Supporting Information

for

N^6 -hydroperoxymethyladenosine: a new intermediate of chemical oxidation of N^6 -methyladenosine mediated by bicarbonate-activated hydrogen peroxide

Jinjun Wu,[‡] Heng Xiao,[‡] Tianlu Wang,[‡] Tingting Hong, Boshi Fu, Dongsheng Bai, Zhiyong He, Shuang Peng, Xiwen Xing, Jianling Hu, Pu Guo, Xiang Zhou*

College of Chemistry and Molecular Sciences,

Institute of Advanced Studies,,

Wuhan University Wuhan, Hubei, 430072, (P. R. of China)

State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, P. R. China.

E-mail: <u>xzhou@whu.edu.cn</u>

Methods

Materials.

All chemicals were of analytical reagent grade. Cytidine (C), adenosine (A), guanosine (G), uridine (U), ammonium bicarbonate (NH₄HCO₃), nuclease P1 and nuclease T1 were purchased from Sigma. N^6 -methyladenosine (m⁶A) was purchased from Shanghai Civi Chemical Technology Co., Ltd. Hydrogen peroxide, sodium chloride, zinc chloride and formic acid were obtained from Sinopharm Chemical Reagent. Shrimp alkaline phosphate (SAP) was from New England Biolabs. The oligo RNA was kindly offered by Professor Chuan He's group at University of Chicago. ¹H and ¹³C NMR spectra were recorded on Varian Mercury 300 spectrometers, respectively. TOCSY recorded on Varian Mercury 600 spectrometers. EPR was recorded on Bruker BioSpin GmbH, HRMS was recorded on Thermo Fisher LTO Orbitrap XL. HPLC data was collected with Lambo Model 2000. LC-MS data was recorded on Agilent LC/MSD. MALDI-TOF MS spectra were collected with an Axima-TOF₂ mass spectrometer (Shimadzu, Japan).

Demethylation of N^{6-} methyladenosine (m⁶A) to form adenosine (A).

To obtain the ¹H and ¹³C NMR spectra of the oxidation product, N^6 -methyladenosine (m⁶A, 281mg, 1mmol), was added to a stirred solution with 5.66mL 30%H₂O₂ (50mmol) and 1.975g NH₄HCO₃ (25mmol) in 25mL solution at room temperature, and stirred for 1h.¹ Then the reaction mixture was purified by column chromatography (SiO₂, EtOAc/methanol = 8:1 as eluents) to yield 110mg (39%) adenosine (A) as a white solid.² ¹H NMR (300 MHz, DMSO) δ (ppm): 8.36 (s, 1H), 8.14 (s, 1H), 7.39 (s, 2H), 5.88 (d, *J* = 5.7 Hz, 1H), 5.47 (d, *J* = 6.0 Hz, 2H), 5.21 (d, *J* = 4.2 Hz, 1H), 4.62 (m, 1H), 4.14 (m, 1H), 3.97 (m, 1H), 3.66 (m, 1H), 3.55 (m, 1H). ¹³C NMR (75 MHz, DMSO) δ (ppm): 155.5, 151.8, 148.4, 139.3, 118.7, 87.2, 85.2, 72.8, 70.0, 61.0; LC-MS (m/z) for C₁₀H₁₃N₅O₄ [M+H]⁺: 268.1 (calculated), 267.9 (found).

Synthesis of N⁶-hydroxymethyladenosine (hm⁶A) and N⁶-formyladenosine (f⁶A) standard.

The hm⁶A and f⁶A standard was synthesized according to the reported procedure.³ The hm⁶A was characterized using LC-MS. Characterization data of hm⁶A: LC-MS (m/z) for C₁₁H₁₅N₅O₅ [M+H]⁺: 298.1 (calculated), 297.8 (found). The f⁶A was characterized by ¹H NMR and LC-MS. Characterization data of f⁶A: ¹H NMR (300 MHz, DMSO) δ 11.34 (s, 1H), 9.92 (s, 1H), 8.74 (s, 1H), 8.59 (s, 1H), 6.00 (d, *J* = 5.5 Hz, 1H), 5.52 (s, 1H), 5.23 (s, 1H), 5.12 (s, 1H), 4.58 (t, *J* = 4.9 Hz, 1H), 4.15 (s, 1H), 3.96 (d, *J* = 3.5 Hz, 1H), 3.67 (d, *J* = 10.8 Hz, 1H), 3.53 (m, 1H). LC-MS (m/z) for C₁₁H₁₃N₅O₅ [M+H]⁺: 296.1 (calculated), 295.8 (found).

