1 Supporting Information

2				
3	Oxide-supported Ir nanodendrites with high activity and			
4	durability for the oxygen evolution reaction in acid PEM water			
5	electrolyzers			
6				
7	Hyung-Suk Oh, Hong Nhan Nong, Tobias Reier, Manuel Gliech and Peter Strasser *			
8				
9	The Electrochemical Energy, Catalysis, and Materials Science Laboratory, Department			
10	of Chemistry, Chemical Engineering Division, Technical University Berlin, Berlin 10623,			
11	Germany.			
12				
13				
14				
15				
16				
17				
18				
19				
20	* Corresponding author:			
21	Tel: 49 30 314 29542			
22	Fax: 49 30 314 22261			
23	E mail: pstrasser@tu-berlin.de			

1 **Experimental**

2 1. Preparation of Ir/C

In a synthesis of Ir supported on carbon (Ir/C), 0.2 mmol of $Ir(CH_3COO)_3$ and 80 mg of 3 NaOH were dissolved in 20 mL of ethylene glycol under vigorous stirring for 30 min. 29.5 4 5 mg of carbon black (Vulcan) was added to the mixture to produce 20 wt.% of Ir/C. The 6 resulting solution was ultrasonicated for 20 min and then refluxed for 30 min at 160 °C under 7 nitrogen condition. The solution was allowed to cool down to room temperature and left for 8 24 hour with continuous stirring. The reaction solution was centrifuged (8200 rpm, 15 min) and washed several times with ultrapure water. The collected Ir/C slurry was dried in a freeze 9 10 dryer followed by heat treated at 250 °C in nitrogen atmosphere for 2 hour.

11

12 2. Physical property of metal oxide:

13 Transmission electron microscopy (TEM): The prepared Ir-ND nanoparticles dispersed in 14 ethanol and deionized water (D.I. water) (1:1), and then deposited onto carbon coated copper 15 grids and dried at 50 °C in convection oven. These samples were observed under a FEI 16 TECNI G2 20 S-TWIN equipped with LaB6 cathode by an acceleration voltage of 200 kV. 17 An energy dispersive X-ray (EDX) spectroscopy detector and a GATAN MS794 P CCD 18 camera were employed to investigate the Ir-ND particle morphology and overall elemental 19 composition of Ir-ND/ATO and Ir-ND/C.

20

21 *Wide-angle X-ray Diffraction (XRD):* Powder X-ray diffraction patterns (XRD) of the 22 prepared samples were obtained with a D8 Advanced Bruker AXS diffractometer using Cu 23 K α radiation. Data were collected in a 2θ range of 20° to 95° and the XRD profiles were 24 fitted with the Pearson VII function using the software Jade 8. Particle sizes (D) were 1 calculated from X-ray diffraction data using the Scherrer formula:

2

Particle size (D) =
$$\frac{K \cdot \lambda}{FWHM \cdot \cos\theta}$$

3

4 where K = Scherrer constant, which is generally taken to have the value 0.9, 5 $\lambda =$ wavelength of x-rays,

FWHM = full width at half maximum of the reflection peak that has the same
maximum intensity in the diffraction pattern,

 θ = diffraction angle of x-rays

9

8

Physisorption: The textural property of the prepared Ir-ND was obtained by nitrogen adsorption and desorption measurements at 77 K using a Quatachrome Autosorb-1-C system. For comparison, commercial Ir black was also measured under same condition. Samples were outgassed at 150 °C under vacuum line for at least 2 h before each measurement. The surface area was calculated by the Brunauer-Emmett-Teller (BET) method, by using the QuantachromeTM AS1WinTM software. The Branuer-Emmett-Teller (BET) method was utilized to calculate the surface area, according to the bellow equations (E1) – (E2):

17

18

$$\frac{p_{p_0}}{n(p_0 - p)} = \frac{1}{n_m c} + \frac{c - 1}{n_m c} \frac{p}{p_0}$$
(E1)

19

20

- $A_s(BET) = n_m N_A a_m \tag{E2}$
- 21

Here, p is the measured pressure, p_0 is the saturation pressure of the adsorptive, C is the BET constant, n_m is the monolayer capacity, n is the amount of the adsorbent, A_s is the BET surface area, N_A is the Avogadro constant, a_m is the cross-sectional area of the adsorptive molecules. The pore-size distribution was also calculated by using the QuantachromeTM AS1WinTM software. The calculation model was the hybride cylindrical/sphere pore, non-local density functional theory (NLDFT) adsorption model. This simulation is achieved by fitting the adsorption isotherm and using a fast non-negative leastsquare algorithm to solve the generalized adsorption isotherm equation (E3).

