Supporting Information for

Organocatalytic Asymmetric Chlorinative Dearomatization of

Naphthols

Qin Yin, Shou-Guo Wang, Xiao-Wei Liang, De-Wei Gao, Jun Zheng and Shu-Li You*

State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Lu, Shanghai 200032, China Fax: (+86) 21-54925087 E-mail: <u>slyou@.sioc.ac.cn</u>

Table of Contents

General considerations	.S2
Procedures for the preparation of 1c, 1f-1q	.S2
General procedure for the asymmetric chlorination	.S9
Transformations of 2a and 2t	S19
Mechanistic Investigations	.S23
Crystal data	.S25
References	.S28
Copies of spectra	S29

1. General considerations

Unless stated otherwise, all solvents were purified and dried according to standard methods prior to use. ¹H and ¹⁹F NMR spectra were recorded on Varian or Angilent instrument (400 MHz and 376 MHz, 300 MHz and 282 MHz, respectively) and referenced relative to tetramethylsilane signal or residual protio solvent signals and CFCl₃ respectively. ¹³C NMR spectra were recorded on Varian or Angilent instrument (100 MHz or 75 MHz) and referenced relative to residual solvent signals. Data for ¹H NMR are recorded as follows: chemical shift (δ , ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet or unresolved, br = broad singlet, coupling constant(s) in Hz, integration). Data for ¹³C NMR and ¹⁹F NMR are reported in terms of chemical shift (δ , ppm).

Methyl 2-hydroxy-1-naphthoate (1a) and Methyl 1-hydroxy-2-naphthoate (1t) were purchased from Alfa Aesar and used without further purification. Substituted 2-hydroxy-1-naphthoates (1b, 1d, 1e) and compounds (1r, 1s) are known compounds and prepared according to the literature.¹

2. Experimental procedures, analytical and spectroscopic data

2.1 Procedure for preparation of 1c

To a solution of 2-hydroxy-1-naphthoic acid (944 mg, 5 mmol) in DMF (10 mL), potassium hydrogen carbonate (600 mg, 6 mmol) was added. The mixture was stirred at rt for 10 min, followed by addition of allyl bromide (908 mg, 7.5 mmol). Then the mixture was stirred at 40 °C until the reaction was complete (monitored by TLC). The reaction was quenched by the addition of water (5 mL). The aqueous layer was extracted with ethyl acetate. The organic layer was washed with brine, dried over Na₂SO₄, filtered and then concentrated. The residue was purified by silica gel column chromatography (ethyl acetate/petroleum ether = 1/20, v/v) to afford the product.

Allyl 2-hydroxy-1-naphthoate (1c)

Colorless liquid. Analytical data for **1c**: ¹H NMR (300 MHz, CDCl₃) δ 4.86 (d, *J* = 5.7 Hz, 2H), 5.24 (dd, *J* = 1.2, 10.5 Hz, 1H), 5.36 (dd, *J* = 1.2, 17.1 Hz, 1H), 5.94-6.05 (m, 1H), 7.02 (d, *J* = 9.0 Hz, 1H), 7.22 (t, *J* = 6.9 Hz, 1H), 7.42 (td, *J* = 8.4, 1.2 Hz, 1H), 7.59 (d, *J* = 8.1 Hz, 1H), 7.72 (d, *J* = 8.7 Hz, 1H), 8.65 (d, *J* = 9.0 Hz, 1H), 12.16 (s, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 66.3, 104.5, 119.2, 119.3, 123.5, 125.2, 128.4, 128.5, 129.0, 131.5, 131.7, 136.8, 164.4, 172.0; IR (film) 2986, 1641, 1201, 825 cm⁻¹; HRMS (ESI) exact mass calcd for C₁₄H₁₃O₃⁺ (M+H) requires *m/z* 229.0859. Found *m/z* 229.0865.

2.2 General procedure for preparation of 1f-1h, 1k

To a 25 mL two-neck round-bottomed flask equipped with a condenser, methyl 6-bromo-2-hydroxy-1-naphthoate (562 mg, 2.0 mmol), boronic acid (3.0 mmol), $(i-Pr)_2NH$ (202 mg, 2.0 mmol), Pd(OAc)_2 (9.0 mg, 0.04 mmol) and H₂O (4.0 mL) were added successively. The mixture was reacted at 100 °C until the reaction was complete (monitored by TLC). The mixture was filtered through a pad of celite and washed with ethyl acetate. The aqueous layer was extracted with ethyl acetate. The organic layer was washed with brine, dried over Na₂SO₄, filtered and then concentrated. The residue was purified by silica gel column chromatography (ethyl acetate/petroleum ether = 1/50, v/v) to afford the product.

Methyl 2-hydroxy-6-phenyl-1-naphthoate (1f)

White solid. Analytical data for **1f**: ¹H NMR (400 MHz, CDCl₃) δ 4.04 (s, 3H), 7.12 (d, *J* = 8.8 Hz, 1H), 7.34-7.46 (m, 3H), 7.64-7.85 (m, 5H), 8.72 (d, *J* = 8.8 Hz, 1H), 12.31 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 52.3, 104.4, 119.5, 125.8, 126.6, 126.9, 127.0, 127.3, 127.6, 128.8, 130.7, 136.0, 137.0, 140.1, 164.3, 172.7; IR (film) 2958, 1648, 1220 cm⁻¹; HRMS (ESI) exact mass calcd for C₁₈H₁₅O₃⁺ (M+H) requires *m/z* 279.1016. Found *m/z* 279.1008.

Methyl 6-(3,5-dimethylphenyl)-2-hydroxy-1-naphthoate (1g)

White solid. Analytical data for **1g**: ¹H NMR (400 MHz, CDCl₃) δ 2.41 (s, 6H), 4.11 (s, 3H), 7.02 (br, 1H), 7.17-7.32 (m, 3H), 7.79-7.92 (m, 3H), 8.77 (d, *J* = 7.2 Hz, 1H), 12.30 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 21.5, 52.5, 104.6, 119.6, 125.0, 125.7, 126.8, 127.9, 129.0, 130.8, 135.7, 136.4, 137.1, 138.4, 140.3, 164.3, 172.8; IR (film) 2955, 1646, 1217 cm⁻¹; HRMS (ESI) exact mass calcd for C₂₀H₁₉O₃⁺ (M+H) requires *m/z* 307.1329. Found *m/z* 307.1320.

Methyl 6-(4-fluorophenyl)-2-hydroxy-1-naphthoate (1h)

White solid. Analytical data for **1h**: ¹H NMR (300 MHz, CDCl₃) δ 4.00 (s, 3H), 7.03-7.09 (m, 3H), 7.52 (br, 2H), 7.63 (d, J = 8.7 Hz, 1H), 7.74-7.80 (m, 2H), 8.66 (d, J = 8.7 Hz, 1H), 12.26 (s, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 52.8, 104.8, 116.0 (d, J = 21.2 Hz), 120.1, 126.2, 126.8, 127.8, 128.8 (d, J = 8.0 Hz), 129.1, 131.0, 135.4, 136.6, 137.3, 162.7 (d, J = 244.7 Hz), 164.7, 173.0; ¹⁹F NMR (282 MHz, CDCl₃) δ -114.2; IR (film) 2957, 1647, 1216 cm⁻¹; HRMS (ESI) exact mass calcd for C₁₈H₁₄FO₃⁺ (M+H) requires *m/z* 297.0921. Found *m/z* 297.0918.

(E)-Methyl 2-hydroxy-6-styryl-1-naphthoate (1k)

Yellow solid. Analytical data for **1k**: ¹H NMR (400 MHz, CDCl₃) δ 4.09 (s, 3H), 7.15-7.19 (m, 3H), 7.31-7.42 (m, 3H), 7.55-7.57 (m, 2H), 7.71 (s, 1H), 7.76 (d, J =8.4 Hz, 1H), 7.84 (d, J = 8.4 Hz, 1H), 8.69 (d, J = 8.8 Hz, 1H), 12.32 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 52.5, 104.9, 119.7, 125.7, 126.2, 126.5, 127.4, 127.7, 127.9, 128.7, 128.8, 128.9, 131.2, 132.6, 136.9, 137.3, 164.4, 172.7; IR (film) 1645, 1335, 1225 cm⁻¹; HRMS (ESI) exact mass calcd for C₂₀H₁₇O₃⁺ (M+H) requires *m/z* 305.1172. Found *m/z* 305.1167.

