Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2015

Remote Functionalization of Hydrocarbons with Reversibility Enhanced Stereocontrol**

Alexandre Vasseur, Lionel Perrin*, Odile Eisentein and Ilan Marek*

Table of Contents

General information	.S2
General procedure for the synthesis of 3b-d , 3g-j and 3I-m	.\$3
General procedure for the synthesis of 3e-f , 3k and 3n	.\$3
Typical procedure for the synthesis 30	.\$3
General procedure for the synthesis of 3p-q	.S4
Typical procedure for the synthesis 3r	.S4
Characterization data of the products	.\$5
Pathways considered for the computational study	.S10
Computational details	.S11
Cartesian coordinates	.S11
References	.S26
NMR spectra	.S27

General information.

All reactions were carried out under an atmosphere of argon, with flame-dried flasks under positive pressure of argon and with dry, oxygen-free solvents using standard Schlenk techniques. All reagents were purchased from commercial suppliers and used without further purification. All organometallic compounds, dry solvents and reagents were transferred using plastic single-use graduated syringes and oven-dried stainless steel needles. *n*-BuLi (1.6M in hexanes), is commercially obtained from Aldrich and regularly titrated under argon atmosphere by 1M solution of 2-isobutanol in toluene, using 1,10-phenantroline as indicator.

Ketones, allyl bromide, benzoyl chloride and iodobenzene were purchased from commercial suppliers and distilled prior to use under an atmosphere of argon as follows:

- Acetone was distilled from CaSO₄,
- Diethyl Ketone was distilled from P₂O₅,
- Cyclohexanone and cyclopentanone were distilled from MgSO₄,
- Allyl bromide, benzoyl chloride and iodobenzene were distilled from CaCl₂.

Progress of the reactions was monitored by analytical TLC using glass plates precoated with silica gel with F254 indicator (Merck). Visualization of spots was done using phosphomolybdic acid followed by heating. Frontal ratios (R_f) of each synthesized compounds were determined from the reaction crude by analytical TLC using glass plates precoated with silica gel with F254 indicator (Merck). Purification of crude mixtures was accomplished by column chromatography on silica gel 60 Å (GraceResolv). *E/Z* and diastereoisomeric ratios were measured by ¹H and ¹³C NMR analysis.

¹H and ¹³C NMR spectra were measured on Brucker Avance AV300 (300 MHz) spectrometer in CDCl₃ and referenced to TMS. Chemical shifts values (δ) are reported in ppm (calibration of spectra to the residual peak of CDCl₃: δ = 7.26 ppm (s) for ¹H NMR; δ = 77.16 ± 0.06 ppm for ¹³C NMR). All the proton spectra reported as following: δ value (multiplicity, J coupling constant in Hz, number of nuclei). Multiplicity contractions used: (s) – singlet, (d) – doublet, (dd) – doublet of doublet, (t) – triplet, (q) – quartet, (p) – quintuplet, (m) – multiplet, (bs) – broad singlet. ω -ene cyclopropanes were easily prepared by a standard procedure sequence reported in the literature:¹ Simmons-Smith reaction from tribsubstituted homoallylic alcohols², followed by Swern and Wittig reaction respectively.³

General procedure for the synthesis of 3b-d, 3g-j and 3l-m.

Into a flame-dried, 100-mL three-neck flask, containing a solution of bis(cyclopentadienyl)zirconium dichloride (496.9 mg, 1.7 mmol) in dry Et₂O (10 ml) and equipped with a magnetic stirrer, a low temperature thermometer, a rubber septum and an inert gas inlet, was added dropwise a solution of *n*-butyllithium (1.6 M in hexanes, 2.13 ml, 3.4 mmol) at -78 °C under inert atmosphere. After stirring for 45 min at -78 °C, substrate **1** (1 mmol) diluted in 2 mL of dry Et₂O was added dropwise to the solution at -78 °C. The resulting mixture was allowed to slowly warm-up to room temperature (over 5,5 hours if n = 1 or 12 hours if n = 2 or 3) at which time the reaction mixture is a yellow-orange suspension. Dry THF (40 mL) is then added to the reaction mixture and the resulting solution was heated at 55 °C for 3 hours. The freshly distilled first electrophile (3.0 mmol) is added dropwise after cooling the reaction mixture at 0 °C and the resulting solution was allowed to stir for 2 hours at that temperature. Finally, the reaction mixture is hydrolyzed with an aqueous solution of 1M HCl. The layers were separated and the aqueous phase was extracted with Et₂O (3 times). The combined organic fractions were washed with brine, dried over MgSO₄, filtered and concentrated under reduced pressure. The products **3b-d**, **3g-j** and **3l-m** were isolated by silica-gel chromatography (SiO₂, *n*-pentane / Et₂O, 80:20 – 90:10).

General procedure for the synthesis of 3e-f, 3k and 3n.

Into a flame-dried, 100-mL three-neck flask, containing a solution of bis(cyclopentadienyl)zirconium dichloride (496.9 mg, 1.7 mmol) in dry Et₂O (10 ml) and equipped with a magnetic stirrer, a low temperature thermometer, a rubber septum and an inert gas inlet, was added dropwise a solution of n-butyllithium (1.6 M in hexanes, 2.13 ml, 3.4 mmol) at -78 °C under inert atmosphere. After stirring for 45 min at -78 °C, substrate 1 (1 mmol) diluted in 2 mL of dry Et₂O was added dropwise to the solution at -78 °C. The resulting mixture was allowed to slowly warm-up to room temperature (over 5,5 hours if n = 1 and 12 hours if n = 3) at which time the reaction mixture is a yellow-orange suspension. Dry THF (40 mL) is then added to the reaction mixture and the resulting solution was heated at 55 °C for 3 hours. The freshly distilled first electrophile (3.0 mmol) is added dropwise after cooling the reaction mixture at 0 °C and the resulting solution was allowed to stir for 2 hours at that temperature. The second electrophile, iodine (1.269 g, 5.0 mmol) solubilized in dry THF (5 mL) is then added at 0 °C and stirred for additional 2 hours at that temperature. Finally, the reaction mixture is hydrolyzed with an aqueous solution of 1M HCl. The layers were separated and the aqueous phase was extracted with Et₂O (3 times). The combined organic fractions were washed with a saturated aqueous solution of Na₂S₂O₃, brine, dried over MgSO₄, filtered and concentrated under reduced pressure. The products 3e-f, 3k and 3n were isolated by silica-gel chromatography (SiO₂, n-pentane / Et₂O, 80:20 – 90:10).

Typical procedure for the synthesis of 3o.

Into a flame-dried, 100-mL three-neck flask, containing a solution of bis(cyclopentadienyl)zirconium dichloride (496.9 mg, 1.7 mmol) in dry Et_2O (10 mL) and equipped with a magnetic stirrer, a low temperature thermometer, a rubber septum and an inert gas inlet, was added dropwise a solution of

n-butyllithium (1.6 M in hexanes, 2.13 ml, 3.4 mmol) at -78 °C under inert atmosphere. After stirring for 45 min at -78 °C, **1b** (180.3 mg, 1 mmol) diluted in 2 mL of dry Et₂O was added dropwise to the solution at -78 °C. The resulting mixture was allowed to slowly warm-up to room temperature over 5,5 hours at which time the reaction mixture is a yellow-orange suspension. Dry THF (40 mL) is then added to the reaction mixture and the resulting solution was heated at 55 °C for 3 hours. Freshly distilled acetone (220 μ L, 3.0 mmol) is added dropwise after cooling the reaction mixture at 0 °C and the resulting solution was allowed to stir for 2 hours at that temperature. The second electrophile, freshly distilled allyl bromide (5.0 mmol, 433 μ L), is added to the solution at 0 °C, followed by the addition at that temperature of Cul (190,5 mg, 0.1 mmol) and flame-dried LiCl (8.5 mg, 0.2 mmol) brought into solution in dry THF (3 mL). The resulting mixture was allowed to stir at 55 °C for 2 hours at which time it was quenched with an aqueous solution of 1M HCl. The layers were separated and the aqueous phase was extracted with Et₂O (3 times). The combined organic fractions were washed with brine, dried over MgSO₄, filtered and concentrated under reduced pressure. The crude was purified by silica-gel chromatography (SiO₂, *n*-pentane / Et₂O, 80:20) to afford **30** as a unique isomer in 56% yield.

General procedure for the synthesis of 3p-q.