Characterization of N^6 - hydroperoxymethyladenosine (oxm⁶A).

2mM m⁶A was reacted with 200mM H₂O₂ and 1M NH₄HCO₃ at 37°C for 1h, the oxm⁶A was isolated and characterized by LC-MS, high-resolution mass spectra and both ¹H NMR , ¹³C NMR and TOCSY. Characterization data of oxm⁶A: ¹H NMR (300 MHz, DMSO) δ 11.71 (s, 1H), 8.61 (d, *J* = 9.0 Hz, 1H), 8.45 (s, 1H), 8.29 (s, 1H), 5.92 (d, *J* = 6.0 Hz, 1H), 5.47 (d, *J* = 6.0 Hz, 1H), 5.31 (t, *J* = 11.1 Hz, 2H), 5.21 (d, *J* = 4.5 Hz, 1H), 4.60 (dd, *J* = 5.4 Hz, 1H), 4.15 (d, *J* = 3.6 Hz, 1H), 3.97 (d, *J* = 3.0Hz, 1H), 3.68 (m, 1H), 3.54 (m, 2H). ¹H NMR (300 MHz, D₂O) δ 8.36 (s, 1H), 8.34 (s, 1H), 6.08 (s, 1H), 5.46 (s, 2H), 4.43 (s, 1H), 4.28 (s, 1H), 3.87(d, *J* = 13.8 Hz, 2H). ¹³C NMR (75 MHz, DMSO) δ (ppm): 155.0, 152.8, 150.4, 141.2, 120.6, 88.5, 86.5, 76.0, 74.3, 71.2, 62.3; LC-MS (m/z) for C₁₁H₁₅N₅O₆ [M+H]⁺ : 314.1 (calculated), 313.8 (found). High-resolution MS (m/z) for C₁₁H₁₅N₅O₆ [M+H]⁺ : 314.10951 (calculated), 314.10958 (found).

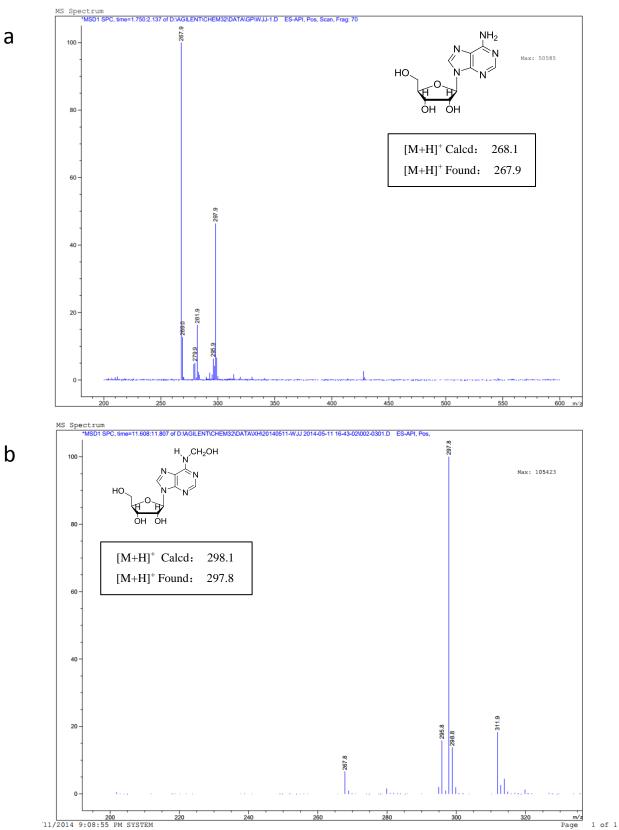
The reaction between m⁶A and H₂O₂/bicarbonate analyzed by HPLC.