2.3 General procedure for preparation of 1i, 1n, 1o-1q (1q as an example, substituted 2-naphthols are commercially available)

To a 25 mL two-neck round-bottomed flask equipped with a condenser, AlCl₃ (1.29 g, 10 mmol) and DCE (20 mL) were added successively. Then methyl chloroformate (945 mg, 10 mmol) was added and the mixture was stirred for 10 min at rt. 3-Bromo-2-naphthol (1.12 g, 5 mmol) was added and the mixture was stirred under reflux for 10 h. Then H₂O (10 mL) was added at 0 °C. The aqueous layer was extracted with DCM. The organic layer was washed with brine, dried over Na₂SO₄, filtered and then concentrated. The residue was purified by silica gel column chromatography (ethyl acetate/petroleum ether = 1/50, v/v) to afford the product.

Methyl 2-hydroxy-6-methyl-1-naphthoate (1i)

Yellow solid. Analytical data for 1i: ¹H NMR (400 MHz, CDCl₃) δ 2.37 (s, 3H), 3.99

(s, 3H), 7.04 (d, J = 8.8 Hz, 1H), 7.29 (d, J = 8.8 Hz, 1H), 7.42 (s, 1H), 7.71 (d, J = 8.8 Hz, 1H), 8.52 (d, J = 8.8 Hz, 1H), 12.10 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 20.9, 52.3, 104.6, 119.2, 125.2, 128.3, 128.9, 129.7, 130.5, 133.1, 136.4, 163.8, 172.9; IR (film) 2956, 1639, 1215 cm⁻¹; HRMS (DART) exact mass calcd for C₁₃H₁₃O₃⁺ (M+H) requires *m/z* 217.0859. Found *m/z* 217.0859.

Methyl 4-bromo-2-hydroxy-1-naphthoate (1n)

Yellow solid. Analytical data for **1n**: ¹H NMR (400 MHz, CDCl₃) δ 3.99 (s, 3H), 7.33-7.35 (m, 1H), 7.42 (s, 1H), 7.42-7.46 (m, 1H), 8.09 (d, J = 8.4 Hz, 1H), 8.61 (d, J = 8.8 Hz, 1H), 12.10 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 52.7, 104.7, 123.6, 124.8, 125.5, 127.1, 128.2, 129.1, 132.0, 132.3, 163.1, 172.3; IR (film) 1647, 1216 cm⁻¹; HRMS (DART) exact mass calcd for C₁₂H₁₀O₃Br⁺ (M+H) requires *m/z* 280.9808. Found *m/z* 280.9806.

Methyl 7-bromo-2-hydroxy-1-naphthoate (10)

Yellow solid. Analytical data for **1o**: ¹H NMR (400 MHz, CDCl₃) δ 4.03 (s, 3H), 7.07 (d, J = 9.2 Hz, 1H), 7.37 (dd, J = 8.8, 1.6 Hz, 1H), 7.50 (d, J = 8.4 Hz, 1H), 7.74 (d, J = 8.8 Hz, 1H), 8.82 (s, 1H), 12.30 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 52.7, 103.9, 119.8, 123.5, 127.0, 127.8, 130.3, 130.4, 132.8, 136.6, 165.0, 172.4; IR (film) 2955, 1648, 1217 cm⁻¹; HRMS (DART) exact mass calcd for C₁₂H₉O₃Br⁺ requires *m/z* 279.9730. Found *m/z* 279.9728.

Methyl 2-hydroxy-7-methoxy-1-naphthoate (1p)

White solid. Analytical data for 1p: ¹H NMR (400 MHz, CDCl₃) δ 3.92 (s, 3H), 4.08

(s, 3H), 6.98-7.02 (m, 2H), 7.62 (d, J = 8.8 Hz, 1H), 7.78 (d, J = 8.8 Hz, 1H), 8.16 (s, 1H), 12.30 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 52.3, 55.2, 103.9, 106.2, 114.5, 116.6, 123.8, 130.5, 133.4, 136.7, 159.9, 165.1, 172.8; IR (film) 1643, 1617, 1194 cm⁻¹; HRMS (ESI) exact mass calcd for C₁₃H₁₃O₄⁺ requires *m/z* 233.0808. Found *m/z* 233.0810.

Methyl 3-bromo-2-hydroxy-1-naphthoate (1q)

Yellow solid. Analytical data for 1**q**: ¹H NMR (400 MHz, CDCl₃) δ 3.99 (s, 3H), 7.24 (td, J = 8.0, 2.7 Hz, 1H), 7.42 (td, J = 8.4, 1.2 Hz, 1H), 7.50 (d, J = 8.0 Hz, 1H), 8.03 (s, 1H), 8.51 (d, J = 8.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 52.9, 105.8, 112.9, 124.4, 125.3, 128.2, 128.7, 130.7, 139.2, 160.3, 172.6; IR (film) 2956, 1646, 1215 cm⁻¹; HRMS (ESI) exact mass calcd for C₁₂H₁₀BrO₃⁺ (M+H) requires *m*/*z* 280.9808. Found *m*/*z* 280.9813.

2.4 Procedure for preparation of 1j

To a solution of **1k** (304 mg, 1 mmol) in ethyl acetate (3 mL), 10% Pd/C (20 mg) was added under Ar atmosphere. Then the reaction was charged with 1 atm of hydrogen and stirred at room temperature for 17 h. The reaction mixture was filtered through a pad of celite and washed with ethyl acetate. The filtrate was concentrated under reduced pressure. The crude product was purified by silica gel column chromatography (ethyl acetate/petroleum ether = 1/30, v/v) to afford the product.

Methyl 2-hydroxy-6-phenethyl-1-naphthoate (1j)

White solid. Analytical data for **1j**: ¹H NMR (400 MHz, CDCl₃) δ 2.89-2.92 (m, 4H), 3.97 (s, 3H), 7.02-7.20 (m, 6H), 7.29 (d, J = 9.2 Hz, 1H), 7.39 (s, 1H), 7.69 (d, J = 8.8 Hz, 1H), 8.54 (d, J = 9.2 Hz, 1H), 12.13 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 37.2, 37.6, 52.3, 104.5, 119.2, 125.3, 125.9, 127.8, 128.3, 128.4, 128.8, 129.7, 130.0, 136.5, 136.8, 141.5, 163.9, 172.8; IR (film) 1641, 1335, 1236 cm⁻¹; HRMS (ESI) exact mass calcd for C₂₀H₁₉O₃⁺ (M+H) requires *m/z* 307.1329. Found *m/z* 307.1329.

2.5 General procedure for preparation of 11-1m (11 as an example)

To a solution of **1d** (843 mg, 3 mmol) in Et_3N (10 mL), phenylacetylene (460 mg, 4.5 mmol), bis(triphenylphosphine)palladium(II) chloride (84 mg, 0.12 mmol) and cuprous iodide (12 mg, 0.06 mmol) were added successively under Ar atmosphere. The reaction mixture was stirred at 70 °C until the reaction was complete (monitored by TLC). The mixture was filtered through a pad of celite, washed with ethyl acetate, and followed by concentration. The residue was purified by silica gel column chromatography (ethyl acetate/petroleum ether = 1/20, v/v) to afford the product.

Methyl 2-hydroxy-6-(phenylethynyl)-1-naphthoate (11)

Yellow solid. Analytical data for **11**: ¹H NMR (400 MHz, CDCl₃) δ 4.07 (s, 3H), 7.14 (d, *J* = 8.8 Hz, 1H), 7.34-7.35 (m, 3H), 7 7.55-7.57 (m, 2H), 7.62 (dd, *J* = 9.2, 1.6 Hz, 1H), 7.80 (d, *J* = 8.8 Hz, 1H), 7.90 (d, *J* = 0.8 Hz, 1H), 8.66 (d, *J* = 8.8 Hz, 1H), 12.35 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 52.6, 89.2, 89.7, 104.8, 118.4, 120.1, 123.2, 125.5, 128.3, 128.3, 128.4, 131.0, 131.3, 131.6, 132.3, 136.6, 164.9, 172.6; IR (film)

1657, 1323, 1211 cm⁻¹; HRMS (DART) exact mass calcd for $C_{20}H_{14}O_3^+$ requires m/z 302.0937. Found m/z 302.0936.

