
C2–C3	1.382(2)
C3–C4	1.409(2)
C4–C5	1.382(2)
C5–C6	1.416(2)

Figure S4. Two alternative orientations of *trans*-4-stypy ligands in *trans*-6 at 295 K featuring inverted orientations of the ethylene bond. Refinement resulted in site occupancies of 85.4(3) and 14.6(3) % of the 50 involved atoms.

Figure S5. Temperature dependent effective magnetic moment measured on a microcrystalline sample of *trans*-6 at external magnetic field of 1 T. Low temperature region is shown. Fit parameters for data points in the range 2 - 220 K: S = 1/2, g = 2.064, $\Theta = -0.15$ K.

Figure S6. Temperature dependent effective magnetic moment measured on a microcrystalline sample of *trans*-6 at external magnetic field of 1 T. Van't Hoff fit parameters: enthalpy change $\Delta H = 41(1)$ kJ mol⁻¹, entropy change $\Delta S = 104(3)$ J mol⁻¹ K⁻¹; low-temperature effective magnetic moment $\mu_{eff}(LT) = 1.80(1) \mu_B$. The high-temperature magnetic moment $\mu_{eff}(HT)$ was fixed at 5.0 μ_B . Estimated transition temperature: $T_{1/2} = 394$ K.

Figure S7. Temperature dependent effective magnetic moment measured on a microcrystalline sample of *trans*-6 at external magnetic field of 1 T. Alternative van't Hoff fit: $\Delta H = 38(1)$ kJ mol⁻¹, $\Delta S = 94(2)$ J mol⁻¹ K⁻¹; low-temperature effective magnetic moment: $\mu_{eff}(LT) = 1.79(1) \mu_{B}$. The high-temperature magnetic moment $\mu_{eff}(HT)$ was fixed at 5.5 μ_{B} . Estimated transition temperature: $T_{1/2} = 404$ K.

Figure S8. Temperature dependent effective magnetic moment measured on a microcrystalline sample of *trans*-6 at external magnetic field of 1 T. Alternative van't Hoff fit: $\Delta H = 37(1) \text{ kJ mol}^{-1}$, $\Delta S = 87(2) \text{ J mol}^{-1} \text{ K}^{-1}$; low-temperature effective magnetic moment: $\mu_{\text{eff}}(\text{LT}) = 1.79(1) \mu_{\text{B}}$. The high-temperature magnetic moment $\mu_{\text{eff}}(\text{HT})$ was fixed at 6.0 μ_{B} . Estimated transition temperature: $T_{1/2} = 425 \text{ K}$.

Figure S9. Molecular structure of *cis*-6 determined at 100 K. Thermal ellipsoids are drawn at 50 % probability. Hydrogen atoms are omitted for clarity.

	100 K	
Co1–N1	1.940(1)	
Co101	1.885(1)	
Co1-O2	1.878(1)	c3 C6
C101	1.326(2)	
C6–O2	1.326(2)	01 Co1
C1-C6	1.427(2)	OT OT
C1–C2	1.403(2)	
C2–C3	1.385(2)	
C3–C4	1.414(2)	
C4–C5	1.392(2)	
C5–C6	1.418(2)	

Table S3. Selected bond lengths [Å] of cis-6 determined by X-ray crystallography at 100 K.

Figure S10. Temperature dependent effective magnetic moment measured on a microcrystalline sample of *cis*-6 at external magnetic field of 1 T. Low temperature region is shown. Fit parameters for data points in the range 2 - 250 K: S = 1/2, g = 2.073, $\Theta = -0.62$ K.

Figure S11. Temperature dependent effective magnetic moment measured on a microcrystalline sample of *cis*-6 at external magnetic field of 1 T. Van't Hoff fit parameters: enthalpy change $\Delta H = 52(2)$ kJ mol⁻¹, entropy change $\Delta S = 131(3)$ J mol⁻¹ K⁻¹; low-temperature effective magnetic moment $\mu_{eff}(LT) = 1.79(1) \mu_B$. The high-temperature magnetic moment $\mu_{eff}(HT)$ was fixed at 5.0 μ_B . Estimated transition temperature: $T_{1/2} = 397$ K.

Figure S12. Cyclic voltammogram of *trans*-6 dissolved in CH₂Cl₂ containing $^{n}Bu_{4}NPF_{6}$ (0.1 M) as supporting electrolyte (room temperature, scan rate 25 mV s⁻¹).

