Chemical Assay-guided Natural Product Isolation via Solidsupported Chemodosimetric Fluorescent Probe

Hongjun Jeon, Chaemin Lim, Ji Min Lee, and Sanghee Kim*

College of Pharmacy, Seoul National University, Seoul 151-742, Korea

Supplementary Information

Table of Contents

1. General Information S1
2. Synthesis of solid supported alkyne sensory bead 1 and related compounds
3. Absorption and fluorescence emission spectra of compound 2 and 3
4. Standard curve of triazolylcoumarin 3 ······S7
5. Representative procedure for the chemical assay with bead 1 ······S8
6. LC/MS spectra for validation of the sensory system
7. The list of the screened extracts of various natural plants
8. Isolation procedure of the natural compound 8 from the extract of <i>C. morifolium</i> S24
9. ¹ H NMR and ¹³ C NMR Spectra ·······S25–S31
10. References······S32

*To whom correspondence should be addressed: Tel: 82-2-880-2487. Fax: 82-2-888-0649.

E-mail: pennkim@snu.ac.kr.

1. General information

All chemicals were reagent grade and were used as received. The reactions were monitored by TLC analysis using silica-gel 60 F-254 TLC plates. Flash column chromatography was performed on silica gel (230-400 mesh). ¹H NMR and ¹³C NMR spectra were recorded in δ units relative to the non-deuterated solvent as an internal reference. The IR spectra were measured on a Fourier-transform infrared spectrometer. High-resolution mass spectra (HRMS) were recorded using fast atom bombardment (FAB). UV absorption and fluorescence emission spectra were recorded using a UV-Vis (Hitachi U-3010) and a fluorescence spectrophotometer (JASCO FP-6500), respectively. Fluorescence images were acquired using a fluorescence microscope (Nikon Eclipse Ti-U, 10× objective lens).

2. Synthesis of solid-supported alkyne sensory bead 1 and related compounds

(1) Preparation of alkyne sensory bead 1

3-Azido-7-(carboxymethoxy)-chromen-2-one (2). Synthesis of the 3-azido-7-(carboxymethoxy)chromen-2-one (**2**) was performed using the procedure reported in the literature.¹ IR (neat) υ_{max} 3081, 2919, 2781, 2151, 2128, 1726, 1615; ¹H-NMR (400 MHz, CDCl₃/MeOD (1:1)): δ 7.40 (d, *J* = 8.7 Hz, 1H), 7.29 (s, 1H), 6.93 (dd, *J* = 8.7, 2.5 Hz, 1H), 6.85 (d, *J* = 2.3 Hz, 1H), 4.67 (s, 2H); ¹³C-NMR (75 MHz, CDCl₃/MeOD (1:1)): δ 171.84, 161.51, 159.42, 154.07, 129.87, 128.26, 124.88, 114.88, 114.79, 102.92, 66.58; HRMS (FAB, *m/z*): [M–H]⁻ calcd. for C₁₁H₆N₃O₅ 260.0307, found 260.0301.

Allyl 4-[2-hydroxy-1-(trimethylsilyl)-ethyl]-phenoxyacetate (9). Allyl 4-[2-hydroxy-1-(trimethylsilyl)-ethyl]-phenoxyacetate (9) was performed using the procedure reported in the literature.² IR (CHCl₃) υ_{max} 3426, 2955, 1760, 1740, 1508; ¹H-NMR (300 MHz, CDCl₃): δ 6.98–7.04 (m, 2H), 6.81–6.87 (m, 2H), 5.90 (tdd, J = 17.3, 10.4, 5.9 Hz, 1H), 5.31 (qd, J = 17.3, 1.4 Hz, 1H), 5.24 (qd, J = 10.5, 1.2 Hz, 1H), 4.69 (td, J = 5.7, 1.4 Hz, 2H), 4.61 (s, 1H), 4.06 (t, J = 11.3 Hz, 1H), 3.93 (dd, J = 11.3, 4.4 Hz, 1H), 2.37 (dd, J = 11.4, 4.5 Hz, 1H), -0.06 (s, 9H); ¹³C-NMR (75 MHz, CDCl₃): δ 186.76, 155.69, 133.55, 131.42, 128.78, 119.00, 114.99, 65.78, 65.58, 63.19, 40.81, -2.65; HRMS (FAB, *m/z*): [M+H]⁺ calcd. for 309.1522, found 309.1525.

