Supporting Information for:

Palladium-Catalyzed Cross-Coupling of α-Bromocarbonyls and Allylic Alcohols for the Synthesis of α-Aryl Dicarbonyl Compounds

Yang Yu and Uttam K. Tambar*

Department of Biochemistry, The University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9038

Table of Contents:	
Materials and Methods	S-1
Optimization of Reaction Parameters	S-1
Synthesis of Starting Materials	S-4
General Procedure for the Synthesis of α-Aryl Dicarbonyl Compounds	S-4
Characterization Data for Products	S-5
Mechanistic Studies	S-14
Determination of Relative Stereochemistry of Products (Table 3, entry 7)	S-16
References	S-17
NMR Spectra	S-18
Chiral HPLC Data	S-53

Materials and Methods

All reactions were carried out in capped reaction vials with magnetic stirring unless otherwise indicated. Commercially obtained reagents were used as received. Solvents were dried by passage through an activated alumina column under argon. Liquids and solutions were transferred via syringe. All reactions were monitored by thin-layer chromatography with E. Merck silica gel 60 F254 pre-coated plates (0.25 mm). All flash chromatography purifications were performed on a Teledyne Isco CombiFlash® Rf unless otherwise indicated. ¹H and ¹³C NMR spectra were recorded on Varian Inova-400 or 500 spectrometers. Data for ¹H NMR spectra are reported relative to chloroform or benzene as an internal standard (7.26 ppm or 7.10 ppm) and are reported as follows: chemical shift (δ ppm), multiplicity, coupling constant (Hz), and integration. Data for ¹³C NMR spectra are reported relative to chloroform or benzene as an internal standard (77.23 ppm or 128.39 ppm) and are reported in terms of chemical shift (δ ppm). Infrared spectra were recorded on a Perkin-Elmer 1000 series FTIR. Chiral HPLC analyses were performed on an Agilent 1200 Series system. LRMS data were measured using an Agilent 1200 series LC/MS. HRMS data were obtained at The Scripps Center for Mass Spectrometry.

Optimization of Reaction Parameters

(a) Effect of Varying the Palladium Source

Standard Procedure: A solution of allylic alcohol **1** (0.10 mmol, 1.0 equiv), palladium source (5 mol%), dppe (10 mol%), and Ag_2CO_3 (0.20 mmol, 2.0 equiv), in toluene (1 mL) was treated with ethyl bromoacetate **2** (0.20 mmol, 2.0 equiv) and stirred at 110 °C for 12 h. The

mixture was concentrated under reduced pressure. The yield was determined by ¹H NMR spectroscopy using 1,4-Dimethoxybenzene as an internal standard.

Ph	Ph	o , Br, ↓	Palladium dp Ag ₂	n precursor pe (10 mol% CO ₃ (2.0 eq	(5 mol%) %) uiv)	o ∦	•	о Ц
но		• V `OEt	to	luene, 110º	с	Ph 🔨	\sim	OEt
1	1	2				F	Рћ <i>3</i>	
			Table	S1				
	Entry	Palladium Source (5 mol%)	Ligand (10 mol%)	Additive (2 equiv)	Solvent	Temp (°C)	Yield (%)	-
	1	PdCl ₂	dppe	Ag_2CO_3	PhMe	110	trace	-
	2	Pd(OAc) ₂	dppe	Ag ₂ CO ₃	PhMe	110	50	
	3	Pd(dba) ₂	dppe	Ag ₂ CO ₃	PhMe	110	35	
	4	Pd(PPh ₃) ₄	dppe	Ag ₂ CO ₃	PhMe	110	40	
	5	PdCl ₂ (nbd) ₂	dppe	Ag ₂ CO ₃	PhMe	110	64	
	6	[PdCl ₂ (MeCN) ₂]	dppe	Ag ₂ CO ₃	PhMe	110	58	
	7	[PdCl ₂ (PhCN) ₂]	dppe	Ag ₂ CO ₃	PhMe	110	66	
	8	-	dppe	Ag ₂ CO ₃	PhMe	110	0	
		dba = dibenzylidene	eacetone					_

nbd = Bicyclo[2.2.1]hepta-2,5-diene.

(b) Effect of Varying the Ligands

Standard Procedure: A solution of allylic alcohol **1** (0.10 mmol, 1.0 equiv), $[PdCl_2(PhCN)_2]$ (5 mol%), ligand (10 mol%), and Ag₂CO₃ (0.20 mmol, 2.0 equiv) in toluene (1 mL) was treated with ethyl bromoacetate **2** (0.20 mmol, 2.0 equiv) and stirred at 110 °C for 12 h. The mixture was concentrated under reduced pressure. The yield was determined by ¹H NMR spectroscopy using 1,4-Dimethoxybenzene as an internal standard.

Ph	Ph	o , Br, ↓	[PdCl ₂ liga Ag ₂	(PhCN) ₂] (5 and (10 mo CO ₃ (2.0 eo	ō mol%) bl%) quiv)	o ∦	•	о Д
ноХ		- `OE	t to	oluene, 110	°C	Ph 🔨	$\uparrow \sim$	∕`0Et
1		2					Р́ћ З	
			Table	S2				
	Entry	Palladium Source (5 mol%)	Ligand (10 mol%)	Additive (2 equiv)	Solvent	Temp (°C)	Yield (%)	-
	1	[PdCl ₂ (PhCN) ₂]	dppe	Ag_2CO_3	PhMe	110	66	
	2	[PdCl ₂ (PhCN) ₂]	-	Ag ₂ CO ₃	PhMe	110	22	
	3	[PdCl ₂ (PhCN) ₂]	PPh ₃	Ag_2CO_3	PhMe	110	63	
	4	[PdCl ₂ (PhCN) ₂]	P(<i>p</i> -Tol) ₃	Ag ₂ CO ₃	PhMe	110	55	
	5	[PdCl ₂ (PhCN) ₂]	P(<i>o</i> -Tol) ₃	Ag ₂ CO ₃	PhMe	110	43	
	6	[PdCl ₂ (PhCN) ₂]P	P(<i>o</i> -MeOPh) ₃	Ag ₂ CO ₃	PhMe	110	trace	
	7	[PdCl ₂ (PhCN) ₂]	PCy ₃	Ag ₂ CO ₃	PhMe	110	47	
	8	[PdCl ₂ (PhCN) ₂]	JohnPhos	Ag ₂ CO ₃	PhMe	110	trace	

JohnPhos = (2-Biphenyl)di-tert-butylphosphine.

(c) Effect of Varying the Additive

Standard Procedure: A solution of allylic alcohol **1** (0.10 mmol, 1.0 equiv), $[PdCl_2(PhCN)_2]$ (5 mol%), dppe (10 mol%), and additive (0.20 mmol, 2.0 equiv) in toluene (1 mL) was treated with ethyl bromoacetate **2** (0.20 mmol, 2.0 equiv) and stirred at 110 °C for 12 h. The mixture was concentrated under reduced pressure. The yield was determined by ¹H NMR spectroscopy using 1,4-Dimethoxybenzene as an internal standard.