Methyl 2-hydroxy-6-(3-hydroxyprop-1-yn-1-yl)-1-naphthoate (1m)

Yellow solid. Analytical data for **1m**: ¹H NMR (400 MHz, CDCl₃) δ 2.34 (br, 1H), 3.98 (s, 3H), 4.47 (s, 2H), 7.03 (d, J = 9.2 Hz, 1H), 7.39 (dd, J = 9.2, 1.2 Hz, 1H), 7.63 (d, J = 9.2 Hz, 1H), 7.66 (s, 1H), 8.48 (d, J = 8.8 Hz, 1H), 12.26 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 51.6, 52.6, 85.4, 87.5, 104.7, 117.6, 120.0, 125.4, 128.1, 130.9, 131.3, 132.4, 136.5, 164.8, 172.5; IR (film) 1639, 1230, 1028 cm⁻¹; HRMS (DART) exact mass calcd for C₁₅H₁₃O₄⁺ (M+H) requires *m/z* 257.0808. Found *m/z* 257.0807.

2.6 General procedure for asymmetric chlorination of naphthols

To a Schlenk tube, DCDMH (70.9 mg, 0.36 mmol), $(DHQD)_2PHAL$ (23.4 mg, 0.03 mmol) and toluene (2.0 mL) were added. After stirred for 10 min at -78 °C, **1** (0.3 mmol) was added in one portion. After the reaction was complete (monitored by TLC), the reaction was quenched by the addition of saturated Na₂SO₃ aqueous solution (3.0 mL). The organic layer was extracted with ethyl acetate, washed with brine, dried over Na₂SO₄, filtered and then concentrated. The residue was purified by silica gel column chromatography (ethyl acetate/petroleum ether = 1/20, v/v) to afford the product.

(R)-Methyl 1-chloro-2-oxo-1,2-dihydronaphthalene-1-carboxylate (2a)

Pale yellow solid (1.38 g, 97% yield, 6.0 mmol scale). Analytical data for **2a**: $[\alpha]_D^{20} = -58.5$ (c = 1.0 CHCl₃, 92% ee); ¹H NMR (400 MHz, CDCl₃) δ 3.77 (s, 3H), 6.28 (d, *J* = 10.0 Hz, 1H), 7.37-7.54 (m, 5H); ¹³C NMR (100 MHz, CDCl₃) δ 54.1, 67.3, 123.1, 128.3, 128.8, 129.9, 130.0, 131.0, 137.3, 145.7, 166.7, 189.8; IR (film) 1760, 1671, 1207, 1011 cm⁻¹; HRMS (ESI) exact mass calcd for C₁₂H₁₃NO₃Cl⁺ (M+NH₄) requires *m/z* 254.0578. Found *m/z* 254.0577. The enantiomeric ratio was determined by Daicel Chiralpak OD-H (25 cm), Hexane / IPA = 90 / 10, 1.0 mL/min, λ = 254 nm, t (major) = 11.81 min, t (minor) = 14.26 min.

(R)-Ethyl 1-chloro-2-oxo-1,2-dihydronaphthalene-1-carboxylate (2b)

Pale yellow solid (92.8 mg, 93% yield, 0.4 mmol scale). Analytical data for **2b**: $[\alpha]_D^{20}$ = -43.4 (c = 1.0 CHCl₃, 88% ee); ¹H NMR (400 MHz, CDCl₃) δ 1.17 (t, *J* = 7.2 Hz, 3H), 4.18-4.29 (m, 2H), 6.27 (d, *J* = 10.4 Hz, 1H), 7.39-7.54 (m, 5H); ¹³C NMR (100 MHz, CDCl₃) δ 13.7, 63.5, 67.3, 123.1, 128.2, 128.7, 129.9, 129.9, 130.9, 137.4, 145.6, 166.1, 189.9; IR (film) 1756, 1675, 1202, 1022 cm⁻¹; HRMS (ESI) exact mass calcd for C₁₃H₁₅NO₃Cl⁺ (M+NH₄) requires *m*/*z* 268.0735. Found *m*/*z* 268.0729. The enantiomeric ratio was determined by Daicel Chiralpak OD-H (25 cm), Hexane / IPA = 90 / 10, 1.0 mL/min, λ = 254 nm, t (major) = 10.14 min, t (minor) = 11.84 min.

(*R*)-Allyl 1-chloro-2-oxo-1,2-dihydronaphthalene-1-carboxylate (2c)

Pale yellow solid (110.2 mg, 91% yield, 0.46 mmol scale). Analytical data for **2c**: $[\alpha]_D^{20} = -52.2$ (c = 1.0 CHCl₃, 86% ee); ¹H NMR (400 MHz, CDCl₃) δ 4.65-4.67 (m, 2H), 5.14-5.18 (m, 2H), 5.73-5.80 (m, 1H), 6.28 (d, *J* = 10.0 Hz, 1H), 7.39-7.49 (m, 3H), 7.52-7.55 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 67.3, 67.5, 118.9, 123.1, 128.2, 128.8, 129.9, 130.0, 130.4, 130.9, 137.2, 145.7, 165.8, 189.7; IR (film) 1757, 1672, 1197 cm⁻¹; HRMS (ESI) exact mass calcd for $C_{14}H_{15}NO_3Cl^+$ (M+NH₄) requires m/z 280.0735. Found m/z 280.0731. The enantiomeric ratio was determined by Daicel Chiralpak OD-H (25 cm), Hexane / IPA = 90 / 10, 0.6 mL/min, λ = 254 nm, t (major) = 17.96 min, t (minor) = 21.31 min.

(*R*)-Methyl 6-bromo-1-chloro-2-oxo-1,2-dihydronaphthalene-1-carboxylate (2d) Pale yellow solid (82.9 mg, 88% yield, 0.3 mmol scale). Analytical data for 2d: $[\alpha]_D^{20}$ = -15.9 (c = 1.0 CHCl₃, 95% ee); ¹H NMR (400 MHz, CDCl₃) δ 3.77 (s, 3H), 6.32 (d, J = 10.4 Hz, 1H), 7.41 (d, J = 8.0 Hz, 1H), 7.44 (d, J = 10.0 Hz, 1H), 7.54 (d, J = 2.0Hz, 1H), 7.59 (dd, J = 8.4, 2.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 54.4, 66.9, 124.1, 124.4, 130.1, 130.5, 132.5, 133.8, 136.1, 144.0, 166.3, 189.2; IR (film) 1759, 1675, 1202 cm⁻¹; HRMS (ESI) exact mass calcd for C₁₂H₁₂NO₃ClBr⁺ (M+NH₄) requires *m*/z 331.9684. Found *m*/z 331.9676. The enantiomeric ratio was determined by Daicel Chiralpak IC (25 cm), Hexane / IPA = 90 / 10, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 22.32 min, t (minor) = 24.32 min.

(*R*)-Methyl 1-chloro-6-cyano-2-oxo-1,2-dihydronaphthalene-1-carboxylate (2e) Pale yellow solid (22.3 mg, 85% yield, 0.1 mmol scale). Analytical data for 2e: $[\alpha]_D^{20}$ = 3.13 (c = 1.0 CHCl₃, 94% ee); ¹H NMR (400 MHz, CDCl₃) δ 3.77 (s, 3H), 6.40 (d, J = 10.0 Hz, 1H), 7.50 (d, J = 10.0 Hz, 1H), 7.65-7.75 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 54.7, 66.7, 114.3, 117.2, 125.3, 129.5, 129.9, 132.9, 133.8, 141.6, 143.1, 165.8, 188.3; IR (film) 1733, 1675, 1251 cm⁻¹; HRMS (ESI) exact mass calcd for C₁₃H₁₂N₂O₃Cl⁺ (M+NH₄) requires m/z 279.0531. Found m/z 279.0524. The enantiomeric ratio was determined by Daicel Chiralpak OD-H (25 cm), Hexane / IPA = 90 / 10, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 37.72 min, t (minor) = 43.26 min.