Allyl 2-(4-(2-((3-azido-2-oxo-2*H*-chromen-7-yl)oxy)acetoxy)-1-(trimethylsilyl)ethyl)phenoxy) acetate (10). To a solution of 9 (970 mg, 3.14 mmol, 1.0 eq.) in CH₂Cl₂ (16 mL) were added 3-azidocoumarin 2 (904 mg, 3.46 mmol, 1.1 eq.), *N*,*N*'-dicyclohexylcarbodiimide (973 mg, 4.72 mmol,

1.5 eq.) and 4-dimethylaminopyridine (38 mg, 0.31 mmol, 0.1 eq.). The reaction mixture was stirred at room temperature for 5 h under nitrogen, filtered through Celite 545, and concentrated *in vacuo*. The residue was purified by silica-gel column chromatography (20% EtOAc/hexane) to give **10** (1.5 g, 2.7 mmol, 85% yield) as a clear oil. IR (neat) v_{max} 2957, 2118, 1756, 1727, 1613, 1511; ¹H-NMR (300 MHz, CDCl₃): δ 7.24 (d, J = 8.7 Hz, 1H), 7.15 (s, 1H), 6.85–6.92 (m, 2H), 6.73–6.79 (m, 2H), 6.66 (dd, J = 8.7, 2.4 Hz, 1H), 6.61 (d, J = 2.4 Hz, 1H), 5.91 (tdd, J = 17.1, 10.2, 5.7, 1H), 5.31 (qd, J = 17.3, 1.4 Hz, 1H), 5.24 (qd, J = 10.5, 1.2 Hz, 1H), 4.65–4.74 (m, 3H), 4.61 (s, 2H), 4.47–4.55 (m, 3H), 2.51 (dd, J = 12.0, 4.5 Hz, 1H), -0.04 (s, 9H); ¹³C-NMR (75 MHz, CDCl₃): δ 168.74, 168.32, 159.59, 157.50, 155.56, 152.57, 132.90, 131.44, 128.22, 126.07, 123.80, 118.98, 114.65, 113.38, 113.04, 101.56, 66.61, 65.78, 65.47, 65.27, 36.43, –2.72; HRMS (FAB, *m/z*): [M+H]⁺ calcd. for 552.1802, found 552.1804.

2-(4-(2-((3-Azido-2-oxo-2*H*-chromen-7-yl)oxy)acetoxy)-1-(trimethylsilyl)ethyl)phenoxy)acetic

acid (11). A solution of 10 (723 mg, 1.31 mmol, 1.0 eq.) in THF (18 mL) and MeOH (9 mL) was degassed by bubbling nitrogen for 15 min. Then, sodium *p*-toluenesulfinate (382 mg, 1.97 mmol, 1.5 eq.) and tetrakis(triphenylphosphine)palladium(0) (91 mg, 0.08 mmol, 0.06 eq.) were added, and the reaction mixture was stirred at room temperature for 1.5 h in the dark. After completion of the reaction, the reaction mixture was evaporated *in vacuo* and purified by silica-gel column chromatography (10% MeOH/CH₂Cl₂ + 0.2% acetic acid) to afford acid 11 (409 mg, 0.80 mmol, 61% yield) as a light-yellow oil. IR (CHCl₃) υ_{max} 2951, 2119, 1734, 1712, 1620, 1507; ¹H-NMR (300 MHz, DMSO-d₆): 12.95 (br s, 1H), 7.62 (s, 1H), 7.52 (d, *J* = 8.4 Hz, 1H), 6.98 (d, *J* = 8.4 Hz, 2H), 6.93 (d, *J* = 2.4 Hz, 1H), 6.85 (dd, *J* = 8.6, 2.6 Hz, 1H), 6.77 (d, *J* = 8.7 Hz, 2H), 4.79 (s, 2H), 4.59 (s, 2H), 4.48–4.65 (m, 2H), 2.50–2.58 (m, 1H), -0.05 (s, 9H); ¹³C-NMR (75 MHz, DMSO-d₆): δ 170.29, 168.39, 159.49, 157.10, 155.23, 152.25, 132.64, 128.76, 128.12, 127.02, 122.54, 114.08, 113.03, 101.33, 66.05, 64.95, 64.43, 35.42, -2.70; HRMS (FAB, *m/z*): [M–H][–] calcd. for 510.1333, found 510.1324.

Preparation of sensory bead 1. In a 20 mL vial, TentaGelTM MB-NH₂ resin (Sigma–Aldrich, 140– 170 µm beads, ~0.40 mmol/g, 200 mg, 0.08 mmol) was pre-swollen in DMF (7 mL) for 1 h. To this solution were added acid **11** (49 mg, 0.10 mmol, 1.2 eq.), 1-[bis(dimethylamino)methylene]-1*H*-1,2,3triazolo[4,5-*b*]pyridinium 3-oxid hexafluorophosphate (91 mg, 0.24 mmol, 3.0 eq.), 1hydroxybenzotriazole hydrate (32 mg, 0.24 mmol, 3.0 eq.), and *N*,*N*-diisopropylethylamine (42 µL, 0.24 mmol, 3.0 eq.). The vial was shaken at room temperature for 24 h in the dark and then filtered. The resin was washed two times each with DMF (10 mL), H₂O (10 mL), MeOH (10 mL) and CH₂Cl₂ (10 mL). Pyridine/acetic anhydride (3:1; 10 mL) was added, and the mixture was shaken for 3 h. The resin was subsequently washed three times with DMF (10 mL), H₂O (10 mL), MeOH (10 mL), and CH₂Cl₂ (10 mL). The resin was dried *in vacuo* to afford the loaded sensory bead **1** (230 mg). The loading was determined by UV absorption of the 3-azidocoumarin **2** obtained by treatment of the loaded resin (5 mg) in CH₂Cl₂ (900 μ L) with TBAF·3H₂O solution (100 μ L, 10 mg/mL in CH₂Cl₂) and subsequent shaking of the reaction mixture at room temperature for 15 min. Loading: *c* = 0.30 mmol/g (which corresponds to a coupling yield of 72%).