Ph , P	h .	o Br.↓	[PdCl ₂ (l dpj addit	PhCN) ₂] (5 m pe (10 mol%) tive (2.0 equ	iol%)) iv)	o ∐		o ∐
но	/ 1	OEt	tol	uene, 110ºC	F	'n~``	\sim	OEt
1		2				P	h 3	
			Table	s3				
	Entry	Palladium Source (5 mol%)	Ligand (10 mol%)	Additive (2 equiv)	Solvent	Temp (°C)	Yield (%)	
	1	[PdCl ₂ (PhCN) ₂]	dppe	NaOAc	PhMe	110	0	
	2	[PdCl ₂ (PhCN) ₂]	dppe	Cu(OAc) ₂	PhMe	110	0	
	3	[PdCl ₂ (PhCN) ₂]	dppe	AgOAc	PhMe	110	24	
	4	[PdCl ₂ (PhCN) ₂]	dppe	PhI(OAc) ₂	PhMe	110	trace	
	5	[PdCl ₂ (PhCN) ₂]	dppe	Cs ₂ CO ₃	PhMe	110	2	
	6	[PdCl ₂ (PhCN) ₂]	dppe	Ag ₂ CO ₃	PhMe	110	66	
	7	[PdCl ₂ (PhCN) ₂]	dppe	Ag ₂ O	PhMe	110	80	
	8	[PdCl ₂ (PhCN) ₂]	dppe	-	PhMe	110	0	_

(d) Effect of Varying the Solvents

Standard Procedure: allylic alcohol **1** (0.10 mmol, 1.0 equiv), $[PdCl_2(PhCN)_2]$ (5 mol%), dppe (10 mol%), and additive (0.20 mmol, 2.0 equiv) in the designated solvent (1 mL) was treated with ethyl bromoacetate **2** (0.20 mmol, 2.0 equiv) and stirred at 110 °C for 12 h. The mixture was concentrated under reduced pressure. The yield was determined by ¹H NMR spectroscopy using 1,4-Dimethoxybenzene as an internal standard.

Ph	Ph	o . Br. ↓	[PdCl d A	₂ (PhCN) ₂] (ppe (10 mo g ₂ O (2.0 eq	5 mol%) l%) uiv)	° I		o ∐
но		⁺ ✓ `OEt		solvent, refl	ux	Ph 🔨	\uparrow	∕`0Et
;	1	2					Рh З	
			Table	S4				
	Entry	Palladium Source (5 mol%) (1	Ligand 0 mol%)	Additive (2 equiv)	Solvent	Temp (°C)	Yield (%)	-
	1	[PdCl ₂ (PhCN) ₂]	dppe	Ag ₂ CO ₃	PhMe	110	66	
	2	[PdCl ₂ (PhCN) ₂]	dppe	Ag ₂ CO ₃	o-Xylene	140	37	
	3	[PdCl ₂ (PhCN) ₂]	dppe	Ag ₂ CO ₃	<i>m</i> -Xylene	135	60	
	4	[PdCl ₂ (PhCN) ₂]	dppe	Ag ₂ CO ₃	<i>p</i> -Xylene	138	42	
	5	[PdCl ₂ (PhCN) ₂]	dppe	Ag ₂ CO ₃	DMF	120	0	
	6	[PdCl ₂ (PhCN) ₂]	dppe	Ag ₂ CO ₃	Dioxane	100	63	
	7	[PdCl ₂ (PhCN) ₂]	dppe	Ag ₂ CO ₃	PhCF ₃	120	93	
	8	[PdCl ₂ (PhCN) ₂]	dppe	Ag ₂ O	\mathbf{PhCF}_3	120	94	

Synthesis of Starting Materials

(a) Allylic Alcohols

All allylic alcohols in Tables 1-3 were synthesized according to literature precedence. Spectroscopic data matched the reported data in the literature.¹

(b) α-Bromoesters

α-Bromoesters 2, 5, and 7a-d were purchased from Sigma-Aldrich.

(b) Weinreb Amides

Weinreb amides **7e-f** were synthesized according to literature precedence. Spectroscopic data matched the reported data in the literature.²

(c) a-Methyl-a-Bromoamide

 α -Methyl- α -bromoamide **7g** was synthesized according to literature precedence. Spectroscopic data matched the reported data in the literature.³

General Procedure for the Synthesis of a-Aryl Dicarbonyl Compounds

Table 1, entry 14: In an 8-mL reaction vial, a solution of 1,1-diphenylprop-2-en-1-ol 1 (0.200 mmol, 42.0 mg, 1.0 equiv), Pd(PhCN)₂Cl₂ (3.80 mg, 5mol %), dppe (8.0 mg, 10 mol%), and Ag₂O (0.400 mmol, 92.7 mg, 2.0 equiv), in α,α,α -Trifluorotoluene (1.0 mL, 0.2 M) was treated with ethyl bromoacetate **2** (0.400 mmol, 66.9 mg, 2.0 equiv). The reaction vial was charged with nitrogen for 5 minutes and then sealed. The mixture was stirred at

120 °C for 12 h. After the reaction was finished, the reaction mixture was cooled to room temperature and concentrated under reduced pressure. The resulting residue was purified by silica gel flash chromatography (gradient eluent pentane/diethyl ether) to afford the desired product **3** (49.2 mg, 83% yield) as a clear oil:

¹H NMR (400 MHz, CDCl₃) δ 8.05 – 7.85 (m, 2H), 7.51 – 7.42 (m, 1H), 7.37 (dd, J = 8.3, 6.9 Hz, 2H), 7.34 – 7.22 (m, 4H), 7.23 – 7.17 (m, 1H), 4.68 (t, J = 7.3 Hz, 1H), 4.15 – 4.03 (m, 2H), 2.50 – 2.41 (m, 1H), 2.34 – 2.24 (m, 2H), 2.21 – 2.14 (m, 1H), 1.22 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 199.27, 173.24, 138.79, 136.56, 132.92, 129.03, 128.71, 128.50, 128.30, 127.26, 60.35, 52.39, 31.83, 28.78, 14.21. IR (thin film): 2981, 2937, 1731, 1681, 1598, 1581, 1448, 1374, 1178, 1030, 860, 758, 699 cm⁻¹. HRMS (ESI) calcd for [C₁₉H₂₁O₃]⁺([M+H]⁺): 297.1412, found 297.1489.

Characterization Data for Products

Table 2, entry 1: Following the general procedure for the synthesis of α -aryl dicarbonyl compounds, purification by flash chromatography afforded the desired product (47.4 mg, 84% yield) as a clear oil:

¹H NMR (400 MHz, CDCl₃) δ 7.94 – 7.96 (m, J = 7.2, 1.4 Hz, 2H), 7.50 – 7.43 (m, 1H), 7.42 – 7.31 (m, 2H), 7.29 (d, J = 4.4 Hz, 4H), 7.20 (ddd, J = 8.7, 5.0, 3.9 Hz, 1H), 4.67 (t, J = 7.3 Hz, 1H), 3.64 (s, 3H), 2.49-2.41 (m, 1H), 2.31 (dd, J = 8.0, 6.3 Hz, 2H), 2.22-2.13 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 199.21, 173.69, 138.75, 136.52, 132.93, 129.05, 128.72, 128.50, 128.29, 127.28, 52.39, 51.56, 31.54, 28.73. IR (thin film): 2951, 1735, 1682, 1597, 1580, 1447, 1368, 1175, 1001, 886, 758, 699 cm⁻¹. MS (ES-API) calcd for $[C_{18}H_{19}O_3]^+([M+H]^+)$: 283.1, found 283.1.