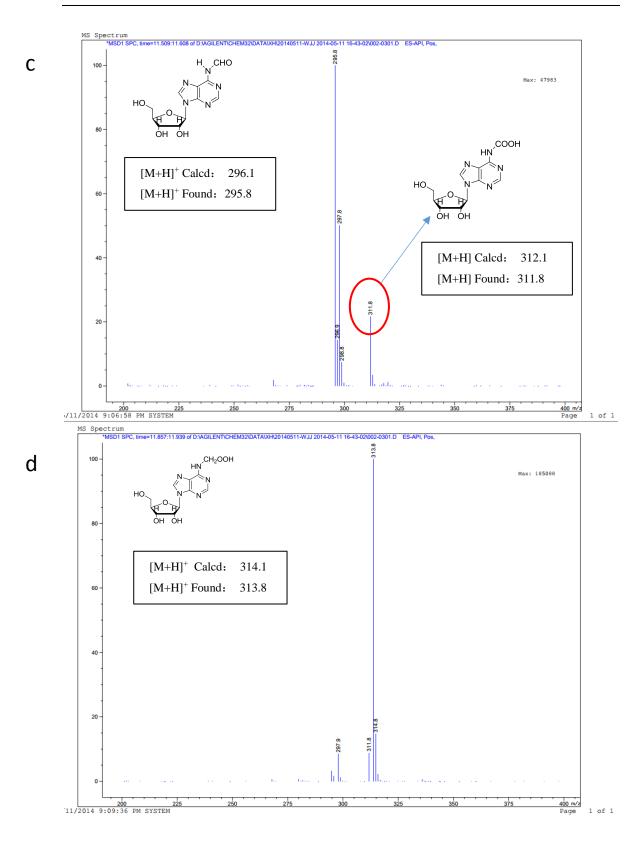
2mM m⁶A was incubated with 200mM H_2O_2 and 1M NH_4HCO_3 at 37°C for 24h. Then the mixture was analyzed on a HPLC system equipped with an Agilent Eclipse XDB-C18 analysis column (150×4.6 mm) with mobile phase A (H_2O) and B (C H_3CN) with a flow rate of 1mL/min at room temperature. The separation was achieved with following gradient program: 15min 2%-12% B, 10min 12% B, and 10min 2% B. The detection wavelength was set as 260 nm.

MALDI-TOF-MS analysis of RNA oligo.

Two microgram oligo RNA was incubated with 10mM H_2O_2 and 100 mM NH_4HCO_3 at 37°C for 48h. The reaction solution was desalted by using ammonium-charged AG 50 W-X8 Cation Exchange Resins (Bio-Rad). MALDI-TOF MS spectra were collected in negative mode.

Analysis of hm⁶A, fm⁶A and oxm⁶A in oligo RNA using LC-MS.


Two microgram oligo RNA was incubated with 10 mM H_2O_2 and 10 mM NH_4HCO_3 at 37°C for 1h, then the RNA was digested with nuclease T1 at 37°C for 15min in 50uL solution, followed by the nuclease P1 digestion for 30min. The solution was diluted five times, 50uL solution was analyzed by LC-MS equipped with a Hisep C18-T column (150mm×2.1 mm) with a flow rate of 0.2mL/min at 37°C. 0.01% formic acid in methanol (buffer A) and 0.01% formic acid in H₂O (buffer B) were applied as mobile phase. A gradient of 3min 5% B, 7min 5%-20% B, 6min 20% B, 5min 50% B and 3min 50%-5% B was used. The mass spectrometry detection was performed under single ion monitoring mode (SIM). LC-MS (m/z) for m⁶A [M + H]⁺: 282.1 (calculated), 281.9 (found), A [M + H]⁺: 268.1 (calculated), 267.8 (found), hm⁶A [M+H]⁺: 298.1 (calculated), 297.8 (found), f⁶A [M + H]⁺: 296.1 (calculated), 295.8 (found), oxm⁶A [M+H]⁺: 314.1 (calculated), 313.8 (found).


LC-MS analysis of m⁶A demethylation in vitro.