Table S4. Electrochemical data for *trans*-6 dissolved in dichloromethane obtained from a cyclic voltammogram recorded at room temperature at a scan rate 25 mV s⁻¹. All potentials are referenced versus the Fc/Fc^+ couple.

redox process	$E_{\rm pc},{ m V}$	$E_{\rm pa},{ m V}$	$ \Delta E_{\rm p} , {\rm V}$	$E_{1/2}, V$	<i>i</i> _{pc} , μΑ	i _{pa} , μA	$ i_{ m pc}$ / $i_{ m pa} $
Α	-0.28	-0.37	0.09	-0.33	+1.32	-1.60	0.83
В	-0.57	-0.77	0.20	-0.67	+1.17	-1.24	0.94
С	-1.06	-1.17	0.11	-1.12	+1.85	-1.65	1.12

Figure S13. Cyclic voltammogram of *cis*-6 dissolved in CH₂Cl₂ containing ${}^{n}Bu_{4}NPF_{6}$ (0.1 M) as supporting electrolyte (room temperature, scan rate 25 mV s⁻¹).

Table S5. Electrochemical data for *cis*-6 dissolved in dichloromethane obtained from a cyclic voltammogram recorded at room temperature at a scan rate 25 mV s⁻¹. All potentials are referenced versus the Fc/Fc^+ couple.

redox process	$E_{\rm pc},{ m V}$	$E_{\rm pa},{ m V}$	$ \Delta E_{\rm p} , { m V}$	$E_{1/2}, V$	<i>i</i> _{pc} , μA	i _{pa} , μA	$ i_{ m pc}$ / $i_{ m pa} $
Α	-0.24	-0.34	0.10	-0.29	+1.39	-1.63	0.85
В	-0.56	-0.81	0.25	-0.69	+1.22	-1.27	0.96
С	-1.04	-1.17	0.13	-1.11	+1.89	-1.80	1.05

Figure S14. X-band EPR spectrum of *trans-6* in CH₂Cl₂ ($c = 1.2 \times 10^{-3}$ M) recorded at room temperature (frequency: 8.9587 GHz; modulation: 0.4 mT; power: 1.0 mW). Fit parameters: $g_{iso} = 1.9980$, $A_{iso}({}^{59}Co, I = 7/2) = 1.07 \times 10^{-3}$ cm⁻¹. Experimental spectrum is depicted by the black trace and simulation is shown in red.

Figure S15. X-band EPR spectrum of *trans*-6 dissolved in toluene and recorded at 14 K (frequency: 8.9760 GHz; modulation: 0.5 mT; power: 1.0 mW). Fit parameters: g = (1.9887, 2.0022, 2.0051), $A(^{59}Co, I = 7/2) = (0.4, 28.1, 3.9) \times 10^{-4}$ cm⁻¹. Experimental spectrum is depicted by the black trace and simulation is shown in red.

Figure S16. X-band EPR spectrum of *cis*-6 in CH₂Cl₂ ($c = 1.0 \times 10^{-4}$ M) recorded at room temperature (frequency: 8.921 GHz; modulation: 0.4 mT; power: 0.1 mW). Fit parameters: $g_{iso} = 1.9978$, $A_{iso}({}^{59}Co, I = 7/2) = 6.66 \times 10^{-3}$ cm⁻¹. Experimental spectrum is depicted by the black trace and simulation is shown in red.

Figure S17. Temperature dependent electronic absorption spectrum of *trans-6* dissolved in toluene containing 12 eq of *trans-*4-styrylpyridine.

Figure S18. Temperature dependence of the 750 nm absorption band of *trans*-6 in toluene solution containing 12 eq of *trans*-4-styrylpyridine. Van't Hoff fit parameters: $\Delta H = 39(2)$ kJ mol⁻¹, $\Delta S = 108(9)$ J mol⁻¹ K⁻¹; low- and high-temperature molar extinction coefficients: ε (LT) = 0.781(7)×10³ M⁻¹ cm⁻¹ and ε (HT) = 6(1)×10³ M⁻¹ cm⁻¹. Estimated transition temperature: $T_{1/2} = 361$ K.

Figure S19. Temperature dependent electronic absorption spectrum of cis-6 dissolved in toluene.

Figure S20. Temperature dependent electronic absorption spectrum of *cis*-6 dissolved in toluene containing 20 eq of *cis*-4-styrylpyridine.

Figure S21. Temperature dependence of the 750 nm absorption band of *cis*-6 in toluene solution containing 20 eq of *cis*-4-styrylpyridine. Van't Hoff fit parameters: $\Delta H = 37(2)$ kJ mol⁻¹, $\Delta S = 110(7)$ J mol⁻¹ K⁻¹; low- and high-temperature molar extinction coefficients: ε (LT) = 0.738(8)×10³ m⁻¹ cm⁻¹ and ε (HT) = 3.6(2)×10³ m⁻¹ cm⁻¹. Estimated transition temperature: $T_{1/2} = 336$ K.