Table 2, entry 2: Following the general procedure for the synthesis of α -aryl dicarbonyl compounds, purification by flash chromatography afforded the desired product (37.4 mg, 56% yield) as a clear oil:

¹H NMR (400 MHz, CDCl₃) δ 7.82 – 7.89 (m, 2H), 7.16 (d, *J* = 8.0 Hz, 4H), 7.08 (d, *J* = 7.8 Hz, 2H), 4.60 (t, *J* = 7.3 Hz, 1H), 3.64 (s, 3H), 2.39 – 2.46 (m, 1H), 2.33 (s, 3H), 2.28 – 2.32 (m, 2H), 2.27 (s, 3H), 2.10 – 2.18 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 198.93, 173.79, 143.65, 136.82, 135.93, 134.03, 129.70, 129.17, 128.85, 128.11, 51.85, 51.53, 31.60, 28.68, 21.57, 21.01. IR (thin film): 2951, 1738, 1681, 1606, 1513, 1436, 1326, 1176, 1020, 813, 778, 662 cm⁻¹. MS (ES-API) calcd for [C₂₀H₂₂O₃Na]⁺([M+Na]⁺): 333.1, found 332.8.

Table 2, entry 3: Following the general procedure for the synthesis of α -aryl dicarbonyl compounds, purification by flash chromatography afforded the desired product (58.2 mg, 85% yield) as a clear oil:

¹H NMR (400 MHz, CDCl₃) δ 8.01 – 7.85 (m, 2H), 7.24 – 7.11 (m, 2H), 6.94 – 6.70 (m, 4H), 4.56 (t, *J* = 7.3 Hz, 1H), 3.79 (s, 3H), 3.73 (s, 3H), 3.63 (s, 3H), 2.44 – 2.35 (m, 1H), 2.28 (t, *J* = 7.1 Hz, 2H), 2.16 – 2.07 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 197.91, 173.80, 163.24, 158.65, 131.14, 130.98, 129.51, 129.23, 114.36, 113.64, 55.38, 55.16, 51.51, 51.10, 31.57, 28.75. IR (thin film): 2953, 1735, 1670, 1600, 1511, 1440, 1253, 1170, 1030, 824, 785, 713 cm⁻¹. MS (ES-API) calcd for [C₂₀H₂₂O₅Na]⁺([M+Na]⁺): 365.1, found 365.0.

Table 2, entry 4: Following the general procedure for the synthesis of α -aryl dicarbonyl compounds, purification by flash chromatography afforded the desired product (46.2 mg, 66% yield) as a clear oil:

¹H NMR (400 MHz, CDCl₃) δ 7.80 – 7.93 (m, 2H), 7.93 – 7.42 (m, 2H), 7.26 (d, *J* = 8.4 Hz, 2H), 7.19 (d, *J* = 8.5 Hz, 2H), 4.62 (t, *J* = 7.3 Hz, 1H), 3.64 (s, 3H), 2.41 (dt, *J* = 13.8, 6.9 Hz, 1H), 2.24 – 2.34 (m, 2H), 2.12 (dt, *J* = 13.9, 7.1 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 197.70, 173.49, 139.61, 136.89, 134.53, 133.41, 130.08, 129.58, 129.32, 128.93, 51.64, 51.55, 31.21, 28.53. IR (thin film): 2951, 1738, 1682, 1589, 1489, 1436, 1214, 1174, 1093, 812, 745, 689 cm⁻¹. MS (ES-API) calcd for [C₁₈H₁₅Cl₂O₃]⁺([M-H]⁻): 349.0, found 349.0.

Table 2, entry 5: Following the general procedure for the synthesis of α -aryl dicarbonyl compounds, purification by flash chromatography afforded the desired product (36.8 mg, 42% yield) as a clear oil:

¹H NMR (400 MHz, CDCl₃) δ 7.44 – 7.56 (m, 2H), 7.26 – 7.32 (m, 2H), 7.17 – 7.23 (m, 2H), 7.13 – 7.17 (m, 1H), 7.04 – 7.11 (m, 1H), 5.12 (t, *J* = 7.3 Hz, 1H), 3.66 (s, 3H), 2.55 (ddd, *J* = 13.9, 6.8, 1.9 Hz, 1H), 2.38 – 2.46 (m, 1H), 2.30 – 2.38 (m, 1H), 2.11 – 2.20 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 201.72, 173.35, 140.61, 136.62, 133.59, 133.23, 131.50, 129.30, 129.12, 128.62, 128.03, 127.06, 125.76, 119.30, 54.35, 51.68, 31.35, 27.18. IR (thin film):

2950, 1738, 1704, 1588, 1469, 1435, 1211, 1160, 1024, 892, 757, 736 cm⁻¹. MS (ES-API) calcd for $[C_{18}H_{16}Br_2O_3Na]^+([M+Na]^+)$: 460.9, found 460.6.

Table 2, entry 6: Following the general procedure for the synthesis of α -aryl dicarbonyl compounds, purification by flash chromatography afforded the desired product (73.6 mg, 88% yield) as a clear oil:

¹H NMR (400 MHz, CDCl₃) δ 8.22 (s, 1H), 8.12 (d, *J* = 7.8 Hz, 1H), 7.76 (d, *J* = 7.7 Hz, 1H), 7.37 – 7.63 (m, 5H), 4.81 (t, *J* = 7.3 Hz, 1H), 3.66 (s, 3H), 2.50 (dq, *J* = 14.0, 7.0 Hz, 1H), 2.32 (td, *J* = 6.9, 2.8 Hz, 2H), 2.19 (dt, *J* = 13.9, 7.1 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 197.36, 173.31, 139.05, 136.60, 131.75, 131.70, 131.63, 131.51, 131.38, 131.18, 129.71, 129.69, 129.66, 129.62, 129.39, 125.58, 125.54, 125.50, 125.46, 125.12, 125.07, 125.04, 125.00, 124.62, 124.58, 124.54, 124.51, 122.41, 122.15, 52.02, 51.67, 31.15, 28.65. IR (thin film): 2957, 1732, 1694, 1612, 1440, 1331, 1168, 1127, 1074, 904, 806, 774, 704, 694, 658 cm⁻¹. MS (ES-API) calcd for [C₂₀H₁₅F₆O₃]⁺([M-H]⁻): 417.1, found 417.2.