Total RNA was extracted from Hela cells using TRIzol reagent (Invitrogen) according to the manufacture's protocol. The RNA concentration was measured by NanoDrop. Four microgram of genome RNA was incubated with 100μ M H₂O₂ and 1mM NH₄HCO₃ at 37°C for 12 hours. Nuclease P1 (1U) was added to the 50uL solution containing 25mM NaCl and 2.5mM ZnCl₂ for 1h and followed by alkaline phosphatase digestion (1U) at 37°C for 1h. Dilute the solution five times, 50uL solution was analyzed by LC-MS.

Determination of oxm⁶A with Fluorometric Reagent Diphenyl-1-pyrenylphosphine.

The oxm⁶A is dissolved in a mixture of methanol and water (1:1), and 100uL butylated hydroxytoluene (BHT) (1mg/10mL in a methanol-chloroform (1:1) and 100uL DPPP solution (1mg/10mL in a methanol-chloroform (1:1) are added. Then the mixture was reacted in a water bath at 37°C for 60min in dark. The solution was diluted 10 times and measured the fluorescence intensity at 380nm.

Figure S1. The LC-MS spectrogram of the reaction mixture at different retention time. The m/z at 297.8, 295.8 and 313.8 correspond to A (**a**), hm^6A (**b**), f^6A (**c**) and oxm^6A (**d**). The m/z 311.8 may correspond to the ca⁶A

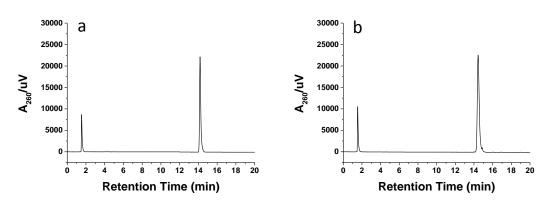


Figure S2. HPLC chromatograph of 2mM m⁶A incubated with 200mM H₂O₂ at 37°C for 0h (a) and 24h (b).

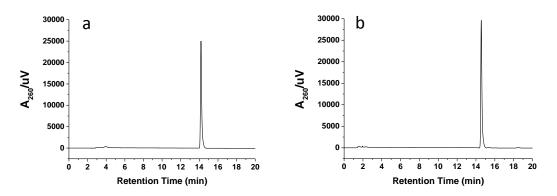


Figure S3. HPLC chromatograph of 2mM m^6A incubated with 1M $\rm NH_4HCO_3$ at 37°C for 0h (a) and 24h (b).

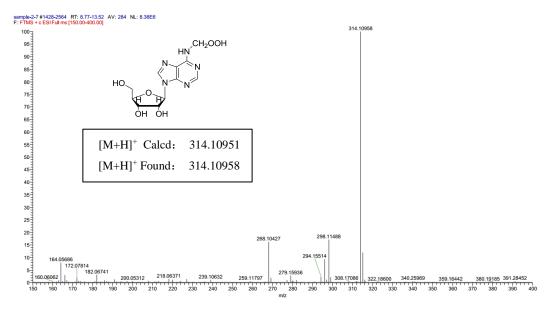
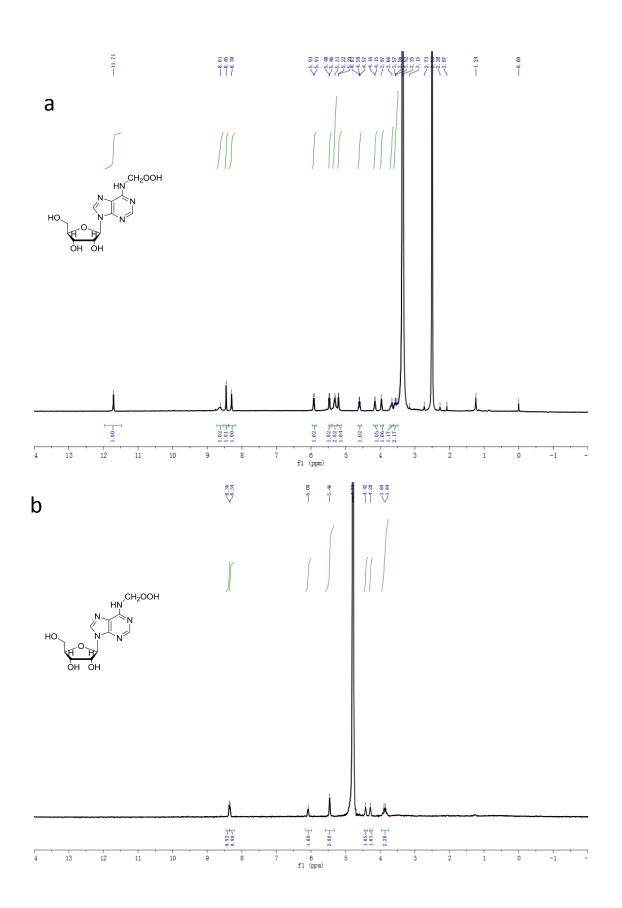