Into a flame-dried, 100-mL three-neck flask, containing a solution of bis(cyclopentadienyl)zirconium dichloride (496.9 mg, 1.7 mmol) in dry Et₂O (10 mL) and equipped with a magnetic stirrer, a low temperature thermometer, a rubber septum and an inert gas inlet, was added dropwise a solution of n-butyllithium (1.6 M in hexane, 2.13 ml, 3.4 mmol) at -78 °C under inert atmosphere. After stirring for 45 min at -78 °C, **1b** (180.3 mg, 1 mmol) diluted in 2 mL of dry Et₂O was added dropwise to the solution at -78 °C. The resulting mixture was allowed to slowly warm-up to room temperature over 5,5 hours at which time the reaction mixture is a yellow-orange suspension. Dry THF (40 mL) is then added to the reaction mixture and the resulting solution was heated at 55 °C for 3 hours. Freshly distilled acetone (220 µL, 3.0 mmol) is added dropwise after cooling the reaction mixture at 0 °C and the resulting solution was allowed to stir for 2 hours at that temperature. Cul (190,5 mg, 0.1 mmol) and flame-dried LiCl (8.5 mg, 0.2 mmol) brought into solution in dry THF (3 mL) were added at 0 °C, followed by the addition of acid chloride (2.0 mmol) at that temperature. The resulting mixture was allowed to stir at 55 °C for 3 hours at which time it was guenched with an aqueous solution of 1M HCl. The layers were separated and the aqueous phase was extracted with Et₂O (3 times). The combined organic fractions were washed with brine, dried over MgSO₄, filtered and concentrated under reduced pressure. The crude was purified by column chromatography by silica-gel chromatography (SiO₂, *n*-pentane / Et₂O, 80:20-60:40).

Typical procedure for the synthesis of 3r.

Into a flame-dried, 100-mL three-neck flask, containing a solution of bis(cyclopentadienyl)zirconium dichloride (496.9 mg, 1.7 mmol) in dry Et_2O (10 mL) and equipped with a magnetic stirrer, a low temperature thermometer, a rubber septum and an inert gas inlet, was added dropwise a solution of *n*-butyllithium (1.6 M in hexane, 2.13 ml, 3.4 mmol) at -78 °C under inert atmosphere. After stirring for 45 min at -78 °C, **1b** (180.3 mg, 1 mmol) diluted in 2 mL of dry Et_2O was added dropwise to the solution at -78 °C. The resulting mixture was allowed to slowly warm-up to room temperature over 5,5 hours at which time the reaction mixture is a yellow-orange suspension. Dry THF (40 mL) is then added to the reaction mixture and the resulting solution was heated at 55 °C for 3 hours. Freshly distilled acetone (220 µL, 3.0 mmol) is added dropwise after cooling the reaction mixture at 0 °C and the resulting solution was allowed to stir for 2 hours at that temperature. Cul (190,5 mg, 0.1 mmol) and flame-dried LiCl (8.5 mg, 0.2 mmol) brought into solution in dry THF (3 mL) were added at 0 °C,

followed by the addition of iodobenzene (1.1 mmol, 123 μ L) and Pd(PPh₃)₄ (115.5 mg, 0.1 mmol) solubilzed in dry THF respectively at that temperature. The resulting mixture was allowed to stir at 58 °C for 3.5 hours at which time it was quenched with an aqueous solution of 1M HCl. The layers were separated and the aqueous phase was extracted with Et₂O (3 times). The combined organic fractions were washed with brine, dried over MgSO₄, filtered and concentrated under reduced pressure. The crude was purified by column chromatography by silica-gel chromatography (SiO₂, *n*-pentane / Et₂O, 80:20) to afford **3r** as a unique isomer in 50% yield.

Characterization data of the products.

(3*R*,6*S*,*E*)-2,3,6-trimethyl-6-propyldec-4-en-2-ol (3b). Light yellow color oil; 83%; *E*/*Z* > 99.9; dr = 98:2; R_f = 0.57 (*n*-pentane / Et₂O, 80:20); ¹H NMR (300 MHz, CDCl₃) δ 0.82-0.87 (m, 6H), 0.90 (s, 3H), 0.98 (d, *J* = 6.90 Hz, 3H), 1.10 (s, 3H), 1.15 (s, 3H), 1.17-1.26 (m, 10H), 1.66 (s, 1H), 2.13 (qd, *J* = 8.50, 6.91, 6.87 Hz, 1H), 5.16 (dd, *J* = 15.76, 8.79 Hz, 1H), 5.35 (d, *J* = 15.77 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃): δ 14.01, 14.80, 15.91, 17.22, 23.14, 23.38, 26.24, 26.39, 26.74, 38.66, 41.06, 43.70, 48.61, 72.09, 128.22, 141.82. ESHRMS for C₁₆H₃₂NaO⁺: calcd: 263.2351. Found: 263.2349.

1-((2*R***,5***S***,***E***)-5-methyl-5-propylnon-3-en-2-yl)cyclopentanol (3c).** Colorless oil; 62%; *E/Z* > 99.9; dr = 98:2; R_f = 0.39 (*n*-pentane / Et₂O, 90:10); ¹H NMR (300 MHz, CDCl₃) δ 0.83-0.89 (m, 6H), 0.91 (s, 3H), 1.03 (d, *J* = 6.88 Hz, 3H), 1.10-1.28 (m, 10H), 1.35 (s, 1H), 1.49-1.65 (m, 6H), 1.76-1.81 (m, 2H), 2.22 (p, *J* = 6.90, 6.87 Hz, 1H), 5.25 (dd, *J* = 15.83, 7.81 Hz, 1H), 5.36 (d, *J* = 15.85 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃): δ 14.06, 14.84, 15.72, 17.28, 23.20, 23.41, 23.99, 26.36, 37.35, 38.22, 38.63, 41.08, 43.78, 46.35, 84.04, 128.45, 141.04. ESHRMS for C₁₈H₃₅O⁺: calcd: 267.2688. Found: 267.2692.

1-((2*R***,5***S***,***E***)-5-methyl-5-propylnon-3-en-2-yl)cyclohexanol (3d).** Light yellow oil; 52%; *E*/*Z* > 99.9; dr = 98:2; R_f = 0.51 (*n*-pentane / Et₂O, 90:10); ¹H NMR (300 MHz, CDCl₃) δ 0.83-0.89 (m, 6H), 0.91 (s, 3H), 0.99 (d, *J* = 6.93 Hz, 3H), 1.10-1.28 (m, 11H), 1.39-1.61 (m, 10H), 2.11 (qd, *J* = 13.88, 6.91 Hz, 1H), 5.20 (dd, *J* = 15.77, 8.63 Hz, 1H), 5.33 (d, *J* = 15.79 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃): δ 14.07, 14.84, 15.00, 17.26, 21.77, 21.86, 23.18, 23.42, 25.86, 26.42, 34.13, 35.04, 38.71, 41.11, 43.46, 47.53, 72.42, 127.97, 141.51. ESHRMS for C₁₉H₃₇O⁺: calcd: 281.2844. Found: 281.2847.

Me OH Pr Et Et Bu

(4*R*,7*R*,*E*)-3-ethyl-7-(iodomethyl)-4-methyl-7-propylundec-5-en-3-ol (3e). Yellow oil; 56%; *E*/*Z* > 99.9; dr = 98:2; R_f = 0.79 (*n*-pentane / Et₂O, 80:20); ¹H NMR (300 MHz, CDCl₃) δ 0.83-0.92(m, 12H), 0.99 (d, *J* = 6.94 Hz, 3H), 1.09-1.25 (m, 5H), 1.26-1.30 (m, 2H), 1.32-1.42 (m, 5H), 1.44-1.55 (m, 4H),

2.31 (td, J = 15.79, 7.26, Hz, 1H), 3.19 (s, 1H), 5.22 (d, J = 16.03 Hz, 1H), 5.33 (dd, J = 16.01, 8.33 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃): δ 7.46, 7.59, 14.00, 14.59, 15.06, 16.91, 20.51, 23.14, 26.10, 27.96, 28.47, 36.61, 38.86, 41.40, 43.79, 75.41, 131.58, 136.94. ESHRMS for C₁₈H₃₆IO⁺: calcd: 395.1811. Found: 395.1815.