Table 2, entry 7: Following the general procedure for the synthesis of α -aryl dicarbonyl compounds, purification by flash chromatography afforded the desired products as a separable mixture of A and B (41.2 mg, 66% yield, A:B = 1.7:1) as clear oils:

¹H NMR (400 MHz, CDCl₃) δ 7.91 – 7.98 (m, 2H), 7.28 (d, *J* = 4.3 Hz, 4H), 7.19 (p, *J* = 4.4 Hz, 1H), 6.80 – 6.89 (m, 2H), 4.62 (t, *J* = 7.3 Hz, 1H), 3.80 (s, 3H), 3.64 (s, 3H), 2.43 (dt, *J* = 14.5, 7.1 Hz, 1H), 2.26 – 2.33 (m, 2H), 2.12 – 2.19 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 197.70, 173.76, 163.31, 139.21, 131.03, 129.51, 128.98, 128.20, 127.16, 113.67, 55.40, 52.02, 51.54, 31.61, 28.78. IR (thin film): 2952, 1732, 1668, 1600, 1574, 1511, 1455, 1259, 1169, 1030, 841, 749, 703 cm⁻¹. MS (ES-API) calcd for $[C_{19}H_{20}O_4Na]^+([M+Na]^+)$: 335.1, found 334.8.

2D NMR Data:

¹H NMR (400 MHz, CDCl₃) δ 7.91 – 8.00 (m, 2H), 7.44 – 7.50 (m, 1H), 7.37 (td, *J* = 7.6, 1.5 Hz, 2H), 7.14 – 7.23 (m, 2H), 6.78 – 6.87 (m, 2H), 4.61 (t, *J* = 7.3 Hz, 1H), 3.74 (s, 3H), 3.64 (s, 3H), 2.37 – 2.45 (m, 1H), 2.30 (t, *J* = 7.1 Hz, 2H), 2.15 (dt, *J* = 13.4, 4.3 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 199.43, 173.76, 158.74, 136.55, 132.85, 130.64, 129.33, 128.70, 128.48, 14.44, 55.19, 51.55, 51.48, 31.51, 28.69. IR (thin film): 2952, 1736, 1681, 1608, 1511, 1448, 1252, 1178, 1034, 824, 737, 691 cm⁻¹. MS (ES-API) calcd for [C₁₉H₂₀O₄Na]⁺([M+Na]⁺): 335.1, found 335.0. *2D NMR Data:*

Table 2, entry 8: Following the general procedure for the synthesis of α -aryl dicarbonyl compounds, purification by flash chromatography afforded the desired products as a separable mixture of A and B (56.7 mg, 81% yield, A:B = 1:8) as clear oils:

¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, *J* = 8.1 Hz, 2H), 7.63 (d, *J* = 8.3 Hz, 2H), 7.29 – 7.29 (m, 2H), 7.22 – 7.26 (m, 3H), 4.66 (t, *J* = 7.3 Hz, 1H), 3.65 (s, 3H), 2.46 (ddd, *J* = 12.3, 6.5, 1.1 Hz, 1H), 2.31 (t, *J* = 7.0 Hz, 2H), 2.12 – 2.21 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 198.25, 173.61, 139.17, 138.01, 129.26, 129.03, 128.48, 128.45, 128.26, 127.89, 127.60, 127.22, 127.06, 125.62, 125.58, 125.55, 125.51, 52.81, 51.63, 31.29, 28.50. IR (thin film): 2954, 1738, 1689, 1619, 1601, 1582, 1493, 1439, 1410, 1324, 1168, 1128, 1067, 1016, 838, 751, 702 cm⁻¹. MS (ES-API) calcd for [C₁₉H₁₆F₃O₃]⁺([M-H]⁻): 349.1, found 349.2.

¹H NMR (400 MHz, CDCl₃) δ 7.95 (dd, J = 7.9, 1.7 Hz, 2H), 7.55 (d, J = 8.1 Hz, 2H), 7.47 – 7.52 (m, 1H), 7.33 – 7.48 (m, 4H), 4.80 (t, J = 7.3 Hz, 1H), 3.64 (s, 3H), 2.44 – 2.54 (m, 1H), 2.31 (t, J = 7.0 Hz, 2H), 2.12 – 2.21 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 198.61, 173.42, 142.80, 142.79, 136.17, 133.33, 129.73, 129.40, 128.69, 128.68, 126.02, 125.98, 125.94, 125.91, 125.33, 122.62, 51.88, 51.62, 31.34, 28.73. IR (thin film): 2953, 1736, 1682, 1618,

1597, 1448, 1420, 1325, 1164, 1123, 1068, 1018, 822, 699 cm⁻¹. MS (ES-API) calcd for $[C_{19}H_{16}F_{3}O_{3}]^{+}([M-H]^{-})$: 349.1, found 349.2. *2D NMR Data:*

Table 2, entry 9: Following the general procedure for the synthesis of α -aryl dicarbonyl compounds, purification by flash chromatography afforded the desired product (26.5 mg, 46% yield) as a clear oil:

¹H NMR (400 MHz, CDCl₃) δ 7.97 – 8.07 (m, 2H), 7.50 – 7.55 (m, 1H), 7.43 (dd, *J* = 8.5, 7.0 Hz, 2H), 7.12 – 7.23 (m, 1H), 6.82 – 6.98 (m, 2H), 5.02 – 5.07 (m, 1H), 3.66 (s, 3H), 2.45 (ddd, *J* = 12.8, 7.9, 6.2 Hz, 1H), 2.32 – 2.39 (m, 2H), 2.18 – 2.26 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 198.24, 173.52, 140.74, 136.02, 133.27, 128.76, 128.64, 126.97, 126.08, 125.25, 51.63, 46.63, 31.21, 29.51. IR (thin film): 2951, 1733, 1682, 1596, 1580, 1448, 1436, 1368, 1211, 1172, 1011, 850, 828, 804, 701 cm⁻¹. MS (ES-API) calcd for [C₁₆H₁₇O₃S]⁺([M+H]⁺): 289.1, found 289.1. *2D NMR Data:*

Table 2, entry 10: Following the general procedure for the synthesis of α -aryl dicarbonyl compounds, purification by flash chromatography afforded the desired product (24.8 mg, 53% yield) as a clear oil:

¹H NMR (400 MHz, Chloroform-*d*) δ 7.29 – 7.37 (m, 2H), 7.25 – 7.29 (m, 1H), 7.14 – 7.21 (m, 2H), 4.09 (q, *J* = 7.1 Hz, 2H), 3.70 (dd, *J* = 8.3, 6.6 Hz, 1H), 2.32 (ddd, *J* = 13.6, 7.0, 1.3

S - 10

Hz, 1H), 2.18 (dd, J = 7.9, 6.5 Hz, 2H), 2.04 (s, 3H), 1.94 – 2.02 (m, 1H), 1.22 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 207.68, 173.16, 138.10, 129.06, 128.31, 127.52, 60.34, 58.38, 31.73, 29.09, 26.81, 14.20. IR (thin film): 2982, 1732, 1714, 1600, 1493, 1454, 1374, 1356, 1200, 1173, 1029, 859, 764, 703 cm⁻¹. MS (ES-API) calcd for $[C_{14}H_{19}O_3]^+([M+H]^+)$: 235.1, found 235.2.