Figure S4. High-resolution mass spectrum of oxm⁶A isolated by HPLC in positive mode.

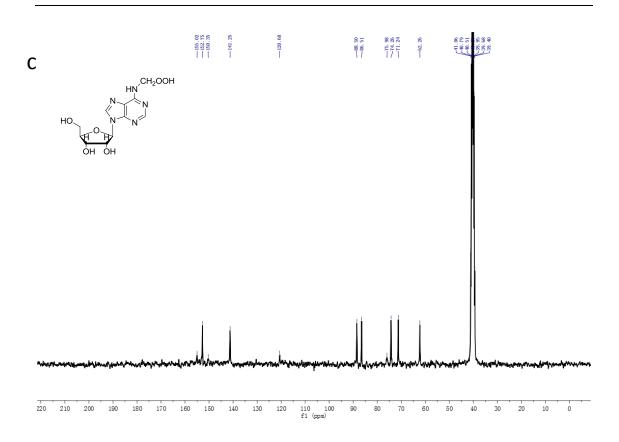
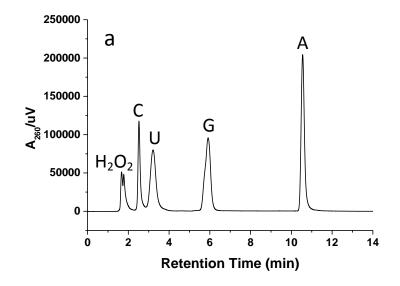
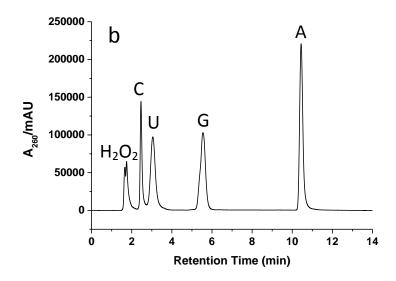




Figure S5. 1 H NMR spectra of oxm 6 A in DMSO (a), D₂O (b) and 13 C NMR spectra in DMSO (c).

Figure S6. 2mM of A, U, C, G were treated with 200mM H_2O_2 and 1M NH_4HCO_3 for 1h (a: 0h, b: 1h), after reaction no new peak occurred, indicating the reagents have no side reaction with the four nucleosides under this conditions.