Figure S22. First derivatives of the van't Hoff fitting curves for the temperature dependence of the 750 nm band for *trans*-6 (green) and *cis*-6 (blue) solutions (for original data see Figure 6 in the main text). Transition temperature $T_{1/2}$ determined by curve maximum is clearly lower for *cis*-6 (283 K) than for *trans*-6 (295 K).

Figure S23. First derivatives of the van't Hoff fitting curves for the temperature dependence of the effective magnetic moment for *trans*-6 (green) and *cis*-6 (blue) solutions (for original data see Figures 3 and 4 in the main text). Transition temperature $T_{1/2}$ determined by curve maximum is clearly lower for *cis*-6 (288 K) than for *trans*-6 (299 K).

Figure S24. Changes in absorption spectrum of *cis*-6 dissolved in toluene upon titration with *cis*-4-styrylpyridine at room temperature. Signals marked with asterix (*) are due to solvent or change of detector.

Figure S25. The evolution of the 750 nm absorption band of *cis*-6 dissolved in toluene upon titration with *cis*-4-styrylpyridine at room temperature. Non-linear regression fit parameters: $\varepsilon(cis$ -6 = {cis-6^{HS} \leftrightarrow cis-6^{LS}}) = 1.02(4)×10³ M⁻¹ cm⁻¹, $\varepsilon(cis$ -5) = 2.4(1))×10³ M⁻¹ cm⁻¹, $K_a = 1.1(3)×10^3$ L mol⁻¹.

Figure S26. The evolution of the effective magnetic moment of *cis*-6 dissolved in toluene upon titration with *cis*-4-styrylpyridine at room temperature. Non-linear regression fit parameters: $\mu_{\text{eff}}(cis-\mathbf{6} \equiv \{cis-\mathbf{6}^{\text{HS}} \leftrightarrow cis-\mathbf{6}^{\text{LS}}\}) = 2.4(1) \ \mu_{\text{B}}, \ \mu_{\text{eff}}$ (*cis*-5) = 4.1(3) $\mu_{\text{B}}, K_{\text{a}} = 0.3(1) \times 10^3 \text{ L mol}^{-1}$.

Figure S27. Changes in electronic absorption spectrum of a dilute toluene solution of *trans*-6 upon UV irradiation at room temperature ($c = 7.5 \times 10^{-5}$ M, $\lambda = 320\pm8$ nm, 1000 W Xe lamp). The weak absorption at 750 nm is magnified.

Figure S28. Changes in electronic absorption spectrum of a dilute benzene solution of *cis*-6 upon UV irradiation at room temperature ($c = 5.0 \times 10^{-4}$ M, $\lambda = 272\pm8$ nm, 1000 W Xe lamp). The weak absorption at 750 nm is magnified.

Figure S29. Changes in X-band EPR spectrum of *trans-***6** dissolved in benzene upon UV irradiation at room temperature ($c = 1.0 \times 10^{-4}$ M, $\lambda = 323 \pm 5$ nm, 150 W Xe lamp). No new signals appeared upon irradiation.

Figure S30. Thermal stability of photoinduced state: Electronic absorption spectra of *trans*-6 dissolved in toluene ($c = 3.7 \times 10^{-4}$ M, room temperature) before irradiation (blue), after UV irradiation (red, $\lambda = 320\pm8$ nm, 1000 W Xe lamp), subsequently after 4 hours stored at room temperature (black).

Figure S31. Thermal stability of photoinduced state: The evolution of the 750 nm absorption band of *trans*-6 dissolved in toluene ($c = 3.7 \times 10^{-4}$ M, room temperature) during UV irradiation (red, $\lambda = 320\pm 8$ nm, 1000 W Xe lamp) and after irradiation (black). Dashed lines serve as a guide to the eye.

Figure S32. Thermal stability of photoinduced state: The evolution of the effective magnetic moment of *trans-6* dissolved in toluene during UV irradiation (red, $\lambda = 320\pm 8$ nm, 1000 W Xe lamp) and after irradiation (black) at room temperature determined by the Evans method ($c = 5.0 \times 10^{-4}$ M, toluene/[D₈]toluene/TMS = 10:2:1). Dashed lines serve as a guide to the eye.

References

- [1] G. Bain, J. Berry, J. Chem. Educ. 2008, 85, 532.
- [2] R. Buchanan, B. Fitzgerald, C. Pierpont, *Inorg. Chem.* 1979, 18, 3439-3444.