Table 2, entry 11: Following the general procedure for the synthesis of α -aryl dicarbonyl compounds, purification by flash chromatography afforded the desired products as a separable mixture of A and B (21.2 mg, 43% yield, A:B = 2.5:1) as clear oils:

¹H NMR (400 MHz, CDCl₃) δ 7.34 (t, *J* = 7.7 Hz, 2H), 7.26 – 7.29 (m, 1H), 7.16 – 7.25 (m, 2H), 3.86 (t, *J* = 7.4 Hz, 1H), 3.64 (s, 3H), 2.31 – 2.39 (m, 1H), 2.23 (t, *J* = 7.3 Hz, 2H), 1.96 – 2.04 (m, 1H), 1.80 – 1.88 (m, 1H), 0.98 (dddd, *J* = 18.7, 7.8, 6.1, 4.2 Hz, 2H), 0.78 – 0.84 (m, 1H), 0.67 – 0.73 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 209.65, 173.69, 138.31, 128.94, 128.57, 127.36, 58.39, 51.54, 31.54, 27.06, 20.42, 11.49, 11.35. IR (thin film): 2952, 2851, 1732, 1694, 1493, 1454, 1436, 1381, 1198, 1166, 1077, 1041, 752, 701 cm⁻¹. MS (ES-API) calcd for [C₁₅H₁₉O₃]⁺([M+H]⁺): 247.1, found 247.1.

¹H NMR (400 MHz, CDCl₃) δ 7.80 – 8.05 (m, 2H), 7.57 (td, *J* = 7.5, 1.6 Hz, 1H), 7.47 (td, *J* = 7.6, 1.5 Hz, 2H), 3.64 (s, 3H), 2.78 – 2.89 (m, 1H), 2.43 – 2.53 (m, 1H), 2.32 (ddd, *J* = 7.1, 5.5, 1.6 Hz, 1H), 2.18 – 2.23 (m, 1H), 1.97 – 2.03 (m, 1H), 0.98 (dq, *J* = 12.1, 4.4, 3.6 Hz, 1H), 0.56 – 0.66 (m, 1H), 0.38 – 0.49 (m, 1H), 0.24 (dq, *J* = 10.7, 5.7 Hz, 1H), 0.06 – 0.15 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 203.26, 173.78, 133.06, 128.98, 128.63, 128.33, 51.55, 49.25, 31.45, 27.64, 13.39, 4.45, 3.57. IR (thin film): 2923, 2853, 2359, 1732, 1681, 1446, 1382, 1198, 1164, 1038, 830, 698 cm⁻¹. MS (ES-API) calcd for [C₁₅H₁₉O₃]⁺([M+H]⁺): 247.1, found 247.1.

2D NMR Data:

Table 2, entry 12: Following the general procedure for the synthesis of α -aryl dicarbonyl compounds, purification by flash chromatography afforded the desired product (43.2 mg, 73% yield) as a clear oil:

¹H NMR (400 MHz, CDCl₃) δ 7.45 (dt, J = 8.4, 1.3 Hz, 2H), 7.32 – 7.41 (m, 3H), 7.26 – 7.32 (m, 3H), 7.21 (t, J = 7.8 Hz, 2H), 3.60 (s, 3H), 2.38 (ddt, J = 11.0, 5.6, 1.4 Hz, 2H), 2.14 – 2.20 (m, 2H), 1.61 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 202.84, 173.88, 142.98, 136.26, 131.82, 129.55, 129.06, 128.01, 127.15, 126.29, 53.90, 51.59, 35.24, 29.54, 23.45. IR (thin film): 2951, 1738, 1674, 1598, 1578, 1495, 1445, 1377, 1245, 1197, 1177, 1079, 966, 852, 764, 703 cm⁻¹. MS (ES-API) calcd for [C₁₉H₂₀O₃Na]⁺([M+Na]⁺): 319.1, found 320.0.

Table 3, entry 1: Following the general procedure for the synthesis of α -aryl dicarbonyl compounds, purification by flash chromatography afforded the desired product (55.0 mg, 72% yield) as a clear oil:

¹H NMR (400 MHz, CDCl₃) δ 7.87 – 8.01 (m, 2H), 7.42 – 7.48 (m, 1H), 7.36 (dd, J = 8.3, 6.8 Hz, 2H), 7.22 – 7.33 (m, 4H), 7.14 – 7.19 (m, 1H), 4.93 (dd, J = 8.7, 3.2 Hz, 1H), 4.13 (qd, J = 7.1, 2.9 Hz, 2H), 4.02 – 4.10 (m, 1H), 3.75 (dt, J = 10.7, 7.1 Hz, 1H), 3.03 (dd, J = 14.4, 8.6 Hz, 1H), 2.29 (dd, J = 14.4, 3.2 Hz, 1H), 1.41 (2, 3H), 1.21 (t, J = 7.1 Hz, 3H), 1.02 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 198.50, 172.27, 171.64, 139.99, 136.37, 132.82, 128.98, 128.72, 128.49, 128.15, 127.05, 61.29, 61.24, 49.59, 39.30, 34.11, 13.98, 13.66. IR (thin film): 2984, 1732, 1683, 1598, 1581, 1493, 1448, 1380, 1259, 1192, 1106, 1024, 939, 860, 757, 701 cm⁻¹. MS (ES-API) calcd for [C₂₃H₂₆O₅Na]⁺([M+Na]⁺): 405.2, found 404.8.

Table 3, entry 2: Following the general procedure for the synthesis of α -aryl dicarbonyl compounds, purification by flash chromatography afforded the desired products as an inseparable 1.3:1 mixture of diastereomers (58.0 mg, 98% yield) as clear oils:

¹H NMR (400 MHz, Benzene- d_6) δ 7.94 – 8.01 (m, 2H), 7.17 – 7.34 (m, 2H), 6.76 – 7.12 (m, 6H), 4.74 (dd, J = 8.4, 6.1 Hz, 0.57H), 4.69 (dd, J = 9.1, 5.4 Hz, 0.43H), 3.25 – 3.31 (m, 3H), 2.65 – 2.71 (m, 0.57H), 2.50 – 2.57 (m, 0.43H), 2.41 – 2.48 (m, 0.43H), 2.31 – 2.39 (m, 0.57H), 2.16 – 2.23 (m, 0.43H), 1.97-2.04 (m, 0.57H), 1.03 – 1.05 (m, 1.29H), 0.90 – 0.94 (m, 1.71H). ¹³C NMR (101 MHz, Benzene- d_6) δ 198.27, 198.14, 175.86, 175.74, 139.60, 139.29, 136.97, 136.71, 132.38, 132.35, 128.93, 128.88, 128.60, 128.55, 128.37, 128.28, 128.04, 127.89, 127.01, 126.94, 51.42, 51.27, 50.86, 50.77, 38.27, 37.68, 37.61, 37.01, 17.53, 17.42. IR (thin film): 2950, 1727, 1678, 1596, 1579, 1492, 1447, 1364, 1250, 1206, 1164, 1128, 1026, 967, 834, 751, 696 cm⁻¹. MS (ES-API) calcd for [C₁₉H₂₀O₃Na]⁺([M+Na]⁺): 319.1, found 318.8.