(2) Preparation of triazolylcoumarin 3

2-((2-Oxo-3-(4-propyl-1*H***-1,2,3-triazol-1-yl)-2***H***-chromen-7-yl)oxy)acetic acid (3). To a solution of 3-azidocoumarin 2** (55 mg, 0.21 mmol, 1 eq.) in DMF (2 mL) were added 1-pentyne (104 μ L, 1.06 mmol, 5 eq.), *N*,*N*-diisopropylethylamine (37 μ L, 0.21 mmol, 1 eq.), acetic acid (12 μ L 0.21 mmol, 1 eq.), copper(I) sulfate pentahydrate (10 mg, 0.04 mmol, 0.2 eq.), and ascorbic acid (15 mg, 0.08 mmol, 0.4 eq.). The reaction mixture was stirred at room temperature under nitrogen. After 1 h, the mixture was diluted with EtOAc (10 mL) and water (10 mL). The layers were separated, and the aqueous layer was extracted with EtOAc (2 × 10 mL). The combined organic layers were dried with MgSO₄, filtered, and concentrated under vacuum. The residue was purified by silica-gel column chromatography (10% MeOH/CH₂Cl₂ + 0.2% acetic acid) to afford triazolylcoumarin **3** (64 mg, 0.19 mmol, 92% yield) as a white solid. IR (neat) ν_{max} 3180, 3040, 2922, 2875, 1730, 1713, 1610, 1513; ¹H-NMR (400 MHz, DMSO-d₆): δ 8.61 (s, 1H), 8.33 (s, 1H), 7.83 (d, *J* = 8.6 Hz), 7.10–7.13 (m, 1H), 7.07 (dd, *J* = 8.6, 2.3 Hz, 1H), 4.84 (s, 2H), 2.69 (t, *J* = 7.4 Hz, 2H), 1.62–1.73 (m, 2H), 0.95 (t, *J* = 7.3 Hz, 3H); ¹³C-NMR (75 MHz, DMSO-d₆): δ 169.40, 161.73, 156.08, 154.10, 146.92, 135.16, 130.41, 122.66, 120.50, 113.59, 111.81, 101.38, 65.18, 26.78, 22.06, 13.48; HRMS (FAB, *m/z*): [M–H]⁻ calcd. for 328.0933, found 328.0939.

(3) Preparation of alkyne 4d

(*E*)-1-(Prop-2-yn-1-yloxy)pent-2-ene (4d). Synthesis of (*E*)-1-(prop-2-yn-1-yloxy)pent-2-ene (4d) was achieved using almost the same procedure as that reported in the literature.³ To a vigorously stirring suspension of *trans*-2-penten-1-ol (1.9 mL, 18.80 mmol, 1 eq.), tetrabutylammonium iodide (TBAI) (69 mg, 0.19 mmol, 0.01 eq.), and NaOH (2.3 g, 56.40 mmol, 3 eq.) in H₂O (5 mL), propargyl bromide solution (80 wt.% in toluene, 2.1 mL, 18.80 mmol, 1 eq.) was added slowly at 0 °C. The reaction mixture was allowed to equilibrate to room temperature and stirred for 22 h. After completion of the reaction, the reaction mixture was poured into water, extracted with ether, and washed with brine and saturated aqueous Na₂S₂O₃ solution. The organic layer was dried with MgSO₄ and filtered. The residue was partially evaporated to remove ether under reduced pressure. The crude mixture was then purified using a Kugelrohr distillation apparatus under reduced pressure to afford the alkyne **4d** (1.9 g, 15.04 mmol, 80% yield) as a clear liquid. IR (neat) v_{max} 3297, 2964, 2935, 2874, 2853, 2116, 1670, 1458, 1441, 1355; ¹H-NMR (300 MHz, CDCl₃): δ 5.72–5.82 (m, 1H), 5.44–5.57 (m, 1H), 4.09 (d, *J* = 2.4 Hz, 2H), 3.95–4.00 (m, 2H), 2.38 (t, *J* = 2.4 Hz, 1H), 1.98–2.50 (m, 2H), 0.97 (t, *J* = 7.5 Hz, 3H); ¹³C-NMR (75 MHz, CDCl₃): δ 137.39, 124.25, 79.82, 74.14, 70.35, 56.66, 25.24, 13.21; HRMS (FAB, *m/z*): [M–H]⁻ calcd. for 123.0810, found 123.0807.

3. Absorption and fluorescence emission spectra of compounds 2 and 3

Fig. S1 (a) Comparison of the UV/Vis absorption spectra of compounds 2 (black dotted line) and 3 (red solid line) (30 μ M in CHCl₃); (b) Comparison of the fluorescence emission spectra (λ_{ex} = 345 nm) of compounds 2 (black dotted line) and 3 (red solid line) (30 μ M in CHCl₃).