(*R*)-Methyl 1-chloro-2-oxo-6-phenyl-1,2-dihydronaphthalene-1-carboxylate (2f) Pale yellow solid (76.8 mg, 82% yield, 0.3 mmol scale). Analytical data for 2f: $[\alpha]_D^{20}$ = -32.3 (c = 1.0 CHCl₃, 96% ee); ¹H NMR (400 MHz, CDCl₃) δ 3.78 (s, 3H), 6.31 (d, J = 10.0 Hz, 1H), 7.39-7.49 (m, 3H), 7.55-7.60 (m, 5H), 7.65 (dd, J = 8.4, 2.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 54.3, 67.3, 123.6, 127.1, 128.4, 128.6, 128.8, 129.1, 129.4, 129.6, 135.9, 139.1, 143.2, 145.7, 166.8, 189.9; IR (film) 1754, 1677, 1016 cm⁻¹; HRMS (ESI) exact mass calcd for C₁₈H₁₇NO₃Cl⁺ (M+NH₄) requires m/z330.0891. Found m/z 330.0880. The enantiomeric ratio was determined by Daicel Chiralpak IC (25 cm), Hexane / IPA = 90 / 10, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 36.20 min, t (minor) = 41.73 min.

(R)-Methyl

1-chloro-6-(3,5-dimethylphenyl)-2-oxo-1,2-dihydronaphthalene-1-carboxylate (2g)

Pale yellow solid (81.6 mg, 80% yield, 0.3 mmol scale). Analytical data for **2g**: $[\alpha]_D^{20}$ = -25.5 (c = 1.0 CHCl₃, 95% ee); ¹H NMR (400 MHz, CDCl₃) δ 2.39 (s, 6H), 3.79 (s, 3H), 6.31 (d, *J* = 10.0 Hz, 1H), 7.06 (s, 1H), 7.20 (s, 2H), 7.55-7.58 (m, 3H), 7.64 (d, *J* = 8.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 21.4, 54.3, 67.3, 123.5, 125.0, 128.6, 128.7, 129.3, 129.6, 130.0, 135.7, 138.7, 139.1, 143.5, 145.7, 166.9, 189.9; IR (film) 1738, 1676, 1215 cm⁻¹; HRMS (ESI) exact mass calcd for C₂₀H₂₁NO₃Cl⁺ (M+NH₄) requires *m*/*z* 358.1204. Found *m*/*z* 358.1203. The enantiomeric ratio was determined by Daicel Chiralpak IC (25 cm), Hexane / IPA = 90 / 10, 1.0 mL/min, λ = 254 nm, t (major) = 31.31 min, t (minor) = 37.60 min.

(*R*)-Methyl

1-chloro-6-(4-fluorophenyl)-2-oxo-1,2-dihydronaphthalene-1-carboxylate (2h)

Pale yellow foam (90.7 mg, 85% yield, 0.32 mmol scale). Analytical data for **2h**: $[\alpha]_D^{20} = -28.3$ (c = 1.0 CHCl₃, 96% ee); ¹H NMR (300 MHz, CDCl₃) δ 3.76 (s, 3H), 6.30 (d, *J* = 10.0 Hz, 1H), 7.12-7.16 (m, 2H), 7.51-7.60 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 54.2, 67.2, 115.9 (d, *J* = 21.3 Hz), 123.6, 128.3, 128.6, 128.7, 128.8, 129.3 (d, *J* = 13.7 Hz), 135.1 (d, *J* = 3.0 Hz), 135.8, 142.1, 145.5, 162.9 (d, *J* = 246.7 Hz), 166.7, 189.7; ¹⁹F NMR (282 MHz, CDCl₃) δ -112.5; IR (film) 1757, 1676, 1224 cm⁻¹; HRMS (ESI) exact mass calcd for C₁₈H₁₆ClFNO₃⁺ (M+NH₄) requires *m/z* 348.0797. Found *m/z* 348.0787. The enantiomeric ratio was determined by Daicel Chiralpak OD-H (25 cm), Hexane / IPA = 90 / 10, 0.6 mL/min, λ = 254 nm, t (major) = 31.73 min, t (minor) = 29.59 min.

(*R*)-Methyl 1-chloro-6-methyl-2-oxo-1,2-dihydronaphthalene-1-carboxylate (2i) Pale yellow foam (65.3 mg, 87% yield, 0.3 mmol scale). Analytical data for 2i: $[\alpha]_D^{20}$ = -56.9 (c = 1.0 CHCl₃, 93% ee); ¹H NMR (400 MHz, CDCl₃) δ 2.39 (s, 3H), 3.76 (s, 3H), 6.25 (d, *J* = 10.0 Hz, 1H), 7.18 (s,1H), 7.27-7.25 (m, 1H), 7.41 (d, *J* = 8.0 Hz, 1H), 7.45 (d, *J* = 10.0 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 21.1, 54.1, 67.3, 123.2, 128.2, 128.9, 130.5, 131.7, 134.4, 140.3, 145.7, 166.9, 190.0; IR (film) 1756, 1674, 1232 cm⁻¹; HRMS (ESI) exact mass calcd for C₁₃H₁₂ClO₃⁺ (M+H) requires *m/z* 251.0469. Found *m/z* 251.0471. The enantiomeric ratio was determined by Daicel Chiralpak IC (25 cm), Hexane / IPA = 90 / 10, 1.0 mL/min, λ = 254 nm, t (major) = 37.18 min, t (minor) = 45.75 min.

(*R*)-Methyl 1-chloro-2-oxo-6-phenethyl-1,2-dihydronaphthalene-1-carboxylate (2j)

Pale yellow solid (91.8 mg, 90% yield, 0.3 mmol scale). Analytical data for **2j**: $[\alpha]_D^{20}$ = -46.2 (c = 1.0 CHCl₃, 94% ee); ¹H NMR (400 MHz, CDCl₃) δ 2.93-2.96 (m, 4H), 3.75 (s, 3H), 6.25 (d, *J* = 9.6 Hz, 1H), 7.17-7.31 (m, 7H), 7.42-7.46 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 37.2, 37.2, 54.1, 67.3, 123.1, 126.1, 128.2, 128.3, 128.4, 128.9, 130.0, 131.1, 134.8, 140.8, 144.0, 145.8, 166.8, 190.0; IR (film) 1762, 1675, 1213 cm⁻¹; HRMS (ESI) exact mass calcd for C₂₀H₂₁ClNO₃⁺ (M+NH₄) requires *m/z* 358.1204. Found *m/z* 358.1206. The enantiomeric ratio was determined by Daicel Chiralpak IC (25 cm), Hexane / IPA = 90 / 10, 1.0 mL/min, λ = 254 nm, t (major) = 39.45 min, t (minor) = 47.75 min.

(*R,E*)-Methyl 1-chloro-2-oxo-6-styryl-1,2-dihydronaphthalene-1-carboxylate (2k) Yellow solid (89.7 mg, 88% yield, 0.3 mmol scale). Analytical data for 2k: $[\alpha]_D^{20} =$ -30.3 (c = 1.0 CHCl₃, 94% ee); ¹H NMR (400 MHz, CDCl₃) δ 3.77 (s, 3H), 6.30 (d, *J* = 9.6 Hz, 1H), 7.08 (d, *J* = 16.0 Hz, 1H), 7.18 (d, *J* = 16.0 Hz, 1H), 7.31-7.33 (m, 1H), 7.39 (t, *J* = 7.2 Hz, 2H), 7.48-7.57 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 54.2, 67.3, 123.6, 126.4, 126.7, 127.7, 128.4, 128.6, 128.7, 128.8, 129.3, 131.2, 135.7, 136.4, 139.3, 145.5, 166.7, 189.8; IR (film) 1761, 1674, 1211 cm⁻¹; HRMS (ESI) exact mass calcd for C₂₀H₁₉CINO₃⁺ (M+NH₄) requires *m*/*z* 356.1048. Found *m*/*z* 356.1047. The enantiomeric ratio was determined by Daicel Chiralpak AD-H (25 cm), Hexane / IPA = 90 / 10, 1.0 mL/min, λ = 254 nm, t (major) = 24.14 min, t (minor) = 20.81 min.