(3*R*,6*R*,*E*)-6-(iodomethyl)-2,3-dimethyl-6-propyldec-4-en-2-ol (3f). Yellow oil; 51%; *E*/*Z* > 99.9; dr = 98:2; R_f = 0.44 (*n*-pentane / Et₂O, 80:20); ¹H NMR (300 MHz, CDCl₃) δ 0.84-0.90 (m, 6H), 0.99 (d, *J* = 6.92 Hz, 3H), 1.06-1.11 (m, 2H), 1.13 (s, 3H), 1.16 (s, 3H), 1.17-1.43 (m, 8H), 1.75 (bs, 1H), 2.15 (tq, *J* = 6.87, 4.05 Hz, 1H), 3.14 (d, *J* = 9.87 Hz, 1H), 3.18 (d, *J* = 9.88 Hz, 1H), 5.22-5.24 (m, 2H). ¹³C NMR (75 MHz, CDCl₃): δ 13.98, 14.59, 15.91, 16.82, 20.58, 23.12, 26.15, 26.19, 27.08, 36.54, 38.47, 41.42, 48.69, 72.22, 131.54, 137.80. ESHRMS for C₁₆H₃₂IO⁺: calcd: 367.1498. Found: 367.1495.

(3*R*,6*S*,*E*)-6-ethyl-2,6-dimethyl-3-propyldec-4-en-2-ol (3g). Yellow oil; 62%; *E*/*Z* > 99.9; dr = 98:2; R_f = 0.37 (*n*-pentane / Et₂O, 90:10); ¹H NMR (300 MHz, CDCl₃) δ ¹H NMR (300 MHz, CDCl₃) δ 0.76 (t, *J* = 7.5 Hz, 3H), 0.86 (td, *J* = 7.1, 2.8 Hz, 6H), 1.10 (s, 3H), 0.91 (s, 3H), 1.12 – 1.16 (m, 2H), 1.17 (s, 3H), 1.19 – 1.53 (m, 10H), 1.72 (s, 1H), 1.84 – 2.01 (m, 1H), 5.00 (dd, *J* = 15.7, 9.6 Hz, 1H), 5.35 (d, *J* = 15.7 Hz, 1H).). ¹³C NMR (75 MHz, CDCl₃): 8.49, 13.90, 14.02, 21.10, 22.48, 23.38, 26.51, 26.55, 26.85, 31.71, 33.51, 39.13, 40.83, 55.02, 71.86, 127.16, 143.82. ESHRMS for C₁₇H₃₄NaO⁺: calcd: 277.2507.

(3*R*,6*S*,*E*)-6-ethyl-2,6-dimethyl-3-propyldec-4-en-2-ol (3h). Yellow oil; 61%; *E*/*Z* > 99.9; dr = 98:2; R_f = 0.60 (*n*-pentane / Et₂O, 90:10); ¹H NMR (300 MHz, CDCl₃) δ 0.75 (t, *J* = 7.46 Hz, 3H), 0.83-0.88 (m, 6H), 0.90 (s, 3H), 1.09 (s, 3H), 1.15-1.10 (m, 2H), 1.16 (s, 3H), 1.17-1.52 (m, 10H), 1.75 (bs, 1H), 1.86-1.96 (m, 1H), 4.99 (dd, *J* = 15.74, 9.63 Hz, 1H), 5.34 (d, *J* = 15.74 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃): δ 8.48, 13.89, 14.01, 21.09, 22.50, 23.38, 26.51, 26.63, 26.81, 31.68, 33.51, 39.12, 40.83, 55.01, 71.87, 127.19, 143.73. ESHRMS for C₁₇H₃₄NaO⁺: calcd: 277.2507. Found: 277.2508.

1-((4*R***,7***S***,***E***)-7-ethyl-7-methylundec-5-en-4-yl)cyclopentanol (3i)**. Yellow oil; 61%; *E*/*Z* > 99.9; dr = 97:3; R_f = 0.80 (*n*-pentane / Et₂O, 90:10); ¹H NMR (300 MHz, CDCl₃) δ 0.76 (t, *J* = 7.47 Hz, 3H), 0.83-0.98 (m, 6H), 0.90 (s, 3H), 1.02-1.34 (m, 10H), 1.39-1.62 (m, 9H), 1.71-1.80 (m, 2H), 2.00 (ddd, *J* = 11.94, 9.53, 2.52 Hz, 1H), 5.06 (dd, *J* = 15.76, 9.41 Hz, 1H), 5.30 (d, *J* = 15.77 Hz, 1H).). ¹³C NMR (75 MHz, CDCl₃): δ 8.51, 13.94, 14.04, 20.88, 22.57, 23.42, 23.94, 23.99, 26.45, 31.77, 33.58, 37.65, 38.05, 39.02, 40.82, 52.74, 84.14, 127.49, 142.49. ESHRMS for C₁₉H₃₇O⁺: calcd: 281.2844. Found: 281.2840.

1-((4*R*,**7***S*,**E**)-**7-ethyl-7-methylundec-5-en-4-yl)cyclohexanol (3j).** Yellow oil; 62%; *E*/*Z* > 99.9; dr = 98:2; R_f = 0.80 (*n*-pentane / Et₂O, 90:10); ¹H NMR (300 MHz, CDCl₃) δ 0.76 (t, *J* = 7.45, 3H), 0.86 (t, *J* = 6.95 Hz, 6H), 0.90 (s, 3H), 1.02-1.33 (m, 12H), 1.36-1.61 (m, 1H), 1.71-1.95 (m, 11H), 5.02 (dd, *J* = 15.76, 9.63 Hz, 1H), 5.29 (d, *J* = 15.76 Hz, 1H).). ¹³C NMR (75 MHz, CDCl₃): δ 8.52, 13.94, 14.05, 21.08, 21.74, 21.85, 22.60, 23.42, 25.93, 26.52, 30.63, 33.55, 34.47, 34.93, 39.12, 40.83, 54.21, 72.44, 126.89, 143.22. ESHRMS for C₂₀H₃₉O⁺: calcd: 295.3001. Found: 295.3002.

(3*R*,6*R*,*E*)-6-ethyl-6-(iodomethyl)-2-methyl-3-propyldec-4-en-2-ol (3k). Yellow oil; 55%; *E*/*Z* > 99.9; dr = 96:4; R_f = 0.60 (*n*-pentane / Et₂O, 80:20); ¹H NMR (300 MHz, CDCl₃) δ 0.77 (t, *J* = 7.44 Hz, 1H), 0.84-0.90 (m, 6H), 1.05-1.12 (m, 1H), 1.13 (s, 3H), 1.14-1.17 (m, 1H), 1.18 (s, 3H), 1.19-1.55 (m, 10H), 1.87-2.02 (m, 2H), 3.15 (d, *J* = 9.90 Hz, 1H), 3.22 (d, *J* = 9.91 Hz, 1H), 5.07 (dd, *J* = 15.92, 9.50 Hz, 1H), 5.26 (d, *J* = 15.94 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃): δ 7.88, 13.89, 13.96, 19.89, 21.18, 23.12, 26.40, 26.49, 27.07, 28.35, 31.70, 36.15, 41.89, 55.05, 72.06, 130.46, 139.78. ESHRMS for C₁₇H₃₄IO⁺: calcd: 381.1654. Found: 381.1659.

(4*R*,7*R*,*E*)-3,7-diethyl-7-(iodomethyl)-4-propylundec-5-en-3-ol (3l). Yellow oil; 59%; *E*/*Z* > 99.9; dr = 98:2; R_f = 0.73 (*n*-pentane / Et₂O, 90:10); ¹H NMR (300 MHz, CDCl₃) δ 0.76 (t, *J* = 7.46 Hz, 3H), 0.89-0.81 (m, 12H), 0.91 (s, 3H), 1.05-1.35 (m, 11H), 1.37-1.63 (m, 6H), 2.00-2.12 (m, 1H), 5.05 (dd, *J* = 15.76, 9.59 Hz, 1H), 5.30 (d, *J* = 15.77 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃): δ 7.34, 7.48, 8.51, 13.92, 14.05, 21.10, 22.50, 23.43, 26.52, 28.26, 28.66, 30.75, 33.62, 39.14, 40.85, 50.11, 75.14, 127.08, 142.95. ESHRMS for C₁₉H₃₉O⁺: calcd: 283.3001. Found: 283.2997.