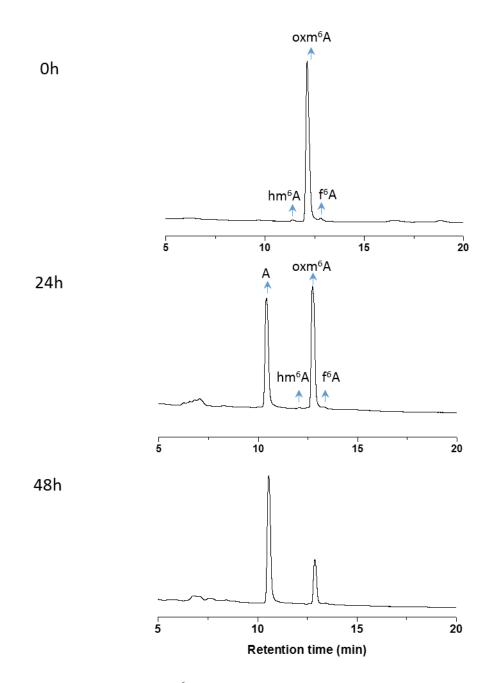
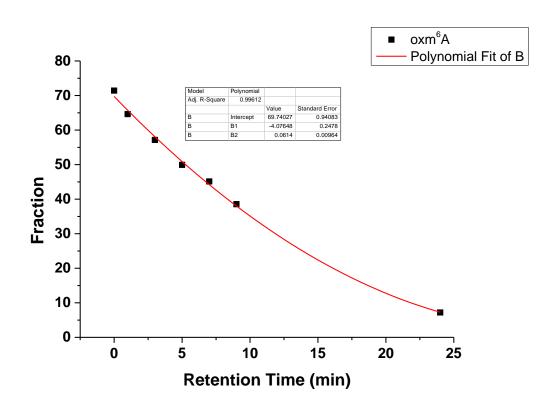



Figure S7. The decomposition of oxm⁶A in the reaction condition monitored by HPLC chromatograms (260nm).

Figure S8. Time dependence of consumption of oxm⁶A in HEPES buffer (50mM, pH 7.4) at 37°C. Half–Life for decomposition of oxm⁶A was about 8.5h.

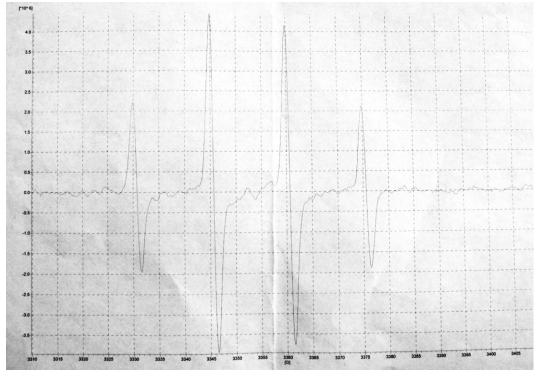
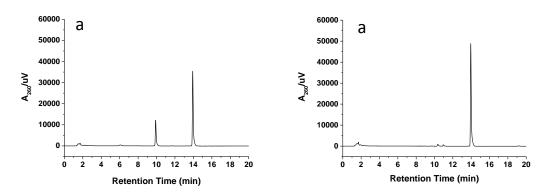
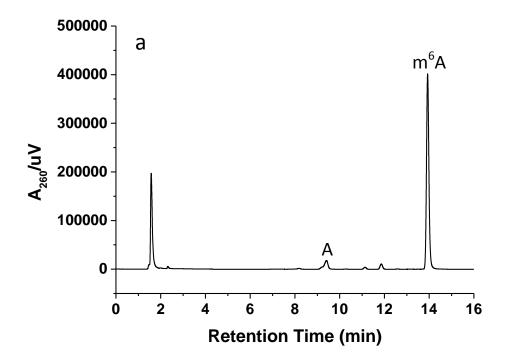
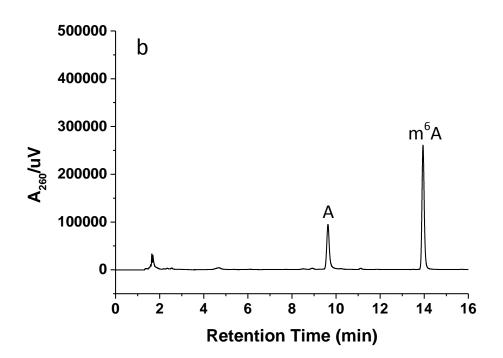





Figure S9. EPR spectra of H_2O_2 (200mM) /NH₄HCO₃(1M) system after incubated in 37°C for 15min.