6

$$N(P/P_0) = \int_{r_{min}}^{r_{max}} N(P/P_0, r) f(r) dr$$
(E3)

8

9 This gives the experimental isotherm N(P/P₀) where, r is the pore width, f(r) is the pore10 size distribution function, and N(P/P₀, r) is the isotherm on a single pore of r.

11

12 3. Electrochemcial study:

13 **Preparation of sample ink:** The sample ink was prepared by blending the 5.0 mg of 14 electrocatalysts ultrasonically in a solution containing 2.49 mL of isopropyl alcohol (IPA, \geq 15 99.7 %, Sigma-Aldrich), 2.49 mL of deionized water (D.I. water) and 20 µL of 5 wt.% Nafion 16 ionomer (Nafion[®] 117 solution, Sigma-Aldrich). A sample loading of 10.2 µg_{Ir} cm⁻² was 17 achieved by depositing the appropriate amount of the suspension on the glassy carbon 18 electrode and then drying in a convection oven at 50 °C.

19

20 The measurement of voltammetric charge and electrochemical porosity: According to 21 Ardizzone and Trasatti, total charge (q_T^*) and outer charge (q_o^*) of metal oxide can be 22 calculated by integration of voltammograms at different scan rates $(2 - 300 \text{ mV s}^{-1})$.^{1,2} Total 23 charge (q_T^*) corresponds with the whole active surface area of electrocatalyst, and can be 24 obtained as the scan rate approaches to the zero. Outer charge (q_o^*) shows the outer 1 accessible active surface during OER, and can be extrapolated as the scan rate approaches the infinite. The difference between q_T^* and q_o^* is the inner charge (q_i^*) which is attributed 2 to inner active surface area of oxide layer. Moreover, the ratio q_i^*/q_T^* gives the information 3 of electrochemical porosity which is related with the pore structure of electrocatalyst. To 4 5 measure the voltammetric charge and electrochemical porosity, potential cycling was performed between 0.4 to 1.4 V vs. RHE at different scan rates (3000, 2000, 1000, 750, 500, 6 250, 100, 50, 20, 10 $mV s^{-1}$). The voltammetric charge corresponding to the total surface 7 area (q_T^*) can be calculated plotting the reciprocal of q^* against the square root of the 8 9 potential scan rate by using the following equation:

10

$$(q^*)^{-1}(v) = (q_T^*)^{-1} + kv^{1/2}$$
(E4)

12

11

13 The total voltammetric charge (q_T^*) calculated by extrapolation of the linear plots at v = 0. 14 The values of outer charge (q_0^*) can be calculated from the extrapolation to $v \to \infty$ in the 15 plot of q^* versus $v^{-1/2}$ according to the following equation.

- 16
- 17

 $q^{-1}(v) = q_0^* + k' v^{-1/2}$ (E5)

18

From (q_T^*) and (q_o^*) data, the inner voltammetric charge (q_i^*) contribution of less accessible surface sites of the oxide layer to the total charge can be calculated.

21

 $q_T^* = q_i^* + q_0^*$ (E6)

23

22

24 $q_i^* = q_T^* - q_0^*$ (E6')

The electrochemical property defined as the relation between the inner and total charge as a
 function of the total charge.

3
4 Electrochemical porosity =
$$q_i^*/q_T^*$$
 (E7)

5

6 *Electrochemical stability test protocols:* The stability test was performed by using the 7 galvanostatic mode of 1 $mA cm^{-2}$ for 15 hour, under nitrogen condition. The rotating speed 8 was 1600 rpm to remove the evaluated oxygen.