(3*R*,6*S*,*E*)-3-butyl-6-ethyl-2,6-dimethyldec-4-en-2-ol (3m). Yellow oil; 50%; *E*/*Z* > 99.9; dr = 98:2; R_f = 0.43 (*n*-pentane / Et₂O, 90:10); ¹H NMR (300 MHz, CDCl₃) δ 0.77 (t, *J* = 7.5 Hz, 3H), 0.87 (t, *J* = 7.0 Hz, 6H), 0.92 (s, 3H), 1.11 (s, 3H), 1.18 (s, 3H), 1.19-1.35 (m, 13H), 1.71 (bs, 1H), 1.85– 1.96 (m, 13H), 5.01 (dd, *J* = 15.8, 9.6 Hz, 1H), 5.35 (d, *J* = 15.7 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 8.48, 13.98, 14.04, 22.43, 22.54, 23.39, 26.54, 26.87, 29.13, 30.29, 33.45, 39.14, 40.87, 55.21, 71.92, 127.20, 143.87.

(35,65,E)-6-(iodomethyl)-2,6-dimethyl-3-propyldec-4-en-2-ol ((35*,65*)-3n). Orange oil; 57%; *E/Z* > 99.9; dr = 95:5; R_f = 0.61 (*n*-pentane / Et₂O, 80:20); ¹H NMR (300 MHz, CDCl₃) δ0.83-0.89 (m, 6H), 1.09 (s, 3H), 1.12 (s, 3H), 1.16 (s, 3H), 1.17-1.52 (m, 10H), 1.79 (bs, 1H), 1.89-1.97 (m, 1H), 3.12-3.19 (m, 2H), 5.11 (dd, *J* = 15.76, 9.56 Hz, 1H), 5.33 (d, *J* = 15.76 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 13.96,

13.97, 21.13, 22.62, 23.13, 24.34, 26.81, 26.84, 26.96, 31.54, 39.18, 39.62, 54.75, 72.05, 129.69, 139.90. ESHRMS for $C_{16}H_{31}INaO^+$: calcd: 389.1317. Found: 389.1316.

(3*R*,6*S*,*E*)-6-(iodomethyl)-2,6-dimethyl-3-propyldec-4-en-2-ol ((3*R**,6*S**)-3n). Yellow oil; 52%; *E*/*Z* > 99.9; dr = 95:5; R_f = 0.60 (*n*-pentane / Et₂O, 80:20); ¹H NMR (300 MHz, CDCl₃) δ 0.81-0.84 (m, 6H), 1.04 (s, 3H), 1.09 (s, 3H), 1.14 (s, 3H), 1.15-1.49 (m, 10H), 1.97-1.85 (m, 1H), 2.00 (bs, 1H), 3.14 (s, 2H), 5.05 (dd, *J* = 15.68, 9.63 Hz, 1H), 5.26 (d, *J* = 15.69 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃): δ 13.88, 13.94, 21.16, 23.15, 23.31, 23.74, 26.33, 27.10, 27.37, 31.72, 39.80, 39.83, 54.76, 72.06, 130.03, 140.45. ESHRMS for C₁₆H₃₁INaO⁺: calcd: 389.1317. Found: 389.1312.

(3*R***,6***S***,***E***)-6-butyl-2-methyl-3,6-dipropyldeca-4,9-dien-2-ol (3o).** Light yellow oil; 56%; *E/Z* > 99.9; dr = 98:2; R_f = 0.545 (*n*-pentane / Et₂O, 80:20); ¹H NMR (300 MHz, CDCl₃) δ0.84-0.90 (m, 6H), 1.01 (d, *J* = 6.92 Hz, 3H), 1.03-1.12 (m, 2H), 1.13 (s, 3H), 1.17 (s, 3H), 1.17-1.41 (m, 10H), 1.59 (s, 9H), 1.83-1.93 (m, 2H), 2.16 (qd, *J* = 8.24, 6.92, 6.92, 6.87 Hz, 1H), 4.86-5.02 (m, 2H), 5.18 (dd, *J* = 15.89, 8.37 Hz, 1H), 5.29 (d, *J* = 15.90 Hz, 1H), 5.72-5.86 (m, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 14.06, 14.81, 16.04, 16.65, 23.70, 25.62, 26.41, 26.80, 28.05, 36.07, 36.26, 39.23, 41.05, 48.87, 72.17, 113.73, 129.30, 139.42, 141.18. ESHRMS for C₁₉H₃₇O⁺: calcd: 281.2844. Found: 281.2844.

(3*S*,6*R*,*E*)-3-butyl-7-hydroxy-6,7-dimethyl-3-propyl-1-(thiophen-2-yl)oct-4-en-1-one (3q). Yellow oil; 53%; *E*/*Z* > 99.9; dr = 98:2; R_f = 0.40 (*n*-pentane / Et₂O, 80:20); ¹H NMR (300 MHz, CDCl₃) δ0.83-0.94 (m, 6H), 1.09 (s, 3H), 1.15 (s, 3H), 1.18-1.31 (m, 6H), 1.38-1.55 (m, 4H), 2.07-2.17 (m, 1H), 2.32 (bs, 1H), 2.77 (d, *J* = 14.73 Hz, 1H), 2.97 (d, *J* = 14.72 Hz, 1H), 5.21 (dd, *J* = 15.86, 8.93 Hz, 1H), 5.47 (d, *J* = 15.91 Hz, 1H), 7.08-7.11 (m, 1H), 7.60 (dd, *J* = 4.94, 0.98 Hz, 1H), 7.66 (dd, *J* = 3.76, 1.05 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 14.04, 14.64, 15.90, 16.96, 23.20, 25.46, 25.71, 27.20, 37.10, 38.28, 42.04, 46.16, 48.70, 72.18, 127.89, 129.46, 131.73, 133.60, 139.91, 146.01, 192.33. ESHRMS for C₂₁H₃₅O₂S⁺: calcd: 351.2358. Found: 351.2362.

(3*R*,65,*E*)-6-benzyl-2,3-dimethyl-6-propyldec-4-en-2-ol (3r). Orange oil; 50%; *E*/*Z* > 99.9; dr = 98:2; R_f = 0.52 (*n*-pentane / Et₂O, 80:20); ¹H NMR (300 MHz, CDCl₃) δ 0.87-0.92 (m, 6H), 0.95 (d, *J* = 6.92 Hz, 3H), 1.01 (s, 3H), 1.11 (s, 3H), 1.19-1.31 (m, 10H), 1.46 (s, 1H), 2.08-2.20 (m, 1H), 2.56 (d, *J* = 13.24 Hz, 1H), 2.61 (d, *J* = 13.23 Hz, 1H), 4.99 (dd, *J* = 15.87, 9.00 Hz, 1H), 5.35 (d, *J* = 15.88 Hz, 1H), 7.08-7.01 (m, 2H), 7.12-7.25 (m, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 14.15, 14.71, 16.02, 16.95, 23.32, 25.86, 25.94, 26.95, 35.73, 38.00, 42.82, 44.34, 48.98, 72.18, 125.74, 127.50, 129.29, 130.37, 138.71, 140.65. ESHRMS for C₂₂H₃₆NaO⁺: calcd: 339.2664. Found: 339.2665.

Pathways considered for the computational study

Gibbs Free energy in Kcal.mol⁻¹

Computational details

The electronic structure calculations required for the depiction of minima and transition states molecular structures were performed at the density functional theory (DFT) level using the M06⁴ hybrid functional as implemented in the Gaussian program code.⁵ This density functional was shown to perform well for computing activation energies of reaction that involve zirconocene.⁶ Zirconium atom was described by the corresponding scalar relativistic pseudopotentials of the Stuttgart-Dresden-Koln type⁷ in association with its valence extended basis set.⁸ For the rest atoms the polarized all-electron triple zeta basis set 6-311G(d,p) was used.⁹ Optimization were carried without any geometry constraint. Enthalpy energies were obtained at T = 298.15K based on the harmonic approximation. Solvation by diethylether has been taken into account in all calculations, including optimizations and frequency calculation, by the SMD implicit solvent model.¹⁰ Intrinsic Reaction Paths (IRPs) were traced from the various transition structures to verify the reactant to product linkage.¹¹