(R)-Methyl

1-chloro-2-oxo-6-(phenylethynyl)-1,2-dihydronaphthalene-1-carboxylate (2l) Yellow solid (92.2 mg, 91% yield, 0.3 mmol scale). Analytical data for **2l**: $[\alpha]_D^{20} =$ -17.4 (c = 1.0 CHCl₃, 93% ee); ¹H NMR (400 MHz, CDCl₃) δ 3.77 (s, 3H), 6.31 (d, *J* = 10.0 Hz, 1H), 7.37-7.38 (m, 3H), 7.47-7.60 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 54.3, 67.1, 87.5, 91.9, 122.3, 123.9, 125.4, 128.4, 128.5, 128.9, 128.9, 131.7, 132.6, 133.6, 136.5, 144.9, 166.4, 189.4; IR (film) 1769, 1680, 1221 cm⁻¹; HRMS (ESI) exact mass calcd for C₂₀H₁₇ClNO₃⁺ (M+NH₄) requires *m/z* 354.0891. Found *m/z* 354.0892. The enantiomeric ratio was determined by Daicel Chiralpak IC (25 cm), Hexane / IPA = 90 / 10, 1.0 mL/min, λ = 254 nm, t (major) = 25.08 min, t (minor) = 27.97 min.

(R)-Methyl

1-chloro-6-(3-hydroxyprop-1-yn-1-yl)-2-oxo-1,2-dihydronaphthalene-1-carboxyla te (2m)

Yellow foam (69.4 mg, 80% yield, 0.3 mmol scale). Analytical data for **2m**: $[\alpha]_D^{20} = -20.6$ (c = 1.0 CHCl₃, 78% ee); ¹H NMR (400 MHz, CDCl₃) δ 2.18 (br, 1H), 3.77 (s, 3H), 4.52 (s, 2H), 6.30 (d, *J* = 10.4 Hz, 1H), 7.43-7.49 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 51.4, 54.4, 67.1, 83.7, 89.9, 124.0, 124.8, 128.5, 129.0, 132.7, 133.7, 136.9, 144.8, 166.5, 189.5; IR (film) 1761, 1675, 1214 cm⁻¹; HRMS (ESI) exact mass calcd for C₁₅H₁₅ClNO₄⁺ (M+NH₄) requires *m*/*z* 308.0684. Found *m*/*z* 308.0685. The enantiomeric ratio was determined by Daicel Chiralpak AD-H (25 cm), Hexane / IPA = 90 / 10, 1.0 mL/min, λ = 254 nm, t (major) = 32.70 min, t (minor) = 30.07 min.

(*R*)-Methyl 4-bromo-1-chloro-2-oxo-1,2-dihydronaphthalene-1-carboxylate (2n) Yellow foam (55.9 mg, 90% yield, 0.2 mmol scale). Analytical data for 2n: $[\alpha]_D^{20} =$ -38.4 (c = 1.0 CHCl₃, 92% ee); ¹H NMR (400 MHz, CDCl₃) δ 3.77 (s, 3H), 6.85 (s, 1H), 7.53-7.54 (m, 3H), 7.96-7.98 (m, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 54.4, 67.5, 127.2, 127.7, 128.7, 130.3, 130.4, 132.0, 136.2, 145.6, 166.3, 186.7; IR (film) 1758, 1670, 1237 cm⁻¹; HRMS (ESI) exact mass calcd for C₁₂H₁₂BrClNO₃⁺ (M+NH₄) requires *m*/*z* 331.9684. Found *m*/*z* 331.9686. The enantiomeric ratio was determined by Daicel Chiralpak OD-H (25 cm), Hexane / IPA = 90 / 10, 1.0 mL/min, λ = 254 nm, t (major) = 12.17 min, t (minor) = 19.71 min.

(*R*)-Methyl 7-bromo-1-chloro-2-oxo-1,2-dihydronaphthalene-1-carboxylate (2o) Yellow foam (53.6 mg, 85% yield, 0.2 mmol scale). Analytical data for 2o: $[\alpha]_D^{20} =$ -11.8 (c = 1.0 CHCl₃, 91% ee); ¹H NMR (400 MHz, CDCl₃) δ 3.78 (s, 3H), 6.29 (d, *J* = 10.0 Hz, 1H), 7.23 (d, *J* = 8.0 Hz, 1H), 7.44 (d, *J* = 10.0 Hz, 1H), 7.57 (dd, *J* = 8.4, 2.0 Hz, 1H), 7.67 (d, *J* = 2.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 54.5, 66.7, 123.6, 125.6, 127.3, 131.0, 132.1, 133.3, 139.1, 144.5, 166.3, 188.9; IR (film) 1763, 1673, 1218 cm⁻¹; HRMS (ESI) exact mass calcd for C₁₂H₁₂BrClNO₃⁺ (M+NH₄) requires *m*/z 331.9684. Found *m*/z 331.9686. The enantiomeric ratio was determined by Daicel Chiralpak IC (25 cm), Hexane / IPA = 90 / 10, 1.0 mL/min, λ = 254 nm, t (major) = 20.79 min, t (minor) = 27.06 min.

(*R*)-Methyl 1-chloro-7-methoxy-2-oxo-1,2-dihydronaphthalene-1-carboxylate

Yellow solid (78.0 mg, 95% yield, 0.3 mmol scale). Analytical data for **2p**: $[\alpha]_D^{20} =$ -55.5 (c = 1.0 CHCl₃, 90% ee); ¹H NMR (400 MHz, CDCl₃) δ 3.76 (s, 3H), 3.85 (s, 3H), 6.13 (d, *J* = 10.0 Hz, 1H), 6.94 (dd, *J* = 8.4, 2.8 Hz, 1H), 7.05 (d, *J* = 2.4 Hz, 1H), 7.32 (d, *J* = 8.4 Hz, 1H), 7.47 (d, *J* = 10.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 54.2, 55.7, 67.2, 115.1, 115.1, 120.5, 121.4, 131.7, 139.4, 145.9, 161.9, 166.8, 189.9; IR (film) 1752, 1662, 1602, 1225 cm⁻¹; HRMS (ESI) exact mass calcd for C₁₃H₁₂ClO₄⁺ (M+H) requires *m/z* 267.0419. Found *m/z* 267.0421. The enantiomeric ratio was determined by Daicel Chiralpak IC (25 cm), Hexane / IPA = 90 / 10, 1.0 mL/min, λ = 254 nm, t (major) = 41.17 min, t (minor) = 59.60 min.

(*R*)-Methyl 3-bromo-1-chloro-2-oxo-1,2-dihydronaphthalene-1-carboxylate (2q) Yellow foam (83.2 mg, 88% yield, 0.3 mmol scale). Analytical data for 2q: $[\alpha]_D^{20} =$ -37.0 (c = 1.0 CHCl₃, 73% ee); ¹H NMR (400 MHz, CDCl₃) δ 3.74 (s, 3H), 7.32 (d, *J* = 6.8 Hz, 1H), 7.42-7.49 (m, 3H), 7.91 (s, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 54.5, 68.0, 119.0, 128.7, 129.0, 129.5, 130.3, 131.3, 136.8, 146.9, 166.1, 183.6; IR (film) 1759, 1679, 1246, 1222 cm⁻¹; HRMS (ESI) exact mass calcd for C₁₂H₁₂BrClNO₃⁺ (M+NH₄) requires *m/z* 331.9684. Found *m/z* 331.9673. The enantiomeric ratio was determined by Daicel Chiralpak IC (25 cm), Hexane / IPA = 90 / 10, 1.0 mL/min, λ = 254 nm, t (major) = 21.28 min, t (minor) = 27.04 min.