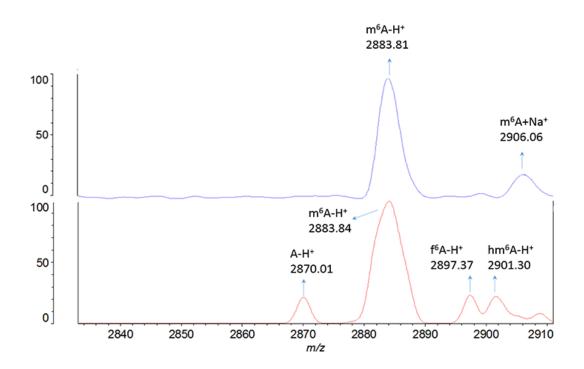


Figure S10. HPLC chromatograph of mM m⁶A incubated with 200Mm H2O2 and 1M NH₄HCO₃ at 37° C in the absence (**a**) and presence (**b**) of DMSO (400mM)

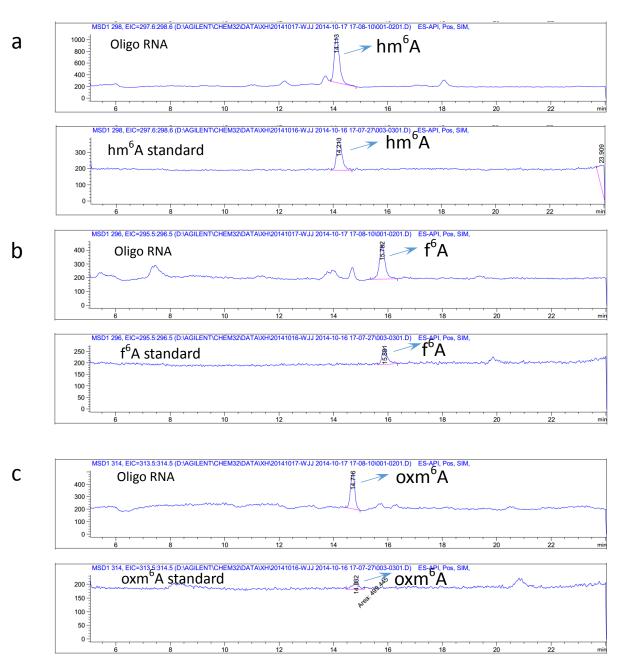


Figure S11. HPLC traces of the reaction of m^6A with $NH_4HCO_3(1M)$ and H_2O_2 (400mM) in the absence (a) and in the presence (b) of $(NH_4)_2Fe(SO_4)_2$ (4mM). The reaction with m^6A was carried out in 50mM HEPES buffer (pH 7.4; 37°C).

Figure S12. MALDI-TOF analysis of m⁶A-RNA after reacting with H_2O_2 /bicarbonate. After treating with 10mM H_2O_2 and 100mM NH_4HCO_3 for 48h, three new peak occurred, the m⁶A-14Da correspond to the demethlate adenosine, the +14, and +17Da peak may represent the formation of f⁶A and hm⁶A.

Figure S13. LC-MS analysis of the digested nucleosides in oligo RNA. After the reaction, we successfully find the presence of $hm^6A(\mathbf{a})$, $f^6A(\mathbf{b})$ and $oxm^6A(\mathbf{c})$ in oligo RNA. The mass spectrometry detection was performed under single ion monitoring mode.

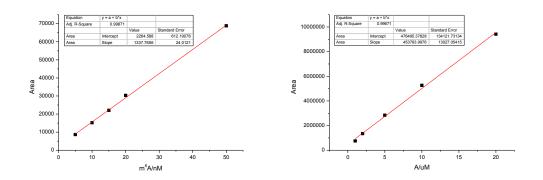
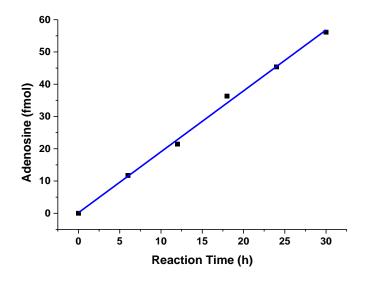
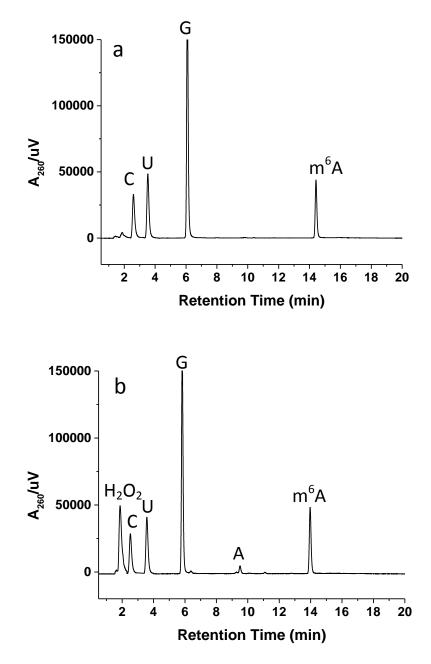