Cartesian Coordinates

Cp_2ZrBu_2

47

47			
E:	-749.479981740	5 ; H: -749.050	0430 ; G: -749.123732
Zr	0.11628007	0.16524502	0.06203976
С	0.89993457	2.25053996	1.35087888
С	-0.29850926	1.80193542	1.94191290
С	1.89337420	1.27836304	1.58637768
Н	1.03012923	3.16890527	0.79245948
С	-0.04318212	0.54513580	2.54237095
Н	-1.24461382	2.32812002	1.94354949
С	1.31433200	0.22923341	2.32612946
Н	2.91467786	1.31233130	1.22643656
Н	-0.75753592	-0.05808333	3.08860008
Н	1.81801308	-0.66990866	2.65552098
С	-1.43239956	-0.96677707	-1.65693018
С	-1.69959986	-1.56061537	-0.40457861
С	-1.82835539	0.38387510	-1.59568319
Н	-0.97287324	-1.45374724	-2.50856859
С	-2.25928955	-0.57430142	0.43371988
Н	-1.49733168	-2.58828519	-0.13091816
С	-2.33811666	0.63048987	-0.30412881
Н	-1.74146055	1.10970905	-2.39399064
Н	-2.58157499	-0.71566592	1.45757819
Н	-2.73137798	1.57347677	0.05384329
С	1.09197195	1.45578794	-1.61477995
С	1.26952723	0.83136929	-2.99291707
Н	2.08906983	1.71426695	-1.21828911
Н	0.55645306	2.41657130	-1.70247373

```
С
    2.12189477 1.65978587 -3.94956646
    1.73426117 -0.16578070 -2.90516040
Н
Н
    0.29163198 0.65452840 -3.46876059
    2.28852521 1.01223491 -5.31161819
С
    1.66785738 2.65586726 -4.05856876
Н
    3.10833389 1.82790865 -3.49307047
Н
    2.90992281 1.61596294 -5.98186921
Н
    2.76063787 0.02574542 -5.22448815
Н
Н
    1.31847203 0.86712541 -5.80311979
С
    1.39774505 -1.80025531 0.08250769
С
    1.41545232 -2.75429382 -1.10363242
Н
    1.15189648 -2.36218162 1.00016717
Н
    2.42299829 -1.41747237 0.24460105
С
    2.43817979 -3.88027964 -0.98565557
Н
    0.42345962 -3.21139414 -1.24839690
    1.62142717 -2.20784758 -2.03953908
Н
С
    2.43989991 -4.80575297 -2.18791795
    3.43797420 -3.44276865 -0.84847348
н
Н
    2.23280064 -4.45413401 -0.06957106
н
    3.17738830 -5.60975918 -2.08996076
    1.45772775 -5.27443669 -2.32793747
Н
    2.67277487 -4.25615047 -3.10839576
н
```

butane

14

E: -158.361764616 ; H: -158.224513 ; G: -158.259004 С -2.21343556 1.96738637 0.01743523 -1.87842415 2.45191446 -0.91134515 н H -3.31181259 1.94577608 -0.03399793 -1.76941178 2.78467180 1.21459581 С -0.67557696 2.84449539 1.26787949 Н -2.15437534 3.80902971 1.17858442 н -2.11754815 2.33374644 2.15185916 Н С -1.68898254 0.54168919 0.05155598 -2.02395494 0.05719975 0.98037149 н -0.59060351 0.56332207 0.10296486 Н С -2.13301253 -0.27569034 -1.14554218 H -1.74800872 -1.30003112 -1.10946636 н -3.22684596 -0.33556800 -1.19879118 H -1.78491827 0.17517420 -2.08284961

but-1-ene

12

E: -157.127678195 ; H: -157.014278 ; G: -157.047991

C -2.50685551 1.98069181 0.15561964

```
Н
  -2.48796825 2.41721250 -0.85133822
   -3.54220023 2.06639162 0.51562440
Н
С
   -2.12701590 0.53949562 0.08146342
Н
   -2.14153110 -0.00403528 1.02922619
С
   -1.76126850 -0.09617598 -1.02273940
   -1.72980215 0.41334062 -1.98461188
Н
   -1.48219073 -1.14600173 -1.01610760
Н
С
   -1.59167925 2.76213669 1.08818791
   -0.55400146 2.72637710 0.73832455
Н
  -1.88918070 3.81328965 1.15507708
Н
H -1.61238722 2.34515338 2.10180891
```

Substrate

```
28
```

E: -	391.648071	616 ; H: -391	.381740 ; G: -391.432473
С	-1.999285	0.568473	-0.035726
С	-0.497892	0.498087	-0.027494
С	-1.190909	1.833678	0.012478
Н	-0.070425	0.171543	0.922883
Н	-1.177680	2.404649	0.937210
Н	-1.144207	2.434528	-0.893946
С	-2.757435	0.236346	-1.295711
Н	-2.764764	-0.843008	-1.494568
Н	-3.802387	0.562114	-1.209955
Н	-2.336732	0.729789	-2.176406
С	-2.688439	0.144233	1.242659
Н	-3.664130	0.648890	1.313002
Н	-2.096838	0.499704	2.097528
С	-2.877894	-1.358996	1.348028
Н	-3.305073	-1.643425	2.315079
Н	-3.550244	-1.738501	0.570617
Н	-1.919152	-1.881873	1.240522
С	0.323023	0.101102	-1.223356
Н	0.373316	-0.995106	-1.304257
Н	-0.152433	0.454479	-2.148311
С	1.741437	0.663525	-1.150980
Н	2.235035	0.312016	-0.234136
Н	1.673124	1.759612	-1.071848
С	2.563861	0.294168	-2.338689
Н	2.181129	0.628936	-3.305681
С	3.685104	-0.412181	-2.297601
Н	4.239667	-0.663884	-3.197256
Н	4.095705	-0.765779	-1.353081

49 E: -825.627343725 ; H: -825.187319 ; G: -825.260798 C -2.592489 0.872411 0.156363 C -1.451276 1.796102 -0.221183 С -2.861719 2.108657 -0.649829 H -1.090528 2.395875 0.615473 H -3.390395 2.930293 -0.172173 H -3.085960 1.982202 -1.707674 -2.690851 С -0.470411 -0.513587 H -2.118360 -1.225474 0.043028 H -3.729074 -0.818454 -0.571783 H -2.295803 -0.445746 -1.533198 C -3.044482 0.905650 1.599421 H -2.844924 1.906753 2.006582 H -2.430702 0.206195 2.187324 C -4.516357 0.573377 1.780241 H -4.832462 0.702929 2.820570 H -5.144354 1.223928 1.158601 н -4.736732 -0.462564 1.500080 -0.439519 1.451900 -1.258439 С н -0.868059 1.273001 -2.247362 С 0.713890 0.669945 -0.986352 1.014590 0.059908 Н 0.553714 С 2.881321 -0.469514 -1.602807 2.761188 н -1.550514 -1.759333 3.727456 Н -0.148480 -2.218680 н 3.159429 -0.324815 -0.552355 С 1.629308 0.275537 -1.935465 2.960826 2.280897 -2.736512 н 1.310946 0.253209 -2.980539 Н 1.358372 Zr 2.921345 -2.008314 С 1.418770 4.570339 -3.931790 1.381941 С 3.301999 -4.548063 С 0.182604 4.772968 -3.272496 2.251773 н 5.261934 -3.956331 С 0.135571 2.715568 -4.256358 2.176601 н 2.855989 -5.130033 С -0.608178 3.625507 -3.466901 -0.103533 н 5.653251 -2.710284 -0.193465 -4.574875 1.733664 Н -1.608844 н 3.470996 -3.083662 С 1.555030 3.278393 0.526801 С 2.854368 2.962740 0.079803 С 1.176089 4.506212 -0.050339

н

0.949941

2.679033

1.193695

С	3.292105	4.006728	-0.765109
Н	3.417197	2.071324	0.327315
С	2.256409	4.959342	-0.846005
Н	0.227347	5.011237	0.090182
Н	4.247991	4.057161	-1.268405
Н	2.283661	5.879601	-1.415548