Table 3, entry 3: Following the general procedure for the synthesis of α -aryl dicarbonyl compounds, purification by flash chromatography afforded the desired products as an inseparable 1.3:1 mixture of diastereomers (61.4 mg, 99% yield) as clear oils:

¹H NMR (400 MHz, Benzene- d_6) δ 7.96 – 8.02 (m, 2H), 7.22 – 7.29 (m, 2H), 6.86 – 7.02 (m, 6H), 4.78 (dd, J = 8.6, 6.0 Hz, 0.57H), 4.73 (dd, J = 9.4, 5.2 Hz, 0.43H), 3.87 – 3.95 (m, 1.14H), 3.79 – 3.84 (m, 0.86H), 2.66 – 2.71 (m, 0.57H), 2.54 – 2.58 (m, 0.43H), 2.44 – 2.51 (m, 0.43H), 2.32 – 2.40 (m, 0.57H), 2.15 – 2.22 (m, 0.43H), 2.00 – 2.07 (m, 0.57H), 1.07 (d, J = 6.9 Hz, 1.29H), 0.94 (d, J = 7.0 Hz, 1.71H), 0.86 – 0.90 (m, 1.71H), 0.86 – 0.90 (m, 1.29H). ¹³C NMR (101 MHz, Benzene- d_6) δ 198.29, 198.18, 175.52, 175.36, 139.72, 139.30, 137.03, 136.73, 132.38, 132.36, 128.94, 128.86, 128.59, 128.55, 128.41, 128.29, 128.26, 128.00, 127.01, 126.93, 59.80, 59.71, 51.45, 51.24, 38.48, 37.78, 37.68, 37.12, 17.61, 17.52, 13.87, 13.74. IR (thin film): 2979, 1732, 1682, 1597, 1580, 1493, 1448, 1378, 1252, 1208, 1175, 1129, 1028, 970, 860, 758, 700 cm⁻¹. MS (ES-API) calcd for [C₂₀H₂₂O₃Na]⁺([M+Na]⁺): 333.2, found 333.0.

Table 3, entry 4: Following the general procedure for the synthesis of α -aryl dicarbonyl compounds, purification by flash chromatography afforded the desired products as an inseparable 1.7:1 mixture of diastereomers (46.7 mg, 69% yield) as clear oils:

¹H NMR (500 MHz, Benzene- d_6) δ 8.03 – 8.08 (m, 1.26H), 8.01 – 8.03 (m, 0.74H), 7.29 – 7.41 (m, 1.26H), 7.26 – 7.29 (m, 0.74H), 6.85 – 7.08 (m, 6H), 4.86 (dd, J = 9.2, 5.6 Hz, 0.63H), 4.83 (dd, J = 9.7, 4.5 Hz, 0.37H), 2.63 – 2.69 (m, 0.63H), 2.54 – 2.58 (m, 0.37H), 2.49 – 2.52 (m, 0.37H), 2.29 – 2.33 (m, 0.63H), 2.14 – 2.18 (m, 0.37H), 2.04 – 2.10 (m, 0.63H), 1.33 (s, 5.67H), 1.24 (s, 3.33H), 1.08 (d, J = 6.7 Hz, 1.11H), 0.95 (d, J = 7.0 Hz, 1.89H). ¹³C NMR (101 MHz, Benzene- d_6) δ 198.42, 198.35, 175.18, 175.03, 139.99, 139.31, 137.21, 136.80, 132.37, 128.98, 128.83, 128.57, 128.51, 128.30, 128.25, 127.93, 127.01, 126.92, 79.27, 79.23, 51.57, 51.22, 38.90, 38.77, 37.97, 37.74, 27.70, 27.59, 17.82, 17.73. IR (thin film): 2976, 1724, 1683, 1598, 1580, 1493, 1449, 1367, 1253, 1213, 1150, 1071, 970, 849, 758, 699 cm⁻¹. MS (ES-API) calcd for [C₂₂H₂₆O₃Na]⁺([M+Na]⁺): 361.2, found 360.8.

Table 3, entry 5: Following the general procedure for the synthesis of α -aryl dicarbonyl compounds, purification by flash chromatography afforded the desired products as an inseparable 3:1 mixture of diastereomers (59.8 mg, 92% yield) as clear oils:

¹H NMR (400 MHz, Chloroform-*d*) δ 8.01 (d, J = 7.5 Hz, 1.5H), 7.93 (d, J = 7.7 Hz, 0.5H), 7.43 – 7.50 (m, 1H), 7.34 – 7.41 (m, 2H), 7.25 – 7.31 (m, 4H), 7.17 – 7.22 (m, 1H), 4.73 (dd, J = 9.8, 5.4 Hz, 0.75H), 4.63 (dd, J = 9.4, 5.4 Hz, 0.25H), 3.32 (m, 3H), 3.17 (s, 2.25H), 3.09 (s, 0.75H), 2.88 (brd, 0.25H), 2.64 (brd, 0.75H), 2.42 – 2.50 (m, 0.75H), 2.26 – 2.32 (m, 0.25H), 2.10 – 2.17 (m, 0.25H), 2.01 – 2.08 (m, 0.75H), 1.17 (d, J = 6.9 Hz, 0.75H), 1.11 (d, J = 6.8 Hz, 2.25H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 199.76, 199.64, 139.50, 138.71,

136.82, 136.51, 132.86, 128.89, 128.78, 128.61, 128.49, 128.47, 128.13, 127.14, 127.04, 61.04, 60.96, 51.12, 50.83, 38.16, 36.55, 33.41, 33.23, 32.32, 17.99, 17.72. IR (thin film): 3445, 2970, 2935, 1681, 1652, 1597, 1579, 1493, 1448, 1386, 1327, 1264, 1209, 1176, 1116, 1072, 996, 756, 699 cm⁻¹. MS (ES-API) calcd for $[C_{20}H_{23}NO_3Na]^+([M+Na]^+)$: 348.2, found 347.8.

Table 3, entry 6: Following the general procedure for the synthesis of α -aryl dicarbonyl compounds, purification by flash chromatography afforded the desired products as an inseparable 3.6:1 mixture of diastereomers (55.1 mg, 75% yield) as clear oils:

¹H NMR (500 MHz, Chloroform-*d*) δ 8.00 – 8.04 (m, 1.56H), 7.92 – 7.94 (m, 0.44H), 7.48 – 7.52 (m, 0.78H), 7.45 – 7.48 (m, 0.22H), 7.40 – 7.43 (m, 1.56H), 7.35 – 7.38 (m, 0.44H), 7.27 – 7.34 (m, 4H), 7.17 – 7.21 (m, 1H), 4.67 – 4.78 (m, 0.78H), 4.55 – 4.59 (m, 0.22H), 3.20 – 3.23 (m, 3H), 2.96 – 3.08 (m, 1H), 2.54 (dt, J = 14.7, 7.1 Hz, 0.78H), 2.30 – 2.34 (m, 0.22H), 2.06(m, 0.22H), 1.97 – 2.02 (m, 0.78H), 1.03 – 1.28 (m, 12H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 199.62, 199.19, 139.69, 138.88, 136.66, 136.58, 132.85, 132.72, 128.95, 128.78, 128.73, 128.63, 128.50, 128.31, 128.04, 127.07, 126.99, 53.43, 51.10, 50.74, 39.59, 38.40, 37.37, 33.81, 27.55, 27.30, 17.33. IR (thin film): 2979, 2935, 1682, 1651, 1597, 1580, 1494, 1448, 1367, 1265, 1208, 1176, 1159, 1070, 968, 848, 760, 700 cm⁻¹. MS (ES-API) calcd for [C₂₃H₂₉NO₃Na]⁺([M+Na]⁺): 390.2, found 389.8.