(*R*)-Methyl 1-chloro-3-methyl-2-oxo-1,2-dihydronaphthalene-1-carboxylate (2r) Yellow liquid (19.3 mg, 94% yield, 0.1 mmol scale, 10 mol% of (DHQ)₂PHAL was utilized). Analytical data for 2r: $[\alpha]_D^{20} = 52.4$ (c = 1.0 CHCl₃, 86% ee); ¹H NMR (400 MHz, CDCl₃) δ 2.01 (s, 3H), 2.07 (s, 3H), 7.23-7.26 (m, 2H), 7.32-7.41 (m, 2H), 7.71 (d, *J* = 7.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 16.1, 28.2, 65.4, 127.7, 128.7, 128.8, 129.0, 129.5, 131.5, 140.9, 141.6, 194.7; IR (film) 1669, 1261, 756 cm⁻¹; HRMS (ESI) exact mass calcd for $C_{12}H_{12}OCI^+$ (M+H) requires *m/z* 207.0571. Found *m/z* 207.0575. The enantiomeric ratio was determined by Daicel Chiralpak IC (25 cm), Hexane / IPA = 49 / 1, 0.5 mL/min, λ = 254 nm, t (major) = 25.53 min, t (minor) = 23.29 min.

(S)-1-Chloro-1-methyl-3-phenylnaphthalen-2(1H)-one (2s)

Yellow liquid (23.8 mg, 89% yield, 0.1 mmol scale, 10 mol% of (DHQ)₂PHAL was utilized). Analytical data for **2s**: $[\alpha]_D^{20} = 212.9$ (c = 1.0 CHCl₃, 82% ee); ¹H NMR (400 MHz, CDCl₃) δ 2.13 (s, 3H), 7.37-7.47 (m, 7H), 7.54-7.56 (m, 2H), 7.77 (d, *J* = 7.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 26.6, 66.2, 127.5, 128.4, 128.4, 128.5, 129.2, 129.4, 129.9, 130.1, 134.7, 135.1, 140.3, 141.2, 193.0; IR (film) 1663, 1361, 761 cm⁻¹; HRMS (ESI) exact mass calcd for C₁₇H₁₄OCl⁺ (M+H) requires *m/z* 269.0728. Found *m/z* 269.0721. The enantiomeric ratio was determined by Daicel Chiralpak AD-H (25 cm), Hexane / IPA = 60 / 1, 0.61 mL/min, λ = 254 nm, t (major) = 23.18 min, t (minor) = 21.43 min.

(R)-Methyl 2-chloro-1-oxo-1,2-dihydronaphthalene-2-carboxylate (2t)

The reaction was carried out at -70 °C in CHCl₃/CCl₄ (1.0 mL : 1.0 mL) with 10 mol% of (DHQD)₂PYR. Yellow solid (66.5 mg, 94% yield, 0.3 mmol scale). Analytical data for **2t**: $[\alpha]_D^{20} = -116.6$ (c = 1.0 CHCl₃, 90% ee); ¹H NMR (400 MHz, CDCl₃) δ 3.79 (s, 3H), 6.22 (d, *J* = 9.6 Hz, 1H), 6.72 (d, *J* = 9.6 Hz, 1H), 7.29 (d, *J* = 7.6 Hz, 1H), 7.45 (t, *J* = 7.6 Hz, 1H), 7.65 (t, *J* = 7.6 Hz, 1H), 8.08 (d, *J* = 7.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 54.2, 65.4, 127.4, 128.2, 128.3, 128.4, 128.9, 129.6, 135.7, 136.1, 166.5, 189.2; IR (film) 1756, 1683, 1216 cm⁻¹; HRMS (ESI) exact mass calcd for C₁₂H₁₀ClO₃⁺ (M+H) requires *m/z* 237.0313. Found *m/z* 237.0312. The enantiomeric

ratio was determined by Daicel Chiralpak OD-H (25 cm), Hexane / IPA = 90 / 10, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 9.23 min, t (minor) = 10.27 min.

Methyl 1-bromo-2-oxo-1,2-dihydronaphthalene-1-carboxylate (2u)

The reaction was carried out with 1.2 equiv. of 1,3-dibromo-5,5-dimethylhydantoin. Pale yellow solid (80.9 mg, 96% yield, 9% ee, 0.3 mmol scale). **2u** is sensitive to proton solvent. Analytical data for **2u**: ¹H NMR (400 MHz, CDCl₃) δ 3.78 (s, 3H), 6.28 (d, *J* = 9.6 Hz, 1H), 7.36-7.49 (m, 5H); ¹³C NMR (100 MHz, CDCl₃) δ 54.4, 60.2, 123.1, 127.9, 129.1, 130.0, 130.1, 137.9, 145.1, 166.6, 189.9; IR (film) 2951, 1750, 1671, 1237 cm⁻¹; HRMS (ESI) exact mass calcd for C₁₂H₉BrO₃⁺ (M+NH₄) requires m/z 298.0073. Found m/z 298.0075. The enantiomeric ratio was determined by Daicel Chiralpak OD-H (25 cm), Hexane / IPA = 90 / 10, 1.0 mL/min, λ = 254 nm, t (major) = 14.07 min, t (minor) = 19.85 min.

1,1-Dichloronaphthalen-2(1H)-one (2v)

The reaction was carried out at rt with 10 mol% of DMAP. White solid (63.5 mg, 100% yield, 0.3 mmol scale). Analytical data for **2v**: ¹H NMR (400 MHz, CDCl₃) δ 6.33 (d, J = 10.0 Hz, 1H), 7.32 (dd, $J_1 = 7.6$, $J_2 = 1.2$ Hz, 1H), 7.41-7.46 (m, 2H), 7.52 (m, td, $J_1 = 7.6$, $J_2 = 1.2$ Hz, 1H), 8.06 (dd, $J_1 = 8.0$, $J_2 = 0.8$ Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 80.5, 122.6, 127.0, 129.6, 129.6, 130.7, 131.3, 140.7, 144.9, 185.9; IR (film) 3359, 3085, 1683, 1231 cm⁻¹; HRMS (EI) exact mass calcd for C₁₀H₆Cl₂O⁺ requires m/z 211.9790. Found m/z 211.9800.

2.7 Transformations of 2a and 2t.

To a solution of **2a** (70.8 mg, 0.3 mmol) in DCM (2.0 mL), Dibal-H (0.4 mL, 1.5 M in toluene) was added dropwise at -60 °C under Ar atmosphere. After the reaction was complete (monitored by TLC), saturated NH₄Cl aqueous solution or 1 M NaOH aqueous solution (2.0 mL) was added. The aqueous layer was extracted with DCM. The organic layer was washed with brine, dried over Na₂SO₄, filtered and then concentrated. The residue was purified by silica gel column chromatography (ethyl acetate/petroleum ether/Et₃N = 2/40/1, v/v/v) to afford the product.

(1*R*,2*R*)-Methyl 1-chloro-2-hydroxy-1,2-dihydronaphthalene-1-carboxylate (3a) Yellow solid (36.2 mg, 51% yield, 0.3 mmol scale). Analytical data for 3a: $[α]_D^{20} =$ -60.0 (c = 1.0 CHCl₃, 92% ee); ¹H NMR (400 MHz, CDCl₃) δ 3.53 (d, *J* = 9.6 Hz, 1H), 3.67 (s, 3H), 4.79 (d, *J* = 8.8 Hz, 1H), 6.03 (dd, *J* = 9.6, 2.8 Hz, 1H), 6.38 (dd, *J* = 9.6, 2.0 Hz, 1H), 7.02-7.04 (m, 1H), 7.22-7.28 (m, 2H), 7.11 (dd, *J* = 6.4, 3.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 53.6, 72.4, 74.8, 127.1, 127.9, 128.3, 128.8, 129.6, 130.6, 132.1, 132.3, 169.7; IR (film) 3444, 1721, 1267, 1208 cm⁻¹; HRMS (DART) exact mass calcd for C₁₂H₁₅O₃NCl⁺ (M+NH₄) requires *m/z* 256.0735. Found *m/z* 256.0732. The enantiomeric ratio was determined by Daicel Chiralpak AD-H (25 cm), Hexane / IPA = 90 / 10, 1.0 mL/min, λ = 254 nm, t (major) = 9.25 min, t (minor) = 10.15 min.