A 49

E:	-825.623315064	4 ; H: -825.179701 ; G: -825.253689
С	-2.14066920	0.11652997 -0.02664652
С	-0.95228189	1.05872794 -0.06395357
С	-2.35568139	1.60309342 -0.11843091
Н	-0.47693454	1.15724923 0.91123834
Н	-2.76223151	2.12063355 0.74890778
Н	-2.68302159	2.00462590 -1.07717140
С	-2.45340699	-0.74159915 -1.22246914
Н	-1.82443967	-1.64326093 -1.23300709
Н	-3.50049098	-1.06789482 -1.21744485
Н	-2.28967353	-0.21628759 -2.16770058
С	-2.46058122	-0.52725844 1.30561974
Н	-2.05737836	0.10487778 2.10948851
Н	-1.92950603	-1.48933808 1.37785005
С	-3.94652884	-0.74565085 1.54310211
Н	-4.13786286	-1.13839876 2.54732194
Н	-4.50136032	0.19549492 1.44338916
Н	-4.37612948	-1.45797185 0.83011869
С	-0.03486722	1.18538076 -1.23659526
Н	-0.55109680	0.89471900 -2.15358640
С	1.37826479	0.75094119 -1.20223170
Zr	1.28512014	2.98108623 -1.82053727
С	1.80728352	4.06471223 -4.06966688
С	2.00045008	2.68538207 -4.30379860
С	0.43137380	4.26703374 -3.80272884
Н	2.57207542	4.83201556 -4.09330237
С	0.76052149	2.03837296 -4.16916063
Н	2.94730032	2.20135256 -4.51427915
С	-0.21703821	3.01303045 -3.86731302
Н	-0.04319378	5.21882932 -3.59623768
Н	0.58915088	0.97373819 -4.26711843
Н	-1.27364270	2.82948419 -3.71731831
С	1.07743672	3.55110329 0.68761718
С	2.45010590	3.55349485 0.35426471
С	0.45210005	4.61678807 0.01279324
Н	0.58709499	2.85909873 1.35752907

2.67270223	4.63170583	-0.53911202
3.19888430	2.86852131	0.73189559
1.43424354	5.28101410	-0.75526808
-0.60406908	4.85855967	0.05118645
3.62335689	4.91715119	-0.97449569
1.27060173	6.13916306	-1.39572611
1.98085146	0.20753196	0.07783414
3.07938015	0.21617775	0.00828012
1.74206518	0.85514244	0.93281423
1.52626769	-1.21399694	0.39256633
1.78664912	-1.89584115	-0.42687397
1.98873128	-1.60372344	1.30838553
0.43776060	-1.26048742	0.52072796
1.66255862	0.11363235	-2.05088831
	2.67270223 3.19888430 1.43424354 -0.60406908 3.62335689 1.27060173 1.98085146 3.07938015 1.74206518 1.52626769 1.78664912 1.98873128 0.43776060 1.66255862	2.67270223 4.63170583 3.19888430 2.86852131 1.43424354 5.28101410 -0.60406908 4.85855967 3.62335689 4.91715119 1.27060173 6.13916306 1.98085146 0.20753196 3.07938015 0.21617775 1.74206518 0.85514244 1.52626769 -1.21399694 1.78664912 -1.89584115 1.98873128 -1.60372344 0.43776060 -1.26048742 1.66255862 0.11363235

В

49

E: ·	-825.623650	641 ; H: -825	.180197 ; G: -825.253665
С	-2.179063	0.144138	-0.073397
С	-0.848457	0.864412	-0.086494
С	-2.128343	1.630545	0.141603
Н	-0.271128	0.694098	0.824145
Н	-2.343775	2.022115	1.134898
Н	-2.462008	2.266083	-0.679143
С	-2.762131	-0.364667	-1.363926
Н	-2.344191	-1.345516	-1.629350
Н	-3.850957	-0.476094	-1.291698
Н	-2.568957	0.315007	-2.200176
С	-2.479213	-0.710102	1.139894
Н	-1.924473	-0.304884	1.997709
Н	-2.082837	-1.723430	0.972944
С	-3.954726	-0.790357	1.495368
Н	-4.108490	-1.330539	2.435616
Н	-4.385125	0.211981	1.613988
Н	-4.535340	-1.310344	0.725754
С	0.003448	1.038234	-1.308449
Н	-0.512022	0.696434	-2.210389
С	1.425320	0.653719	-1.299152
Н	1.829322	0.577052	-0.279033
С	3.456376	-0.485332	-2.295921
Н	3.942327	-0.521412	-1.312406
Н	3.821967	-1.341842	-2.874136
Н	3.806259	0.428579	-2.795496
С	1.943893	-0.485656	-2.153629
Н	1.484189	-0.455450	-3.151243

Н	1.632641	-1.455335	-1.724983
Zr	1.266987	2.881395	-1.883890
С	1.801725	3.960968	-4.118700
С	1.930073	2.576351	-4.371313
С	0.438108	4.223585	-3.838898
Н	2.598829	4.694579	-4.141719
С	0.658880	1.990089	-4.240841
Н	2.847942	2.049617	-4.606358
С	-0.269167	3.001560	-3.915668
Н	0.009832	5.193862	-3.617865
Н	0.431923	0.939710	-4.363846
Н	-1.330982	2.860660	-3.750308
С	1.107146	3.306362	0.649593
С	2.469537	3.399188	0.297621
С	0.418857	4.378005	0.045850
Н	0.663021	2.546701	1.277313
С	2.624478	4.529858	-0.543830
Н	3.254301	2.722037	0.611647
С	1.354556	5.136011	-0.688554
Н	-0.644435	4.573468	0.121072
Н	3.551625	4.884400	-0.978795
н	1.138287	6.021885	-1.273403

С

49

E: -825.627208637 ; H: -825.183922 ; G: -825.257526

С	-2.159196	0.549540	-0.169236	
С	-0.669100	0.774502	-0.229147	
С	-1.614657	1.748912	-0.894706	
Н	-0.239294	1.129106	0.710140	
Н	-1.771969	2.729049	-0.448224	
Н	-1.636779	1.738599	-1.982685	
С	-2.740491	-0.587841	-0.966271	
Н	-2.648311	-1.535641	-0.412532	
Н	-3.806108	-0.436205	-1.177430	
Н	-2.235757	-0.718456	-1.928557	
С	-2.860453	0.821320	1.144342	
Н	-2.271520	1.556072	1.711620	
Н	-2.867951	-0.098141	1.751580	
С	-4.284113	1.330914	0.989967	
Н	-4.723264	1.589703	1.959193	
Н	-4.315117	2.229389	0.361412	
Н	-4.938288	0.582888	0.528643	
С	0.258690	-0.081184	-1.039874	
Н	-0.035485	-0.085434	-2.094681	

С	1.724504	0.037640	-0.872099
Н	1.999550	0.581087	0.040366
С	4.061091	0.429085	-1.774007
Н	4.654567	0.798448	-2.618353
Н	4.344974	1.017489	-0.892188
Н	4.364693	-0.607994	-1.578192
С	2.568136	0.529215	-2.032439
Н	2.323480	1.584396	-2.250654
Н	2.315049	-0.015798	-2.953250
Zr	1.084566	-2.125669	-0.425256
С	1.291883	-3.530290	1.728745
С	2.183897	-2.449483	1.895057
С	-0.020233	-3.012101	1.676075
Н	1.570160	-4.572732	1.626953
С	1.424712	-1.262753	1.960194
Н	3.264262	-2.517310	1.951469
С	0.060064	-1.604698	1.821608
Н	-0.928482	-3.590832	1.551510
Н	1.817970	-0.264882	2.098192
Н	-0.774607	-0.916168	1.842669
С	0.950840	-2.470136	-2.974693
С	2.283090	-2.733520	-2.586763
С	0.125410	-3.467720	-2.421395
Н	0.620432	-1.648797	-3.596628
С	2.276341	-3.894995	-1.779053
Н	3.154758	-2.157793	-2.869771
С	0.940431	-4.351512	-1.684530
Н	-0.951563	-3.532721	-2.526942
Н	3.141243	-4.362058	-1.321816
н	0.601466	-5.216303	-1.126352

D

49

E: -825.624522773; H: -825.181375; G: -825.257027 C -2.05472425 0.59735918 -0.19734689 C -0.55201379 0.71958521 -0.20694359 C -1.40817965 1.78160510 -0.86281527 H -0.13890521 1.01501377 0.75757248 H -1.51139679 2.75360044 -0.38315195 H -1.39451659 1.81227826 -1.95068399 C -2.70182738 -0.46295577 -1.04869853 H -2.70056783 -1.43443756 -0.52999128 H -3.74644625 -0.21811215 -1.27655462 H -2.18816081 -0.59850702 -2.00477701 C -2.77355022 0.87838776 1.10554582