Table 3, entry 7: Following the general procedure for the synthesis of α -aryl dicarbonyl compounds, purification by flash chromatography afforded the desired products as an inseparable 5:1 mixture of diastereomers (66.3 mg, 95% yield) as clear oils:

¹H NMR (500 MHz, Benzene-*d*₆) δ 8.16 – 8.20 (m, 1.66H), 8.01 – 8.03 (m, 0.34H), 7.36 – 7.39 (m, 0.34H), 7.28 – 7.31 (m, 1.66H), 7.01 – 7.09 (m, 2H), 6.94 – 7.01 (m, 4H), 4.94 – 4.99 (m, 1H), 3.54 – 3.69 (m, 0.83H), 3.53 – 3.57 (m, 0.17H), 3.35 – 3.41 (m, 0.83H), 3.23 – 3.29 (m, 0.17H), 2.75 – 2.81 (m, 2H), 2.63 – 2.68 (m, 1H), 2.48 – 2.54 (m, 0.17H), 2.40 – 2.44 (m, 0.17H), 2.31 – 2.38 (m, 0.83H), 2.07 – 2.13 (m, 0.83H), 1.22 (m, 3H), 1.09 – 1.15 (m, 1H), 1.05 (d, *J* = 6.9 Hz, 0.51H), 0.97 (m, 2H), 0.91 (d, *J* = 7.0 Hz, 2.49H). ¹³C NMR (101 MHz, Benzene-*d*₆) δ 199.41, 199.07, 173.03, 172.88, 140.48, 139.54, 137.28, 136.91, 132.36, 128.86, 128.83, 128.79, 128.59, 128.34, 128.27, 126.78, 51.01, 45.57, 42.39, 39.31, 37.96, 33.29, 32.89, 26.22, 25.63, 24.47, 24.34, 17.95. IR (thin film): 2936, 2855, 1682, 1634, 1598, 1580, 1493, 1445, 1355, 1248, 1230, 1178, 1120, 1010, 976, 852, 756, 700 cm⁻¹. MS (ES-API) calcd for $[C_{23}H_{27}NO_2Na]^+([M+Na]^+): 372.2$, found 371.8.

S - 14

Mechanistic Studies

(a) TEMPO Adduct 14

In an 8-mL reaction vial, a solution of 1,1-diphenylprop-2-en-1-ol 1 (0.200 mmol, 42.0 mg, 1.0 equiv), Pd(PhCN)₂Cl₂ (3.80 mg, 5mol %), dppe (8.0 mg, 10 mol%), Ag₂O (0.400 mmol, 92.7 mg, 2.0 equiv), and **TEMPO** (78.1 mg, 2.5 equiv) in α,α,α -Trifluorotoluene (1.0 mL, 0.2 M) was treated with ethyl bromoacetate **2** (0.400 mmol, 66.9 mg, 2.0 equiv). The reaction vial was charged with nitrogen for 5 minutes and then sealed. The mixture was stirred at 120 °C for 12 h. After the reaction was finished, the reaction mixture was cooled to room temperature and concentrated under reduced pressure. The resulting residue was purified by silica gel flash chromatography (gradient eluent pentane/diethyl ether) to afford the desired product **3** (5.0 mg, 8% yield) and TEMPO adduct **14** (87.6 mg, 90% yield). Spectroscopic data for TEMPO adduct **14** matched the reported data in the literature.⁴

(b) Enantioenriched Allylic Alcohol 19a

Enantioenriched **19a** was synthesized according to literature precedence.⁵ The product was isolated as a clear oil (148.3 mg, 69% yield): ee = 96%; $[\alpha]_D = +25.4^\circ$, (c = 1.0, CHCl₃). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.45 – 7.45 (m, 2H), 7.33 – 7.42 (m, 2H), 7.25 – 7.25 (m, 1H), 6.19 (dd, J = 17.3, 10.6 Hz, 1H), 5.32 (dd, J = 17.2, 1.1 Hz, 1H), 5.17 (dd, J = 10.6, 1.1 Hz, 1H), 2.24 (s, 1H), 1.68 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 146.45, 144.85, 128.24, 127.00, 125.23, 112.38, 74.81, 29.31. HPLC condition: Chiral IA-H column, 1% isopropanol in hexane, 1.0 mL/min, TR= 17.7 (major), 18.7 (minor). Spectroscopic data matched the reported data in the literature.⁵

(c) Enantioenriched Allylic Alcohol 19b

Based on a method developed by Ready and co-workers,⁶ known alcohol $S1^7$ was converted to enantioenriched **19b** through a series of steps.

S2 was isolated as a mixture of diastereoisomers (1:1) in 68 % yield (778 mg): ¹H NMR (400 MHz, Chloroform-*d*) δ 7.90 (dd, J = 7.3, 2.0 Hz, 1H), 7.79 – 7.84 (m, 1H), 7.38 – 7.55 (m, 10H), 7.24 (d, J = 12.4 Hz, 4H), 4.81 (dd, J = 7.4, 3.5 Hz, 1H), 4.76 (dd, J = 7.7, 3.8 Hz, 1H), 2.36 (d, J = 4.3 Hz, 6H), 2.11 (q, J = 6.9 Hz, 1H), 1.94 – 2.03 (m, 1H), 1.04 (dd, J = 6.6, 1.6 Hz, 6H), 0.79 (d, J = 6.8 Hz, 3H), 0.64 (dd, J = 7.0, 3.0 Hz, 3H); MS (ES-API): 310.8 [M + Na]⁺.

S3 was isolated in 87% yield (670 mg): ¹H NMR (400 MHz, CDCl₃) δ 8.51 (dt, J = 7.9, 0.9 Hz, 1H), 7.83 - 7.91 (m, 1H), 7.77 - 7.83 (m, 1H), 7.49 - 7.64 (m, 3H), 7.12 - 7.18 (m, 2H), 3.44 (hept, J = 6.8 Hz, 1H), 2.30 (d, J = 0.9 Hz, 3H), 1.15 (dd, J = 6.9, 0.8 Hz, 3H), 0.99 (dd, J = 6.7, 0.9 Hz, 3H); MS (ES-API): 308.8 [M + Na]⁺.

S4 was isolated as the pure (S_s, R)–isomer (d.r. > 50:1) in 99 % yield (338 mg): ¹H NMR (400 MHz, Chloroform-*d*) δ 8.14 – 8.21 (m, 1H), 7.49 – 7.49 (m, 2H), 7.43 (qdd, *J* = 7.2, 4.5, 1.9 Hz, 2H), 7.30 – 7.37 (m, 1H), 7.18 (d, *J* = 8.1 Hz, 2H), 6.15 (dd, *J* = 17.2, 10.8 Hz, 1H), 5.29 (d, *J* = 17.2 Hz, 1H), 5.17 (dd, *J* = 10.8, 1.7 Hz, 1H), 2.43 – 2.29 (m, 5H), 0.92 (d, *J* = 6.7 Hz, 3H), 0.54 (d, *J* = 6.7 Hz, 3H); MS: MS (ES-API): 336.8 [M + Na]⁺.