4. Standard curve of triazolylcoumarin 3

The standard curve of triazolylcoumarin **3** was generated by the injection of 5 μ L of stock standard solutions of **3** to an Agilent 1260 Infinity LC (Agilent Technologies, Palo Alto, CA, USA). The stock standard solutions of **3** were prepared at concentrations of 1, 2, 5, 10, 20, 50, 100, and 200 μ M in methanol. The *x*-axis is the concentration of the stock solutions, and the *y*-axis is the area of peaks in the LC chromatograms (at 345 nm). The linearity of the standard curve was determined by linear regression analysis, which revealed a coefficient of determination (r^2) greater than 0.999.

Fig. S2. Standard curve of triazolylcoumarin 3

5. Representative procedure for the chemical assay with bead 1

Representative procedure for the chemical assay with the sensory bead 1: The sensory beads **1** (0.5 or 1 mg, 0.15 or 0.30 µmol) were pre-swollen in 50 µL DMF in a 96-well round-bottom, polypropylene plate at room temperature for 1 h. The DMF was removed with a multichannel pipette, and a solution of terminal alkynes or natural product extracts in DMF (ca. 30 µL) was added. To the suspension were added tris[(1-benzyl-1*H*-1,2,3-triazol-4-yl)methyl]amine (300 mM in DMF, 10 µL), acetic acid (1.6 µL), *N*,*N*-diisopropylethylamine (2.5 µL), copper(I) sulfate pentahydrate (300 mM in H₂O, 5 µL), and ascorbic acid (1500 mM in DMF, 5 µL). The resulting suspensions were shaken on a horizontal shaker (IKA HS 260 control, Janke & Kunkel & Co. IKA Labortechnik, Staufen, Germany) at 250 rpm at room temperature in the dark. After 20 h, the resulting beads were washed with DMF (200 µL), H₂O (200 µL), MeOH (200 µL), and CH₂Cl₂ (200 µL) three times each. For the cleavage procedure, the beads were treated with a solution of tetrabutylammonium fluoride trihydrate (12 µL, 10 mg/mL in CH₂Cl₂) in CH₂Cl₂ (288 µL) and shaken at room temperature for 15 min. An aliquot (5 or 10 µL) of the reaction solution was analyzed by LC/MS.

LC/MS analysis: LC/MS analysis was performed by using Agilent 6100 Series Single Quad LC/MS systems (Agilent Technologies, Palo Alto, CA, USA). Mobile phase A consisted of 0.1% formic acid in HPLC-grade water. HPLC analysis was performed using a reverse-phase Agilent Eclipse Plus C18 column ($4.6 \times 100 \text{ mm}$, $3.5 \mu \text{m}$) at a flow rate of 0.7 mL/min (20–100% aqueous MeOH with 0.1% formic acid over 20 min and 100% MeOH with 0.1% formic acid from 20 to 25 min). Mass spectra were acquired in both positive and negative ion modes with the capillary voltage set at 4000 eV.

6. LC/MS spectra for validation of the sensory system

(a) A solution of only TBAF \cdot 3H₂O in CH₂Cl₂

Acq. Operator	: Y. Kwon	Seq. Line : 1	
Acq. Instrument	: Instrument 1	Location : Vial 3	
Injection Date	: 16/09/2014 3:46:35 PM	Inj : 1	
		Inj Volume : 10.000 µl	
Different Inj Vo	olume from Sequence !	Actual Inj Volume : 5.000 μl	
Acq. Method	: D:\LC-MS\DATA\DEF_LC 2	2014-09-16 15-45-25\JUN (4 UV, 20PERCEN	
Last changed	: 25/06/2014 4:00:39 PM	by Y. Kwon	
Analysis Method	: C:\CHEM32\1\METHODS\JU	JN (4 UV, 20PERCENTMEOH).M	
Last changed	: 18/09/2014 8:09:19 PM	by Y. Kwon	
	(modified after loadin	ng)	
Method Info	: Reserpine SIM Method f	For the G6130B Quadrupole LC/MS System	
	ESI Positive Ion Sensi	tivity Test	

(b) Reaction with 1-pentyne

The LC/MS data was obtained by injection of 5 μ l of the bead-released sample to LC/MS after 10-fold dilution with DCM.

- LC/MS spectrum of analyte A

```
===================
                                 _____
Acq. Operator
              : [BSB1]
                                               Seq. Line : 2
                                               Location : Vial 23
Acq. Instrument : Instrument 1
Injection Date : 18/03/2015 9:13:01 PM
                                                    Inj: 1
                                             Inj Volume : 10.000 µl
Different Inj Volume from Sequence !
                                       Actual Inj Volume : 5.000 \mu l
Acq. Method
               : D:\LC-MS\DATA\DEFAULT 2015-03-18 20-40-50\JUN (4 UV, 20PERCEN
Last changed
               : 18/03/2015 9:12:07 PM
                 (modified after loading)
Analysis Method : C:\CHEM32\1\METHODS\DEFAULT.M
Last changed
               : 19/03/2015 4:10:31 PM
                 (modified after loading)
Method Info
               : Reserpine SIM Method for the G6130B Quadrupole LC/MS System
                 ESI Positive Ion Sensitivity Test
```