-2.14506900 1.53987664 1.71873156 Н -2.87901448 -0.05853296 1.67570975 Н С -4.14199664 1.51504585 0.92655775 -4.58609119 1.78642670 1.89000148 Н -4.07340070 2.42895324 0.32391027 Н -4.84536469 0.84139499 0.42541199 Н 0.32391153 -0.17187738 -1.03090043 С -0.04480950 -0.21748147 -2.05942987 Н С 1.80621366 -0.10041324 -0.93549100 2.28163449 -0.16025139 -1.92309066 н С 2.56934444 2.30522503 -0.91044271 Н 3.05094675 3.10133603 -0.32902532 Н 3.14181952 2.17902416 -1.83794407 1.56742554 2.65265729 -1.19133734 Н С 2.48879520 0.99360335 -0.13811917 3.50641534 0.68310411 0.14581200 Н 1.96704817 1.18172906 0.80841548 Н Zr 1.13618465 -2.22586714 -0.38984667 С 1.29437200 -3.63625906 1.76916652 С 2.22360498 -2.58663193 1.92268149 С 0.00086977 -3.07366556 1.71598425 1.53553079 -4.68839777 1.67154517 н С 1.50664409 -1.37216643 1.98253340 3.30079518 -2.69324312 1.97962573 Н С 0.12870100 -1.66924339 1.85260490 Н -0.92720485 -3.62160887 1.59763843 1.93784712 -0.39136422 2.12595091 Н Н -0.68263386 -0.95440189 1.88161387 С 1.08483171 -2.53702245 -2.94405355 С 2.37854851 -2.90060300 -2.51472953 С 0.16763007 -3.47613618 -2.43229059 0.83909115 -1.67894809 -3.55610164 н С 2.25991348 -4.06723708 -1.72282845 3.29643663 -2.37504769 -2.74606897 н С 0.89108339 -4.42762556 -1.68214587 Н -0.90653652 -3.46069308 -2.57817425 Н 3.07148354 -4.60089987 -1.24191141 Н 0.47085173 -5.27219818 -1.14872597

TSA-Imin

49

E: -825.610705200 ; H: -825.170032 ; G: -825.240680 C -0.37276649 -0.67546230 0.11218227

- C 1.04224647 -0.13939069 0.16058788
- C -0.31200370 0.64404766 -0.55290430

Zr	1.40163755	2.49231906 -0.02248399
С	0.68778704	2.93046669 2.40528222
С	1.96741628	2.34142051 2.49382776
С	0.83172725	4.19541614 1.78887112
н	-0.23586988	2.50510238 2.77316983
С	2.89945485	3.23492732 1.92537366
н	2.19631664	1.37373109 2.92463922
С	2.20053936	4.38090606 1.49977167
н	0.03966108	4.90499892 1.59205145
Н	3.96537089	3.06819676 1.84119881
Н	2.63471469	5.24996433 1.02192805
С	2.14686203	1.84975983 -2.38721596
С	2.01998926	3.25278536 -2.40853865
С	3.24812335	1.52384786 -1.55501712
Н	1.53460928	1.14373848 -2.93488679
С	3.02244114	3.79330124 -1.58070690
Н	1.29030092	3.82126647 -2.96619051
С	3.79753441	2.72348712 -1.07658029
Н	3.62024277	0.52774544 -1.34859782
Н	3.19041330	4.84624274 -1.39176028
Н	4.64658661	2.81116608 -0.41073605
Н	-0.16347914	0.56133988 -1.63085860
С	-0.81607386	1.89753694 -0.04652630
Н	-1.33368866	1.86443875 0.90767585
С	-0.69144684	3.16299338 -0.77249541
С	-0.59135217	-1.86621105 -0.80172591
Н	-1.65799711	-1.92404807 -1.06401024
Н	-0.05500625	-1.68374080 -1.74349243
С	-1.09768916	-0.76251617 1.43011438
Н	-0.89534185	0.10495631 2.06584992
Н	-2.18308274	-0.81787765 1.27594048
Н	1.76200891	-0.63155793 -0.48932147
Н	1.39049175	0.06900263 1.17257724
С	-0.13514925	-3.18643881 -0.20647892
Н	-0.75158579	-3.48428546 0.64830612
н	-0.19289738	-3.99264987 -0.94441214
Н	0.90435372	-3.12765882 0.13975831
Н	-0.78833478	-1.65184797 1.99031286
С	-1.12198485	3.23829140 -2.22820644
Н	-0.82821386	4.21117170 -2.64852406
Н	-0.59965993	2.48865611 -2.83937953
С	-2.62291541	3.05678530 -2.41010962
Н	-3.18170692	3.81995010 -1.85399914
Н	-2.92100420	3.12813984 -3.46357220
н	-2.94704586	2.07804892 -2.03634385

TSB-IMaj

49

E:	-825.615411	741 ; H: -825	.173809 ; G: -825.246764
С	-0.404613	-0.655344	0.112666
С	1.002067	-0.101100	0.101030
С	-0.403891	0.697560	-0.484004
Zr	1.320101	2.541277	0.028418
С	0.702754	3.058839	2.462080
С	1.819226	2.203362	2.557500
С	1.121074	4.261719	1.844438
Н	-0.293986	2.844184	2.823172
С	2.928381	2.859563	1.988474
Н	1.820114	1.207101	2.983552
С	2.501356	4.135208	1.556925
Н	0.505261	5.130865	1.653734
Н	3.927602	2.452178	1.892393
Н	3.118414	4.889112	1.085201
С	2.083957	1.781773	-2.326027
С	1.677433	3.112126	-2.504608
С	3.229405	1.777611	-1.484831
Н	1.611392	0.907019	-2.755696
С	2.553740	3.943643	-1.773972
Н	0.828633	3.445619	-3.086617
С	3.529274	3.116283	-1.173793
Н	3.795187	0.906464	-1.176257
Н	2.500903	5.023520	-1.708447
Н	4.351816	3.451410	-0.554643
Н	-0.312343	0.681836	-1.572385
С	-0.905845	1.918065	0.092672
Н	-1.379991	1.856882	1.070271
С	-0.808327	3.219373	-0.555782
Н	-0.845435	3.172850	-1.653020
С	-0.658893	-1.805543	-0.842308
Н	-1.737652	-1.875489	-1.045467
Н	-0.181502	-1.567625	-1.803522
С	-1.039852	-0.814483	1.470538
Н	-0.820798	0.035494	2.125078
Н	-2.131022	-0.897281	1.386661
Н	1.684763	-0.537849	-0.624848
Н	1.416616	0.041768	1.098426
С	-0.141066	-3.140686	-0.336518
Н	-0.701724	-3.491575	0.536173
Н	-0.222200	-3.914348	-1.106469

```
H0.914947-3.073210-0.045799H-0.669084-1.7132441.975746C-1.6979124.317963-0.028585H-1.3205205.297772-0.356212H-1.6578814.3348741.070502C-3.1484624.169042-0.470863H-3.5658893.214794-0.127756H-3.2257264.182969-1.565136
```

TSI-C

49

E:	E: -825.559885794 ; H: -825.118789 ; G: -825.190989						
С	-0.291481	-0.555587	0.106670				
С	1.093368	-0.003000	0.350215				
С	-0.280874	0.839880	-0.410960				
Zr	1.525887	2.570473	0.048836				
С	0.924818	3.987005	2.100480				
С	1.078190	2.631486	2.481941				
С	2.172571	4.463228	1.667325				
Н	-0.000162	4.550716	2.114994				
С	2.445616	2.267534	2.298294				
Н	0.293143	1.994525	2.870676				
С	3.110480	3.411181	1.791122				
Н	2.373190	5.452278	1.272584				
Н	2.904386	1.322906	2.562884				
Н	4.161957	3.468449	1.538385				
С	2.311055	1.618196	-2.252850				
С	1.552322	2.762304	-2.541004				
С	3.440620	1.996492	-1.495507				
Н	2.056719	0.604819	-2.540100				
С	2.196284	3.885429	-1.963284				
Н	0.608771	2.781368	-3.075301				
С	3.370105	3.408513	-1.321093				
Н	4.230715	1.341120	-1.150891				
Н	1.889999	4.919173	-2.056583				
Н	4.110177	4.024811	-0.827122				
Н	-0.077374	0.868726	-1.481719				
С	-0.963589	2.015851	0.084360				
Н	-0.591432	3.022244	-0.296909				
С	-2.090984	2.139272	0.820425				
Н	-2.695493	1.255314	1.024215				
С	-0.393187	-1.622378	-0.970116				
Н	-1.432328	-1.673882	-1.328339				
Н	0.210184	-1.303938	-1.832411				