Figure S14. Quantification standard curve of m⁶A and A standards in LC-MS.

Figure S15. Time course of m⁶A level in oligo RNA oxidized by H_2O_2 /bicarbonate. Conditions: 2ug oligo RNA containing m⁶A was incubated with 100 μ M H_2O_2 and 300 μ M NH_4HCO_3 at 37°C for 30h. After digestion, the mixture was analysed by LC-MS.

Figure S16. HPLC traces of digested nucleosides in single-stranded RNA, 5'-CUGGm⁶ACUGG-3' without oxidation (a) and with H_2O_2 (50mM), Fe²⁺ (40 μ M) and NH₄HCO₃ (50mM) treatment (b) in 50mM HEPES buffer at 37°C. After 1h, the peak of adenosine was observed.

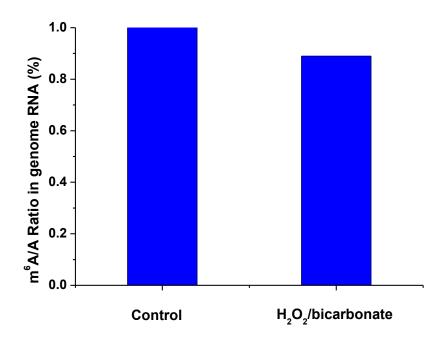
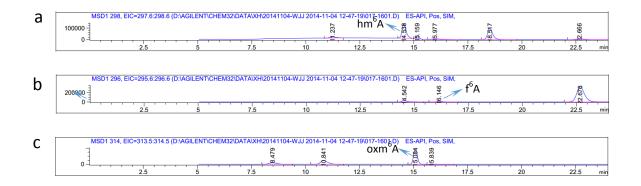



Figure S17. Quantification of m⁶A/A ratio in Hela genome RNA by LC-MS. A decrease in m⁶A/A ratio was observed in genome RNA with treatment of 50 μ M H₂O₂ and 1mM NH₄HCO₃ at 37^oC for 12h.

Figure S18. LC-MS analysis of the m⁶A treated with Fenton-type reagent (1mM m⁶A, 200mM H₂O₂, 40uM (NH₄)₂Fe(SO₄)₂) in oligo RNA at 37°C for 5h. After the reaction, we successfully find the presence of hm⁶A (**a**), $f^{6}A$ (**b**) and oxm⁶A (**c**) in oligo RNA. The mass spectrometry detection was performed under single ion monitoring mode.

RF generator power (W)	1150
Frequency of RF generator (MHz)	27.12
Coolant gas flow rate (L min ⁻¹)	14
Auxiliary gas (L min ⁻¹)	0.5
Plasma gas (L min ⁻¹)	0.6
Observation height (mm)	15
Max integration times (sec)	20
Analytical wavelength (nm)	Cu 324.754
	Fe 259.940

Table S1. Optimized operating conditions for ICP-OES.

Supplementary References:

- 1 B. Balagam; D. E. Richardson. *Inorg. Chem.* 2008, **45**, 1173-1178.
- 2 G. Ah-kow, F. Terrier, M. J. Pouet, M. P. Simonnin. J. Org. Chem. 1980, 45, 4399-4404.
- 3 Y, Fu, G. Jia, X. Pang, R. N. Wang, X. Wang, C. J. Li, S. Smemo. Q. Dai, K. A. Bailey, M. A. Nobrega, K. L.

Han, Q. Cui, C. He. Nature Commun. 2013, 4, 1798-1806.