(1aR,7bS)-Methyl 1a,7b-dihydronaphtho[1,2-b]oxirene-7b-carboxylate (3b)

Yellow solid (30.3 mg, 50% yield, 0.3 mmol scale). Analytical data for **3b**: $[\alpha]_D^{20} =$ 124.9 (c = 1.0 CHCl₃, 92% ee); ¹H NMR (400 MHz, CDCl₃) δ 3.83 (s, 3H), 4.13-4.14 (m, 1H), 6.30 (dd, *J* = 9.6, 3.6 Hz, 1H), 6.76 (dd, *J* = 9.6, 1.2 Hz, 1H), 7.25-7.35 (m, 3H), 7.68 (dd, *J* = 7.2, 1.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 52.8, 58.9, 59.9, 122.5, 128.2, 129.0, 129.2, 129.2, 129.8, 131.8, 133.2, 168.6; IR (film) 1727, 1211, 1020 cm⁻¹; HRMS (DART) exact mass calcd for C₁₂H₁₁O₃⁺ (M+H) requires *m/z* 203.0703. Found *m/z* 203.0701. The enantiomeric ratio was determined by Daicel Chiralpak AD-H (25 cm), Hexane / IPA = 90 / 10, 1.0 mL/min, λ = 254 nm, t (major) = 13.07 min, t (minor) = 11.61 min.

To a stirred mixture of **2a** (23.6 mg, 0.1 mmol) and KBr (30.0 mg, 0.25 mmol) in CH₃CN (1.0 mL) and water (40 μ L), Selectfluor (70.8 mg, 0.2 mmol) was added. Then the reaction mixture was stirred at room temperature until the reaction was complete (monitored by TLC). The reaction was quenched by the addition of saturated Na₂SO₃ aqueous solution (3.0 mL). The aqueous layer was extracted with ethyl acetate. The organic layer was washed with brine, dried over Na₂SO₄, filtered and then concentrated. The residue was purified by silica gel column chromatography (ethyl acetate/petroleum ether = 1/20, v/v) to afford **2q** (23.2 mg, 74% yield, 89% ee).

To a solution of **2t** (47.3 mg, 0.2 mmol) in DCM (1.0 mL) and water (1.0 mL), KBr (71.4 mg, 0.6 mmol) and PhI(OAc)₂ (88.2 mg, 0.2 mmol) were added successively.

Then the reaction mixture was stirred at room temperature until the reaction was complete (monitored by TLC). The reaction was quenched by the addition of saturated NaHCO₃ aqueous solution (3.0 mL). The aqueous layer was extracted with DCM. The organic layer was washed with brine, dried over Na₂SO₄, filtered and then concentrated. The residue was purified by silica gel column chromatography (ethyl acetate/petroleum ether = 1/40, v/v) to afford the product.

(2*R*,3*S*,4*S*)-Methyl

3,4-dibromo-2-chloro-1-oxo-1,2,3,4-tetrahydronaphthalene-2-carboxylate (3c) White solid (67.1 mg, 85% yield, 0.2 mmol scale). Analytical data for **3c**: $[\alpha]_D^{20} = 26.1$ (c = 1.0 CHCl₃, 88% ee); ¹H NMR (400 MHz, CDCl₃) δ 3.95 (s, 3H), 5.33 (d, J = 9.2 Hz, 1H), 5.69 (d, J = 9.2 Hz, 1H), 7.52 (t, J = 7.6 Hz, 1H), 7.72 (t, J = 7.2 Hz, 1H), 7.87 (d, J = 8.0 Hz, 1H), 8.06 (d, J = 7.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 50.6, 54.5, 56.5, 75.2, 127.2, 128.6, 129.6, 132.0, 135.7, 139.2, 164.6, 184.3; IR (film) 1737, 1698, 1274 cm⁻¹; HRMS (ESI) exact mass calcd for C₁₂H₁₃Br₂ClNO₃⁺ (M+NH₄) requires *m/z* 411.8945. Found *m/z* 411.8943. The enantiomeric ratio was determined by Daicel Chiralpak OD-H (25 cm), Hexane / IPA = 90 / 10, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 8.88 min, t (minor) = 10.72 min.

To a solution of **2t** (46.4 mg, 0.2 mmol) in acetone (1.0 mL) and water (0.2 mL), TCCA (46.4 mg, 0.2 mmol) was added. Then the reaction mixture was stirred at room temperature until the reaction was complete (monitored by TLC). The reaction was quenched by the addition of saturated Na_2SO_3 aqueous solution (3 mL). The aqueous layer was extracted with ethyl acetate. The organic layer was washed with brine, dried

over Na_2SO_4 , filtered and then concentrated. The residue was purified by silica gel column chromatography (ethyl acetate/petroleum ether = 1/6, v/v) to afford the product.

(2*R*,3*R*,4*S*)-Methyl

2,3-dichloro-4-hydroxy-1-oxo-1,2,3,4-tetrahydronaphthalene-2-carboxylate (3d) White foam (39.8 mg, dr = 11:1, 70% yield, 0.2 mmol scale). Analytical data for **3d**: $[\alpha]_D^{20} = 18.1$ (c = 1.0 CHCl₃, 86% ee); ¹H NMR (400 MHz, CDCl₃) δ 3.17 (d, *J* = 4.8 Hz, 1H), 3.95 (s, 3H), 4.94 (d, *J* = 9.2 Hz, 1H), 5.17 (dd, *J* = 9.2, 4.8 Hz, 1H), 7.53 (t, *J* = 7.6 Hz, 1H), 7.76 (td, *J* = 7.2, 1.2 Hz, 1H), 7.87 (d, *J* = 8.0 Hz, 1H), 8.10 (dd, *J* = 8.0, 1.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 54.5, 65.8, 70.2, 74.7, 127.1, 128.9, 129.1, 135.8, 136.0, 141.0, 164.9, 185.0; IR (film) 3498, 1749, 1694, 1279, 1243 cm⁻¹; HRMS (ESI) exact mass calcd for C₁₂H₁₄Cl₂NO₄⁺ (M+NH₄) requires *m/z* 306.0294. The enantiomeric ratio was determined by Daicel Chiralpak AD-H (25 cm), Hexane / IPA = 80 / 3, 0.83 mL/min, λ = 254 nm, t (major) = 48.66 min, t (minor) = 63.02 min.

3.1 Mechanistic Investigations

To a Schlenk tube, DCDMH (47.3 mg, 0.24 mmol), $(DHQD)_2PHAL$ (15.6 mg, 0.02 mmol) and toluene (1.0 mL) were added. Then **1u** (43.2 mg, 0.2 mmol) was added in one portion. Very low conversion of **1u** was observed and no product **2a** was detected after the reaction mixture was stirred for 20 h at rt.

To a Schlenk tube, DCDMH (78.8 mg, 0.4 mmol), (DHQD)₂PHAL (15.6 mg, 0.02 mmol) and toluene (1.0 mL) were added. Then **1v** (54.8 mg, 0.2 mmol) was added in one portion. After stirred for 48 h at rt, the reaction was quenched by the addition of saturated Na₂SO₃ aqueous solution (3.0 mL). The organic layer was extracted with ethyl acetate, washed with brine, dried over Na₂SO₄, filtered and then concentrated. The residue was purified by silica gel column chromatography (ethyl acetate/petroleum ether = 1/20, v/v) to afford the product **2a** (21.5 mg, 45% yield, 20% ee).

