A pH-responsive Soluble Polymer-based Homogeneous System for Fast and Highly Efficient N-glycoprotein/glycopeptide Enrichment and Identification by Mass Spectrometry

Haihong Bai,^{§ab} Chao Fan,^{§a} Wanjun Zhang,^{§a} Yiting Pan,^{ab} Lin Ma,^c Wantao Ying^a Jianhua Wang,^c Yulin Deng,^b Xiaohong Qian^{*a} and Weijie Qin^{*a}

^a National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics,

Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing,

China.

^b School of Life Science and Technology, Beijing Institute of Technology, Beijing,

China.

^c Research Center for Analytical Sciences, College of Sciences, Northeastern

University, Shenyang, China.

* Corresponding authors' E-mail: aunp_dna@126.com and qianxh1@163.com

§ These authors contributed equally to this work.

The molecular weight and pH response of poly-(AA-co-MA), the standard curve of BCA titration of poly-(AA-co-hydrazide) copolymer, UV adsorption analysis of the pH-dependent transparency changes of poly-(AA-co-hydrazide)-asialofetuin conjugates, SDS-PAGE characterization of glycoprotein recovery of poly-(AA-co-hydrazide) based enrichment, the number of glycopeptides and non-glycopeptides identified using different methods were included in the supporting information.

Polymerization time	1h	2h	4h	10h	20h
Mn (g/mol)	15440	36330	63430	144900	214100
Mw/Mn	1.205	1.702	1.183	1.492	1.662

 Table S1. Molecular weight of poly-(AA-co-MA) obtained using different polymerization time.

Figure S1. pH response of poly-(AA-co-MA) with molecular weights ranging from 15440 to 214100.

Figure S2. Standard curve of BCA titration of poly-(AA-co-hydrazide) copolymer.

Figure S3. UV absorption analysis of the pH-dependent transparency changes of the poly-(AA-co-hydrazide)-asialofetuin conjugates. The UV absorption of the poly-(AA-co-hydrazide)-asialofetuin conjugates at pH 6.0 before the first cycle was set as 100% transparency and the UV adsorption of the conjugates at pH 2.0 in the sixth cycle was set as 0% transparency.

Figure S4. SDS-PAGE characterization of poly-(AA-co-hydrazide)-asialofetuin conjugates (lane 1) and free asialofetuin (lane 2) after PNGase F treatment.

Poly-(AA-co-hydrazide)									
	Test 1	Test 2	Test 3	Total	non-				
				redundant					
N-glycopeptides	843	748	965	1317					
Non-glycopeptides	429	372	472	741					
Commercial cross-linked agarose-hydrazide beads									
	Test 1	Test 2	Test 3	Total	non-				
				redundant					
N-glycopeptides	300	321	286	533					
Non-glycopeptides	1128	1136	1359	2135					
Non-enriched									
	Test 1	Test 2	Test 3	Total	non-				
				redundant					
N-glycopeptides	29	23	26	56					

Table S3. The number of identified N-glycopeptides and non-glycopeptides obtained by different methods.