9

10 4. MEA test:

11 Membrane electrode assembly fabrication: To prepare the membrane electrode assemblies (MEAs), a commercial 46% Pt/C catalyst purchased from TKK was used as the cathode, and 12 the prepared catalysts were employed as the anode catalyst. The anode and cathode catalyst 13 inks were prepared by ultrasonically blending with Nafion® solution (5% Sigma Aldrich) and 14 isopropanol (IPA). This mixture was sprayed onto a NR-212 membrane (DuPantTM, Nafion® 15 PFSA Membrane) with 5 cm^2 of the geometric area. The total loading of Pt was fixed at 0.4 16 $mg_{Pt} \ cm^{-2}$ on the cathode and Ir loading was controlled at 1.0 $mg_{Ir} \ cm^{-2}$ on anode. After 17 spraying the catalysts, the catalyst-coated membrane was hot pressed at 140 °C for 2.5 min. 18

19

Cell operation: The graphite bipolar-plate was used on cathode side and that of anode side was made from gold-coated titanium. The flow channel was designed to form serpentine type of flow field with a surface area of 5 cm^2 . The depth and width of the cannel in the flowfield were both 1 mm. A gold-coated Ti-foam and carbon paper was used as current collectors

1	for anode and cathode respectively. The detail single cell structure was described in Figure				
2	S7. The prepared MEA was sandwiched between the current collectors and assembled in the				
3	cell body using 8 screws with a torque of 140 kg_f cm. PEMWE single cells were tested				
4	using a potentiostat (Bio-logic). The operation temperature of the cell was 80 °C. The				
5	preheated de-ionized water at 80 $^{\circ}$ C supplied to both the anode and cathode compartments at				
6	a constant flow rate of 1.5 $mL min^{-1}$ without back pressure. The linear voltammetry				
7	profiles were performed for a range of potentials from 1.0 to 2.0 V_{RHE} at a 5 mV s ⁻¹ scan				
8	rate.				
9					
10					
11					
12	References				
13	(1) De Pauli C P: Trasatti S <i>Journal of Electroanalytical Chemistry</i> 1995 306 161				
14	(1)	Hu L-M: Zhang L-O: Cao C-N International Journal of Hydrogen Energy 2004			
15	(2)	20 791			
16		27, 771.			
10					
1/					
18					
19					
20					
21					
22					
23					
24					
25					
26					

Figure S2. TEM images of commercial Ir black (Alfa Aesar, 99.8% metals basis) with
different magnifications. (a) low and (b) high magnification.

Figure S3. (a) Reciprocal voltammetric charge (q*)⁻¹ versus the square root of the voltammetric scan rate (v^{1/2}). (b) Voltammetric charge (q*) versus the reciprocal square root of the voltammetric scan rate (v^{-1/2}) for Ir black and Ir nanodendrites (Ir-ND).

Figure S4. TEM images of bare catalyst supports. (a, b) carbon black (Vulcan® XC72R) and
(c, d) synthesized antimony doped tin oxide (ATO).

- J

- Figure S6. TEM images of synthesized Ir nanoparticles supported on carbon black with
 different magnifications. (a) low and (b) high magnification.

Sample	Tafel slops (mV dec ⁻¹)	Mass activity @ $1.51 V_{RHE}$ $(A g_{Ir}^{-1})$
Ir black	56.8	8.0
Ir/C	55.6	31.1
Ir-ND	56.5	64.5
Ir-ND/C	57.7	67.9
Ir-ND/ATO	56.4	69.8

Table S1. Electrochemical properties of synthesized Ir-ND, Ir-ND/C and Ir-ND/ATO. For
 comparison, Ir black and Ir/C are also shown.

1

2

3

4

5 **Cathode Anode**

Carbon paper Au-coated Ti form

Graphite bipolar plate

Au-coated Ti bipolar plate

- 7 Figure S7. The picture of single cell for PEM water electrolysis. In the anode side, Au-coated
- 8 Ti foam and plate were used as current collector and bipolar plate, respectively.