- LC/MS spectrum of analyte B

			=======
Acq. Operator	:	Seq. Line :	1
Acq. Instrument	: Instrument 1	Location :	Vial 22
Injection Date	: 18/03/2015 4:28:53 PM	Inj :	1
		Inj Volume :	10.000 µl
Different Inj Vo	lume from Sequence !	Actual Inj Volume :	5.000 µl
Acq. Method	: D:\LC-MS\DATA\DEFAULT	2015-03-18 16-27-48	JUN (4 UV, 20PERCEN
Last changed	: 25/06/2014 4:00:39 PM	by Y. Kwon	
Analysis Method	: C:\CHEM32\1\METHODS\DE	FAULT.M	
Last changed	: 19/03/2015 4:29:56 PM		
	(modified after loadin	ig)	
Method Info	: Reserpine SIM Method f	or the G6130B Quadru	pole LC/MS System
	ESI Positive Ion Sensi	tivity Test	

Signal 3: DAD1 C, Sig=345,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	1.534	BB	0.0557	7.68445	1.96138	1.2840
2	7.741	BB	0.0952	33.38545	4.68211	5.5784
3	14.220	BB	0.0870	557.40454	99.99574	93.1376

*MSD2 SPC,	time=14.221:14.327 of D:\LC-MS\DAT/	A\DEFAULT 2015-03-18 16-27	-48\022-0101.D ES-API,	Neg, Scan, Frag: 80, "	
30 20 10	- 270.1	329:1 ^{328:1} 329:1 ^{328:1}	396.0	- 458.0	
0-1200	250 30) 350	400	450	500 m/z

(c) Reaction with a set of terminal alkynes

The LC/MS data was obtained by injection of 5 μ l of the bead-released sample to LC/MS after 10-fold dilution with DCM.

Fig. S3 The designed chemical assay with a set of alkynes (**4a–d**). The structures of 3-azidocoumarin **2** and triazolylcoumarins **5a–d** corresponding to alkynes **4a–d** are listed, along with their molecular weights.

	-		
Acq. Operator	:		Seq. Line : 1
Acq. Instrument	:	Instrument 1	Location : Vial 44
Injection Date	:	2/03/2013 4:35:35 PM	Inj: 1
			Inj Volume : 10.000 μl
Acq. Method	:	D:\LC-MS\DATA\DEF_LC 2013-0	03-02 16-33-09\JUN (4 UV, 20PERCEN
Last changed	:	30/01/2013 4:05:39 PM	
Analysis Method	:	C:\CHEM32\1\METHODS\JUN (4	UV, 20PERCENTMEOH).M
Last changed	:	8/07/2014 5:12:31 PM by Y.	Kwon
		(modified after loading)	
Method Info	:	Reserpine SIM Method for the	he G6130B Quadrupole LC/MS System
		ESI Positive Ion Sensitivit	ty Test

Signal 3: DAD1 D, Sig=345,4 Ref=off

RetTime	Туре	Width	Area	Height	Area
[min]		[min]	[mAU*s]	[mAU]	%
1.589	BB	0.1491	153.53854	13.06573	21.0608
6.914	BB	0.0696	10.09527	2.19869	1.3848
10.674	BB	0.0919	123.51051	21.21645	16.9418
11.190	BB	0.0860	109.35860	19.92295	15.0006
12.762	BB	0.0860	104.79527	19.09686	14.3747
13.843	BB	0.0794	119.36368	23.45429	16.3730
15.757	BB	0.0779	108.36459	21.84091	14.8643
	RetTime [min] 6.914 10.674 11.190 12.762 13.843 15.757	RetTime Type [min] 1.589 BB 6.914 BB 10.674 BB 11.190 BB 12.762 BB 13.843 BB 15.757 BB	RetTime Type Width [min] [min] 1.589 BB 0.1491 6.914 BB 0.0696 10.674 BB 0.0919 11.190 BB 0.0860 12.762 BB 0.0860 13.843 BB 0.0794 15.757 BB 0.0779	RetTime Type Width Area [min] [min] [mAU*s] 1.589 BB 0.1491 153.53854 6.914 BB 0.0696 10.09527 10.674 BB 0.0919 123.51051 11.190 BB 0.0860 109.35860 12.762 BB 0.0860 104.79527 13.843 BB 0.0779 108.36459	RetTime Type Width Area Height [min] [min] [mAU*s] [mAU] 1.589 BB 0.1491 153.53854 13.06573 6.914 BB 0.0696 10.09527 2.19869 10.674 BB 0.0919 123.51051 21.21645 11.190 BB 0.0860 109.35860 19.92295 12.762 BB 0.0860 104.79527 19.09686 13.843 BB 0.0794 119.36368 23.45429 15.757 BB 0.0779 108.36459 21.84091

10.731	415839	689.05 I
		345.05 I
		344.15 I
		286.10 I

*MSD2 SPC, time	e=10.676:10.778 of [D:\LC-MS\DATA\DEF_L	C 2013-03-02 16-33-09\	044-0101.D ES-API,	Neg, Scan, Frag: 80, "N	1
15 - 5a		<u>∓</u> [м–н]-				
10-	2				0	
5	286	34			389.0	
0						
200	300	400	500	600	700	800 m/z