С	-1.066841	-0.884998	1.360146
Н	-1.052564	-0.061751	2.079815
Н	-2.114962	-1.124030	1.138975
Н	1.883601	-0.433595	-0.264659
Н	1.331400	0.083601	1.409106
С	-2.581535	3.430308	1.381172
Н	-2.296064	3.519041	2.443945
Н	-2.069906	4.263125	0.873448
С	-4.089847	3.587727	1.266873
Н	-4.608692	2.772957	1.785788
Н	-4.432517	4.530256	1.706133
Н	-4.410148	3.566937	0.219192
С	0.066709	-2.996541	-0.517997
Н	-0.608154	-3.430287	0.227419
Н	0.109577	-3.694883	-1.359795
Н	1.068683	-2.952771	-0.072973
Н	-0.622941	-1.756369	1.856718

Imin

```
49
E: -825.634660050 ; H: -825.190660 ; G: -825.262252
С
    -0.96568223 -2.48204056 0.04193353
С
    0.51738430 -2.10814342 0.20496363
С
    -1.40681553 -1.24449592 -0.71338096
Zr
    0.53898354 0.32750212 -0.10353019
С
    -0.32428339 1.12070189 2.21092596
С
    0.56710506 0.06247084 2.45447959
С
    0.40629655 2.19719849 1.65518423
    -1.38540481 1.12324187 2.42388331
Н
С
    1.85299252 0.46923210 2.03795082
Н
    0.31369493 -0.90298747 2.87084054
С
    1.75365093 1.79981244 1.57072815
Н
    0.00227954 3.15590082 1.35519271
н
    2.75474141 -0.12992072 2.08043258
    2.56837594 2.40619352 1.19709050
Н
С
    1.31235649 -0.23064196 -2.48746437
С
    1.11403097 1.16599393 -2.46886303
С
    2.40589708 -0.52574923 -1.64131428
Н
    0.74286868 -0.95117110 -3.06179653
С
    2.06233818 1.73030737 -1.59497567
н
    0.36725241 1.71365936 -3.02421538
С
    2.86974299 0.68170177 -1.09529497
Н
    2.81944422 -1.50596752 -1.44929694
    2.15728577 2.78244488 -1.35585739
Н
Н
    3.69584975 0.78497945 -0.40298165
```

-1.14662091 -1.26413806 -1.77571256 Н С -1.89307153 -0.07935489 -0.18402442 Н -2.20325552 -0.11813577 0.85944507 -1.67797794 1.22726339 -0.74930243 С С -1.19028441 -3.71870826 -0.83666107 -2.26654373 -3.80433021 -1.05888819 Н -0.69440029 -3.53406290 -1.80247910 Н С -1.67980620 -2.64891438 1.37325481 -1.59252127 -1.76170365 2.00822014 Н -2.74976005 -2.85143050 1.22861529 н Н 1.10286473 -2.58130704 -0.59192158 Н 0.94149106 -2.42685386 1.16689031 С -0.67804909 -5.02357879 -0.25672327 -1.25036124 -5.33467908 0.62401483 Н -0.74584657 -5.83465437 -0.98933580 Н 0.37334208 -4.93846699 0.04352986 Н -1.24889401 -3.48250966 1.93863286 Н С -2.03128719 1.46728869 -2.20378370 С -3.53914136 1.50616815 -2.42208799 н -1.60148102 0.69222897 -2.85241348 -1.59781456 2.41777717 -2.54357174 Н -3.79532937 1.71205562 -3.46820925 н -3.99877149 0.54954927 -2.14642313 Н Н -4.00508453 2.28426515 -1.80539568 Н -2.06620858 2.02880280 -0.11237270

IMaj

49

```
E: -825.640176263 ; H: -825.196907 ; G: -825.268908
C -0.984294 -2.477799 0.092464
C 0.504885 -2.098119 0.143205
C -1.478187 -1.229366 -0.610322
Zr 0.435587 0.336613 -0.073640
C -0.271561 0.871331 2.343545
C 0.723343 -0.116925 2.436590
C 0.319394
            2.042039
                      1.809216
H -1.303151 0.766443 2.652027
C 1.929558 0.424388
                      1.944181
H 0.589148
            -1.122418
                      2.809683
С
   1.680288
             1.770570 1.583179
H -0.184396
            2.981635
                      1.620761
H 2.875761 -0.097694 1.862874
H 2.402821
            2.467888
                      1.179195
С
   1.148714 -0.203121 -2.508710
С
   0.774883 1.155351 -2.525982
```

С	2.301140	-0.326617	-1.697468
Н	0.649530	-1.012195	-3.027632
С	1.671080	1.868876	-1.704146
Н	-0.066454	1.578269	-3.058996
С	2.629710	0.951304	-1.213751
Н	2.837709	-1.242071	-1.485736
Н	1.641175	2.932922	-1.501583
Н	3.467846	1.186308	-0.570701
Н	-1.234806	-1.195813	-1.677016
С	-2.017222	-0.097413	-0.049695
Н	-2.379700	-0.161337	0.978364
С	-1.798420	1.213931	-0.569032
Н	-1.735773	1.264259	-1.660598
С	-1.281969	-3.709620	-0.770637
Н	-2.372877	-3.788786	-0.908072
Н	-0.861366	-3.524455	-1.771193
С	-1.595967	-2.647260	1.473877
Н	-1.469760	-1.754848	2.093717
Н	-2.671913	-2.859398	1.409929
Н	1.011733	-2.507702	-0.739661
Н	1.029456	-2.468968	1.033216
С	-0.734139	-5.018875	-0.233899
Н	-1.240200	-5.327285	0.687411
Н	-0.862622	-5.829268	-0.959162
Н	0.337502	-4.940664	-0.013950
Н	-1.118745	-3.474507	2.011010
С	-2.528404	2.381777	0.041281
Н	-2.033532	3.321082	-0.244262
Н	-2.461419	2.329569	1.137654
С	-3.996194	2.442804	-0.360777
Н	-4.523738	1.536267	-0.039291
Н	-4.509482	3.304175	0.082641
Н	-4.104584	2.513297	-1.449685

References

¹S. Harada, H. Kiyono, R. Nishio, T. Taguchi, Y. Hanzawa, J. Org. Chem. **1997**, 62, 3994.

²S. R. Nagarajan, H. –F. Lu, A. F. Gasiecki, I. K. Khanna, M. D. Parikh, B. N. Desai, T. E. Rogers, M. Clare, B. B. Chen, M. A. Russell, J. L. Keene, T. Duffin, V. W. Engleman, M. B. Finn, S. K. Freeman, J. A. Klover,

G. A. Nickols, M. A. Nickols, K. E. Shannon, C. A. Steininger, W. F. Westlin, M. M. Westlin, M. L.

Williams, Bioorg. Med. Chem. 2007, 15, 3390.

³C. Mandès, S. Renard, M. Rofoo, M. –C. Roux, G. Rousseau, *Eur. J. Org. Chem.* **2003**, 463.

⁴Y. Zhao and D. G. Truhlar, *Theor. Chem. Acc.*, 2008, 120, 215.

⁵Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.

⁶Y. Sun, H. Chen, J. Chem. Theory Comput. **2013**, *9*, 4735.

⁷D. Andrae, U. Haeussermann, M. Dolg, H. Stoll, H. Preuss, *Theor. Chim. Acta*, **1990**, 77, 123.

⁸J.M.L. Martin, A. Sundermann, J. Chem. Phys., **2001**, 114, 3408.

⁹(a) A. D. McLean, G. S. Chandler, *J. Chem. Phys.* **1980**, *72*, 5639; (b) K. Raghavachari, J. S. Binkley, R. Seeger, and J. A. Pople *J. Chem. Phys.* **1980**, *72*, 650.

¹⁰A. V. Marenich, C. J. Cramer, and D. G. Truhlar, *J. Phys. Chem. B*, **2009**, *113*, 6378.

¹¹(a) C. Gonzalez and H. B. Schlegel, *J. Chem. Phys.* **1989**, *90*, 2154; (b) C. Gonzalez and H. B. Schlegel, *J. Phys. Chem.* **1990**, *94*, 5523.

NMR Spectra

S35

S55

S63