To a flame-dried Schlenk tube, **1a** (60.6 mg, 0.3 mmol), 18-crown-6 (82.2 mg, 0.32 mmol) and toluene (2.0 mL) were added. Then potassium methoxide (22.2 mg, 0.32 mmol) was added. After stirred for 0.5 h at rt, a homogeneous solution was formed. To another Schlenk tube, DCDMH (71.0 mg, 0.36 mmol), (DHQD)₂PHAL (23.4 mg, 0.03 mmol) and toluene (1.0 mL) were added. After stirred for 10 min at -78 °C, the previously prepared homogeneous solution of **1a** was added. The reaction was quenched by the addition of saturated Na₂SO₃ aqueous solution (3.0 mL) after stirred for 30 min at -78 °C. The organic layer was extracted with ethyl acetate, washed with brine, dried over Na₂SO₄, filtered and then concentrated. The residue was purified by silica gel column chromatography (ethyl acetate/petroleum ether = 1/20, v/v) to afford the product **2a** (66.3 mg, 94% yield, 7% ee).

To a Schlenk tube, DCDMH (23.5 mg, 0.12 mmol), (DHQD)₂PHAL (7.8 mg, 0.01

mmol), methanol (4.0 μ L, 3.5 mg), 18-crown-6 (26.3 mg, 0.1 mmol) and toluene (1.0 mL) were added successively. After stirred for 10 min at -78 °C, **1a** (20.2 mg, 0.1 mmol) was added. Then the reaction mixture was stirred at -78 °C until the reaction was complete (monitored by TLC). The reaction was quenched by the addition of saturated Na₂SO₃ aqueous solution (3.0 mL) after stirred for 30 min at -78 °C. The organic layer was extracted with ethyl acetate, washed with brine, dried over Na₂SO₄, filtered and then concentrated. The residue was purified by silica gel column chromatography (ethyl acetate/petroleum ether = 1/20, v/v) to afford the product **2a** (21.5 mg, 90% yield, 91% ee).

To a Schlenk tube, DCDMH (70.9 mg, 0.36 mmol), (DHQD)₂PHAL (23.4 mg, 0.03 mmol), benzoic acid (7.3 mg, 0.06 mmol) and toluene (2.0 mL) were added successively. After stirred for 10 min at -78 °C, **1a** (60.6 mg, 0.3 mmol) was added. Then the reaction mixture was stirred at -78 °C until the reaction was complete (monitored by TLC). The reaction was quenched by the addition of saturated Na₂SO₃ aqueous solution (3.0 mL). The organic layer was extracted with ethyl acetate, washed with brine, dried over Na₂SO₄, filtered and then concentrated. The residue was purified by silica gel column chromatography (ethyl acetate/petroleum ether = 1/20, v/v) to afford the product **2a** (65.8 mg, 93% yield, 64% ee).

4. Crystal data

In order to determine the absolute configuration of the products, the crystal of enantiopure 2d was obtained by slow evaporation in hexane and EA and a single crystal X-ray analysis determined its configuration as *R* (Fig. 1) (CCDC 1048302).

Table 1. Crystal data and structure refinement for (R) -2d.		
Identification code	cd21437	
Empirical formula	C12 H8 Br Cl O3	
Formula weight	315.54	
Temperature	293(2) K	
Wavelength	0.71073 A	
Crystal system, space group	Orthorhombic, $P2(1)2(1)2(1)$	
Unit cell dimensions	a = 7.4500(9) A alpha = 90 deg.	
	b = 7.7960(9) A beta = 90 deg.	
	c = 21.193(3) A gamma = 90 deg.	
Volume	1230.9(3) A^3	
Z, Calculated density	4, 1.703 Mg/m^3	
Absorption coefficient	3.548 mm^-1	
F(000)	624	
Crystal size	0.211 x 0.165 x 0.123 mm	
Theta range for data collection	2.78 to 26.00 deg.	
Limiting indices	-9<=h<=9, -9<=k<=8, -26<=l<=25	
Reflections collected / unique	7410 / 2418 [R(int) = 0.0475]	
Completeness to theta $= 26.00$	99.9 %	
Absorption correction	Empirical	
Max. and min. transmission	1.00000 and 0.45967	
Refinement method	Full-matrix least-squares on F^2	
Data / restraints / parameters	2418 / 0 / 156	
Goodness-of-fit on F^2	1.026	

Final R indices [I>2sigma(I)]	R1 = 0.0386, wR2 = 0.0941
R indices (all data)	R1 = 0.0494, wR2 = 0.0988
Absolute structure parameter	0.007(12)
Extinction coefficient	0.0013(14)
Largest diff. peak and hole	0.530 and -0.519 e.A^-3

In order to determine the absolute configuration of 2t, the crystal of enantiopure 2t was obtained by slow evaporation in hexane and Et₂O and a single crystal X-ray analysis determined its configuration as *R* (Fig. 2) (CCDC 1048128).

Fig.	2
rig.	4

Table 2. Crystal data and structure ref	inement for (R) -2t.	
Identification code	dm14320	
Empirical formula	C12 H9 Cl O3	
Formula weight	236.64	
Temperature	133(2) K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	P 21 21 21	
Unit cell dimensions	a = 9.632(2) Å	a= 90 °.
	b = 9.726(2) Å	b= 90 °.
	c = 11.729(3) Å	g = 90 °.
Volume	1098.7(4) Å ³	
Z	4	
Density (calculated)	1.431 Mg/m ³	
Absorption coefficient	0.335 mm ⁻¹	
F(000)	488	

Crystal size	0.211 x 0.176 x 0.123 mm ³
Theta range for data collection	2.721 to 25.494 °.
Index ranges	-11<=h<=11, -11<=k<=11, -11<=l<=14
Reflections collected	7270
Independent reflections	2040 [R(int) = 0.0550]
Completeness to theta = $25.242 \circ$	99.4 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7457 and 0.4633
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	2040 / 0 / 147
Goodness-of-fit on F ²	1.073
Final R indices [I>2sigma(I)]	R1 = 0.0437, wR2 = 0.1154
R indices (all data)	R1 = 0.0471, wR2 = 0.1182
Absolute structure parameter	0.11(5)
Largest diff. peak and hole	0.432 and -0.233 e.Å ⁻³

5. References

(a) Bobrov, S.; Cai, C.; Katritzky, A. R.; Singh, S. K. J. Org. Chem. 2006, 71, 3364.
 (b) Aoyama, T.; Okutome, T.; Nakayama, T.; Yaegashi, T.; Matsui, R.; Nunomura, S.; Kurumi, Y.; Fujii, S. Chem. Pharm. Bull. 1985, 33, 1458. (c) Oguma, T.; Katsuki, T. J. Am. Chem. Soc. 2012, 134, 20017.

6. Copies of NMR spectra

Compound 1c's NMR Spectra

Compound 1g's NMR Spectra

Compound 1h's NMR Spectra

Compound 1i's NMR Spectra

Compound 1k's NMR Spectra

Compound 1I's NMR Spectra

S37

Compound 1n's NMR Spectra

Compound 1o's NMR Spectra

Compound 1p's NMR Spectra

Compound 1q's NMR Spectra

Compound 2a's NMR Spectra

Compound 2b's NMR Spectra

Compound 2c's NMR Spectra

Compound 2d's NMR Spectra

Compound 2e's NMR Spectra

Compound 2f's NMR Spectra

Compound 2i's NMR Spectra

Compound 2j's NMR Spectra

Compound 2k's NMR Spectra

Compound 21's NMR Spectra

Compound 2n's NMR Spectra

Compound 2p's NMR Spectra

Compound 2q's NMR Spectra

Compound 2r's NMR Spectra

Compound 2s's NMR Spectra

Compound 2t's NMR Spectra

Compound 3a's NMR Spectra

Compound 3c's NMR Spectra

Compound 3d's NMR Spectra

Sample Name: Archive directory: /export/Nome/omc/vnmrsys/data Sample directory: yg-21-39-1_04Jun2014 Fior1ie: NOESY Pulse Sequence: NOESY Solvent: COEJ3 Date collected on: Jun 4 2014

Operator: onc viMRS-600 "ONC-NMR600"

V:HE3-460 "DHC-MHE609" Helax, GH242, Z,JUB 26C Helax, GH242 Aca, the 3.142 sec Vidth 3537.1 Hz 20 Vid

5. Copies of HPLC spectra

S80

49.58 488634

47.69

12238047

2 22.936

2 23.178

16842461

90.69

599046

89.71