11.252	347807	426.15 I
		359.10 I
		358.20 I

(d) Validation of the sensory chemical assay system with the methanol extract of *Litsea japonica*

- Methanol extract of leaves of L. japonica (3 mg)

```
_____
Acq. Operator : [BSB1]Y. Kwon
                                          Seq. Line : 2
Acq. Instrument : Instrument 1
                                           Location : Vial 81
Injection Date : 2/08/2014 3:44:16 PM
                                                Inj: 1
                                          Inj Volume : 10.000 μl
Different Inj Volume from Sequence !
                                 Actual Inj Volume : 5.000 µl
             : D:\LC-MS\DATA\DEF_LC 2014-08-02 15-12-05\JUN (4 UV, 20PERCEN
Acq. Method
Last changed
              : 2/08/2014 3:43:23 PM by Y. Kwon
               (modified after loading)
Analysis Method : C:\CHEM32\1\METHODS\JUN (4 UV, 20PERCENTMEOH).M
Last changed
             : 30/09/2014 8:49:37 PM by Y. Kwon
                (modified after loading)
Method Info
              : Reserpine SIM Method for the G6130B Quadrupole LC/MS System
               ESI Positive Ion Sensitivity Test
```

Signal 1: DAD1 C, Sig=345,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	1.533	BB	0.0507	5.76296	1.73646	0.9438
2	6.798	BB	0.0923	11.98157	1.83250	1.9622
3	7.582	BB	0.1249	40.45161	4.41418	6.6246
4	12.539	BB	0.1018	120.78407	18.57892	19.7804
5	16.932	BB	0.0769	20.97437	4.15377	3.4349
6	17.306	BV	0.0761	20.29920	4.07687	3.3243
7	17.504	VV	0.0853	89.26628	15.93954	14.6189
8	17.659	VB	0.0750	86.38739	17.66754	14.1474
9	18.653	VB	0.0720	214.71689	46.37693	35.1635

I I I I

17.359	43359	539.20
		538.10
		325.05
		295.15

17.549 194743 539.15 I 538.15 I

- Methanol extract of stem heartwood of L. japonica (3 mg)

						-	
Acq. Operator	:	[BSB1]Y. Kwon		Seq	. Line	:	3
Acq. Instrument	:	Instrument 1		Lo	ocation	:	Vial 82
Injection Date	:	2/08/2014 4:15:17 PM			Inj	:	1
			1	Inj	Volume	:	10.000 µl
Different Inj Vo	1	me from Sequence !	Actual 1	Inj	Volume	:	5.000 µl
Acq. Method	:	D:\LC-MS\DATA\DEF_LC	2014-08-02	2 15	5-12-05	עכו	JN (4 UV, 20PERCEN
Last changed	:	2/08/2014 4:14:23 PM	by Y. Kwo	n			
		(modified after loading	ng)				
Analysis Method	:	C:\CHEM32\1\METHODS\D	EFAULT.M				
Last changed	:	30/09/2014 9:45:08 PM	by Y. Kwo	on			
		(modified after loading	ng)				
Method Info	:	Reserpine SIM Method	for the G	6130	B Quadr	u	pole LC/MS System
		ESI Positive Ion Sens:	itivity Te	est			

Signal 3: DAD1 C, Sig=345,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	6.814	BB	0.0830	7.33115	1.27748	1.1602
2	7.444	BB	0.1416	44.36143	4.32897	7.0205
3	9.042	BB	0.0826	7.29431	1.35872	1.1544
4	9.519	BB	0.0953	7.09844	1.16102	1.1234
5	12.524	BB	0.0956	339.85944	55.40146	53.7850
6	17.471	VV	0.0726	90.49281	19.34243	14.3211
7	17.631	VV	0.0729	89.53394	19.01467	14.1693
8	18.628	VB	0.0720	45.91363	9.92785	7.2661

(e) Application of the sensory chemical assay system to Chrysanthemum morifolium

- Methanol extract of whole plants of C. morifolium (10 mg)

Acq. Operator	:	Y. Kwon	Seq. Line : 1	
Acq. Instrument	:	Instrument 1	Location : Vial 56	
Injection Date	:	4/09/2014 8:35:20 PM	Inj: 1	
			Inj Volume : 10.000 μl	
Acq. Method	:	D:\LC-MS\DATA\DEF_LC 2014	4-09-04 20-34-09\JUN (4 UV, 20PERCEN	
Last changed	:	25/06/2014 4:00:39 PM by	Y. Kwon	
Analysis Method	:	C:\CHEM32\1\METHODS\JUN	(4 UV, 20PERCENTMEOH).M	
Last changed	:	6/09/2014 3:49:37 PM by \	Y. Kwon	
		(modified after loading)		
Method Info	:	Reserpine SIM Method for	the G6130B Quadrupole LC/MS System	
		ESI Positive Ion Sensitiv	vity Test	

- Hexane extract (fractionated from methanol extract) of whole plants of C. morifolium (10 mg)