Enantioenriched **19b** was isolated in 70% yield (123 mg): ee = 96%; $[\alpha]_D = +67.4^\circ$, (c = 1.0, CHCl₃). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.38 – 7.51 (m, 2H), 7.32 – 7.36 (m, 2H), 7.20– 7.26 (m, 1H), 6.30 (dd, J = 17.2, 10.8 Hz, 1H), 5.33 (dd, J = 17.2, 1.2 Hz, 1H), 5.19 (dd, J = 10.8, 1.2 Hz, 1H), 2.19 (p, J = 6.8 Hz, 1H), 1.79 (s, 1H), 0.92 (d, J = 6.9 Hz, 3H), 0.78 (d, J = 6.8 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 145.67, 143.18, 128.06, 126.57, 125.43, 112.65, 79.28, 37.26, 17.08, 16.70; MS (ES-API): [M-H]⁻ 175.1. HPLC condition: Chiracel IA-H column, 1% isopropanol in hexane, 1.0 mL/min, TR= 11.4 (major), 13.6 (minor).

(d) Enantioenriched Product 20a

Following the general procedure for the synthesis of α-aryl dicarbonyl compounds, purification by flash chromatography afforded **20b** (36.0 mg, 46% yield) as a clear oil: ee = 30%; $[α]_D = -49.4^\circ$, (c = 1.7, CHCl₃). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.29 – 7.38 (m, 2H), 7.24 – 7.28 (m, 1H), 7.11 – 7.22 (m, 2H), 3.67 – 3.73 (m, 1H), 2.28 (ddd, *J* = 13.3, 7.1, 0.9 Hz, 1H), 2.10 (td, *J* = 7.1, 1.3 Hz, 2H), 2.04 (s, 3H), 1.94 (ddd, *J* = 13.7, 6.8, 1.2 Hz, 1H), 1.42 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 207.77, 172.49, 138.22, 129.02, 128.31, 127.45, 80.25, 58.37, 32.89, 29.12, 28.08, 26.97. IR (thin film): 2978, 2932, 1728, 1716, 1601, 1494, 1455, 1368, 1255, 1148, 952, 848, 746, 702 cm⁻¹. MS (ES-API) calcd for $[C_{16}H_{22}O_3Na]^+([M+Na]^+)$: 285.2, found 285.1. HPLC condition: Chiral OD-H column, 2% isopropanol in hexane, 0.8 mL/min, TR= 8.3 (major), 9.1 (minor).

(e) Enantioenriched Product 20b

Following the general procedure for the synthesis of α -aryl dicarbonyl compounds, purification by flash chromatography afforded **20a** (34.1 mg, 65% yield) as a clear oil: ee = 50%; [α]_D = -104.8°, (c = 1.0, CHCl₃). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.29 – 7.33 (m, 2H), 7.23 – 7.26 (m, 1H), 7.15 – 7.23 (m, 2H), 3.89 (td, *J* = 7.3, 1.6 Hz, 1H), 2.63 (pd, *J* = 6.9, 1.5 Hz, 1H), 2.21 – 2.29 (m, 1H), 2.05 – 2.14 (m, 2H), 1.94 (ddd, *J* = 13.9, 6.3, 1.5 Hz, 1H), 1.43 (s, 9H), 1.08 (dd, *J* = 7.1, 1.6 Hz, 3H), 0.90 (dd, *J* = 6.7, 1.6 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 213.66, 172.52, 138.36, 128.89, 128.42, 127.29, 80.23, 55.73, 39.84, 33.05, 28.09, 27.86, 18.94, 18.04. IR (thin film): 2974, 2934, 1728, 1714, 1600, 1493, 1454, 1367, 1254, 1150, 1012, 850, 748, 701 cm⁻¹. MS (ES-API) calcd for [C₁₈H₂₆O₃Na]⁺([M+Na]⁺): 313.2, found 313.2. HPLC condition: Chiracel AD-H column, 2% isopropanol in hexane, 0.6 mL/min, TR= 9.3 (major), 10.8 (minor).

Determination of Relative Stereochemistry of Products (Table 3, entry 7)

A sample of α -aryl dicarbonyl product from Table 3, entry 7 was recrystallized from CH₂Cl₂/Et₂O/Pentanes (slow evaporation). The resulting crystals were suitable for X-ray diffraction and the structure was solved (Figure S1). This structure allowed the assignment of relative configuration as shown. The relative configurations of all other α -aryl dicarbonyl compounds in Table 3 were assigned by analogy. We thank Dr. Vincent Lynch (Manager of the X-ray Diffraction Lab at UT Austin) for the X-ray structural analysis. The CIF file is available as a separate file in the supporting information.

Figure S1

References

1. (a) Rosa, D.; Orellana, A. *Org. Lett.* **2011**, *13*, 3648–3651. (b) Hayashi, S.; Yorimitsu, H.; Oshima, K. *J. Am. Chem. Soc.* **2009**, *131*, 2052–2053. (c) Zheng, H.; Lejkowski, M.; Hall, D. *Chem. Sci.* **2011**, *2*, 1305–1310.

2. (a) Donohoe, T. J.; Fishlock, L. P.; Basutto, J. A.; Bower, J. F.; Procopiou, P. A.; Thompsonz, A. L. *Chem. Commun.* **2009**, 3008–3010. (b) Hirner, S.; Kirchner, D. K.; Somfai, P. *Eur. J. Org. Chem.* **2008**, 5583–5589.

- 3. Sakurai, Y.; Matsui, E. Chem. Pharm. Bull. 1965, 13, 594-598.
- 4. Sumino, S; Fusano, A.; Ryu, I. Org. Lett. 2013, 15, 2826-2829.
- 5. Stymiest, J. L.; Bagutski, V.; French, R.M.; Aggarwal, V. K. Nature 2008, 456, 778-782.
- 6. Antczak, M. I.; Cai, F.; Ready, J. M. Org. Lett. 2011, 13, 184-187.
- 7. Schulte, B.; Fröhlich, R.; Studer, A. Tetrahedron 2008, 64, 11852–11859.

S - 28

S - 48

PROTON_01

S

Chiral HPLC Data

Scheme 2, 19a

IA-H, 99/1 Hex/iPrOH, 1.0 mL/min, 96% ee.

<Chromatogram>

DA Ch1 210nm 4nm							
Peak#	Ret. Time	Area	Height	Area %	Height %		
1	17.517	16895142	839709	49.596	51.153		
2	18.474	17170701	801854	50.404	48.847		
Total		34065843	1641562	100.000	100.000		

<Chromatogram>

PDA Ch1 21	0nm 4nm				
Peak#	Ret. Time	Area	Height	Area %	Height %
1	17.678	22871940	1036034	97.854	97.695
2	18.699	501710	24446	2.146	2.305
Total		23373651	1060480	100.000	100.000

Scheme 2, 20a

OD-H, 98/2 Hex/iPrOH, 0.8 mL/min, 30% ee.

Scheme 2, 19b

IA-H, 99/1 Hex/iPrOH, 1.0 mL/min, 96% ee.

Scheme 2, 20b

AD-H, 98/2 Hex/iPrOH, 0.6 mL/min, 50% ee.