Acq. Operator	: Y. Kwon	Seq. Line : 5
Acq. Instrument	: Instrument 1	Location : Vial 95
Injection Date	: 7/07/2014 12:09:23 PM	Inj: 1
		Inj Volume : 10.000 μl
Different Inj Vo	lume from Sequence !	Actual Inj Volume : 5.000 μl
Acq. Method	: D:\LC-MS\DATA\DEF_LC 20	014-07-07 10-04-11\JUN (4 UV, 20PERCEN
Last changed	: 7/07/2014 12:08:29 PM H	by Y. Kwon
	(modified after loading	3)
Analysis Method	: C:\CHEM32\1\METHODS\JU	N (4 UV, 20PERCENTMEOH).M
Last changed	: 7/07/2014 3:19:55 PM by	y Y. Kwon
	(modified after loading	3)
Method Info	: Reserpine SIM Method for	or the G6130B Quadrupole LC/MS System
	ESI Positive Ion Sensiti	tivity Test

MSD2 BPC, MS File (D:\LC-MS\DATA\DEF_LC 2014-07-07 10-04-11\095-0501.D) ES-API, Neg, Scan, Frag: 80, "Neg ES Scan"

12.528	601566	542.95 I
		522.05 I
		520.90 I
		261.05 I
		260.15 I
		259.95 I

16.129	410650	490.05 I 489.15 I 431.20 I						
*MS	SD2 SPC, time=16.0	84:16.190 of D:\LC-MS\	DATA\DEF_L	.C 2014-07-07	10-04-11\095-05	01.D ES	-API, Neg, Scan, Frag: 80, "N	
6 4 2 1 0		- 311.1		401.0 401.0 401.0 401.0 401.0 401.0	547.0			
	200	300	400	500		600	700	800 m/z
16.530	501116	569.15 I 561.10 I 502.10 I 501.10 I 443.05 I 293.10 I						
M* E	SD2 SPC, time=16.4	81:16.641 of D:\LC-MS\	DATA\DEF_l	C 2014-07-07 ° гм_шт-Т	10-04-11\095-05	01.D ES	-API, Neg, Scan, Frag: 80, "N	
4-				[M-L] ⁶				
2-		- 293.1		- 443.0 - 503.3	569.2		¥2192 11 10 10 10 10 10 10 10 10 10 10 10 10	
	200	300	400	500		600	700	800 m/z
16.901	238989	538.10 I 537.10 I 479.20 I 293.10 I						
*MS	SD2 SPC, time=16.8	79:16.972 of D:\LC-MS\	DATA\DEF_L	.C 2014-07-07	10-04-11\095-05	01.D ES	-API, Neg, Scan, Frag: 80, "N	
6 4 2 0 		233.1		· W]	-H]- <u>F</u> 388 	604.9		<u> </u>
	200	300	400	500		600	700	800 m∕z

7. The list of the screened extracts of various natural plants

The methanol extracts of the tested plants were purchased from the Plant Extract Bank of Korea (Daejeon, Korea).

Entry	Scientific name	Part	Family	Assayed amount	Fluorescence response
1	Achillea sibirica	whole plant	Compositae	5 mg	-
2	Actinodaphne lancifolia	leaves	Lauraceae	5 mg	-
3	Ainsliaea acerifolia	whole plant	Compositae	5 mg	-
4	Angelica dahurica	whole plant	Umbelliferae	5 mg	-
5	Artemisia iwayomogi	whole plant	Compositae	5 mg	-
6	Artemisia princeps var. orientalis	whole plant	Compositae	10 mg	-
7	Betula chinensis	leaves	Betulaceae	5 mg	-
8	Calendula arvensis	whole plant	Compositae	5 mg	-
9	Callistephus chinensis	whole plant	Compositae	5 mg	-
10	Camellia sinensis	stems, leaves	Theaceae	5 mg	-
11	Centaurea cyanus	whole plant	Compositae	5 mg	-
12	Cephalonoplos segetum	whole plant	Compositae	5 mg	-
13	Chamaecyparis obtusa	leaves	Cupressaceae	10 mg	-
14	Chamaecyparis pisifera	leaves, stems	Cupressaceae	10 mg	-
15	Chrysanthemum boreale	whole plant	Compositae	5 mg	-
16	Chrysanthemum indicum	whole plant	Compositae	5 mg	_
17	Chrysanthemum morifolium	whole plant	Compositae	10 mg	0
18	Cinnamomum camphora	leaves	Lauraceae	5 mg	_
19	Dahlia pinnata	whole plant	Compositae	10 mg	_
20	Dendropanax morbifera	whole plant	Dendropanax	5 mg	_
21	Eclipta prostrate	whole plant	Compositae	10 mg	_
22	Erigeron annuus	whole plant	Compositae	5 mg	_
23	Humulus japonicus	whole plant	Cannabinaceae	5 mg	_
24	Hypolepis punctata	whole plant	Pteridaceae	5 mg	_
25	Ixeris polycephala	whole plant	Compositae	5 mg	_
26	Ligularia taquetii	whole plant	Compositae	5 mg	-
27	Lindera glauca	leaves	Lauraceae	10 mg	-
28	Lindera sericea	leaves, stems, fruits	Lauraceae	5 mg	_
29	Lonicera insularis	leaves	Caprifoliaceae	5 mg	-
30	Lythrum salicaria	seeds	Lythraceae	10 mg	-
31	Machilus japonica	leaves, stems	Lauraceae	5 mg	-
32	Machilus thunbergii	stem bark	Lauraceae	5 mg	-
33	Neolitsea sericea	stem bark	Lauraceae	5 mg	-
34	Oenanthe javanica	whole plant	Umbelliferae	5 mg	-
35	Oplopanax elatus	leaves	Araliaceae	5 mg	-
36	Saussurea ussuriensis	whole plant	Compositae	5 mg	-
37	Senecio pseudo-sonchus	whole plant	Compositae	5 mg	-
38	Sonchus asper	whole plant	Compositae	5 mg	-
39	Trillium kamtschaticum	whole plant	Liliaceae	5 mg	-
40	Vaccinium bracteatum	leaves	Ericaceae	5 mg	-
41	Vicia amoena	whole plant	Leguminosae	5 mg	-
42	Youngia denticulata	whole plant	Compositae	5 mg	-

8. Isolation procedure of the natural compound **8** from the extract of *C*. *morifolium*

The methanol extract (30 g) of the whole plant of *Chrysanthemum morifolium* was suspended in H_2O (300 mL) and successively extracted with hexane (3 \times 200 mL), CHCl₃ (3 \times 200 mL), EtOAc (3 \times 200 mL), and *n*-BuOH (3×200 mL) to give dried hexane (4.2 g), CHCl₃ (1.8 g), EtOAc (2.2 g), and *n*-BuOH (4.6 g) extracts. Among the extracts, only the hexane portion exhibited fluorescence emission after the click reaction with sensory bead 1. The hexane fraction was subjected to silica-gel column chromatography and eluted with a gradient mixture of hexane-EtOAc (12:1 to 1:1) and CH₂Cl₂–MeOH (10:1 to 6:1) to give fifteen fractions (A–O). After click reactions with each fraction, the fluorescence response was observed in fractions L and M. After the cleavage step, LC/MS analysis showed that the peak with a molecular ion of m/z 537 ($[M-H]^-$) was predominant in fraction M. This finding indicates that fraction M contains a larger amount of the target compound (real molecular mass of 277 Daltons) compared to fraction L. Subsequently, fraction M (61 mg) was purified by semi-preparative reverse-phase HPLC conducted with a Phenomenex Luna 10 μ m C18(2) column (250×10.00 mm) at a flow rate of 5 mL/min (30-100% aqueous MeCN with 0.1% formic acid over 20 min and 100% MeCN with 0.1% formic acid from 20 to 25 min) to give pure diyne 8 (1.2 mg) as a white solid. IR (CHCl₃) v_{max} 3291, 3060, 3030, 2917, 2226, 1653, 1625, 1610, 1544, 1260; ¹H-NMR (500 MHz, CDCl₃): δ 7.10–7.34 (m, 5H), 6.18 (dd, *J* = 15.0, 11.0 Hz, 1H), 6.01–6.09 (m, 1H), 5.73 (d, J = 14.5 Hz, 1H), 5.45 (br s, 1H), 3.61 (q, J = 6.5 Hz, 2H), 2.85 (t, J = 6.8 Hz, 2H), 2.37-2.45 (m, 4H), 1.98 (s, 1H); ¹³C-NMR (125 MHz, CDCl₃): δ 165.96, 140.57, 139.20, 138.90, 129.74, 128.79, 128.67, 126.53, 122.93, 68.22, 65.49, 65.03, 40.66, 35.67, 31.25, 18.80; HRMS (FAB, *m/z*): [M+H]⁺ calcd. for 278.1545, found 278.1543.

9. ¹H NMR and ¹³C NMR Spectra

220 200 180 160 140 120 100 80 60 40 20 ppm

		ter:	HZ HZ Sec K K Sec Sec	HMH: MH:	ers MH: Hz
대 야 리 event universativ contractionersativ contrac	Parameters ov17-ph-jhj 1	tion Parame 20141117 20141117 13.20 spect m PABBO BB/ 2930 2930 32768 32768 44 4	8012.820 0.244532 0.244532 2.0447233 62.4402 62.400 6.298.0 1.00000000	NNEL fl === 500.1332508 1H 10.20 19.00000000	ing paramet 16384 500.1300133 EM 0.30 1.00
	ent Data 10 NO	- Acquisi 	N EJ	==== CHA	. Process 0
Transferration of the second s	CULL NAME EXPN PROC	F2 - Time Time PROB PROB PULP TD SOLV NS DS	FIDR FIDR AQ DW DE DE TE TD0 TD0	SF01 SF01 NUC1 P1 PLW1	F2 SF WDW CSSB FC PC

10. References

- (1) R. I. Jølck, H. Sun, R. H. Berg and T. L. Andresen, Chem. Eur. J., 2011, 17, 3326–3331.
- (2) M. Wagner, S. Dziadek and H. Kunz, Chem. Eur. J., 2003, 9, 6018-6030.
- (3) K. Mikami, S. Kataoka, Y. Yusa and K. Aikawa, Org. Lett., 2004, 6, 3699-3701.