Supporting Information

Development of zinc alkyl/air systems as radical initiators for organic reactions

Marcin Kubisiak,^a Karolina Zelga,^a Wojciech Bury,^a Iwona Justyniak,^b Krzysztof Budny-Godlewski,^a Zbigniew Ochal^a and Janusz Lewiński^{*a,b}

^a Department of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland. Fax: +48 22 234 7279; Tel: +48 22 234 7315

^b Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland

*E-mail: lewin@ch.pw.edu.pl

Experimental Section

General Remarks

Syntheses of organometallic initiators were conducted under a nitrogen atmosphere using standard Schlenk techniques. All reagents were of commercial grade and obtained from Sigma-Aldrich Co.. Solvents and the propionic acid used for the preparation of initiators were carefully dried and distilled under nitrogen atmosphere prior to use. TEMPO was sublimated and stored under nitrogen atmosphere. NMR spectra were acquired on a Varian Mercury 400 Spectrometer IR spectra were measured on Perkin-Elmer System 2000 FT-IR spectrophotometer. GC-MS analysis was performed on Agilent 6890N chromatograph coupled with Agilent 5973N MS detector.

Synthesis and characterization of new alkylzinc complexes

Ethylzinc propionate EtZn(O₂CEt)

Et₂Zn (0.247 g, 2.00 mmol) was added dropwise to a stirred suspension of propionic acid (0.148 g, 2.00 mmol) in hexane (10 mL) at -78 °C. After the addition was completed the resulting white slurry was allowed to warm up to RT and stirred for further 2h. The solvent was removed under vacuum until a dry paste remained, giving a crude material in quantitative yield, which was used in the next step without purification. $\delta_{H}(400 \text{ MHz}, C_6D_6)$ ppm: 0.26 (q, 2H, CH₃CH₂-Zn), 1.11 (t, 3H, CH₃CH₂-Zn), 1.18 (t, 3H, CH₃CH₂-), 2.39 (q, 2H, CH₃CH₂-). v_{max} /cm⁻¹ (Nujol): 1568(s), 1557(s), 1463(s), 1422(s), 1379(m), 1296(m), 1081(w), 988(w), 952(w), 920(w), 893(w), 812(w), 683(w), 609(m); v_{max} /cm⁻¹ (CH₂Cl₂): 1620(s), 1464(m), 1409(s), 1372(m), 1291(m), 1085(w), 988(w), 954(w), 923(w), 899(w), 815(w), 618(w).

Methylzinc benzoate MeZn(O₂CPh)

A solution of Me₂Zn (0.191 g, 2.00 mmol) in THF (2 mL) was added to a stirred solution of benzoic acid (0.244 g, 2.00 mmol) in THF (6 mL) at -78 °C. The reaction mixture was allowed to warm up to RT and stirred until gas evolution had ceased and the solid dissolved completely. The resulting colourless solution was used in the next step without further purification. $\delta_{H}(400 \text{ MHz}, C_6D_6)$ ppm: -0.46 (s, 3H, CH₃-Zn), 6.96 (m, 2H, CH_{Ar}), 7.07 (m, 1H, CH_{Ar}), 8.10 (m, 2H, CH_{Ar}).

Methylzinc propionate MeZn(O₂CEt)

An analogous practice as that for methylzinc benzoate was applied, starting from THF solutions of Me₂Zn (0.191 g, 2.00 mmol) and propionic acid (0.148 g, 2.00 mmol). $\delta_{\rm H}$ (400 MHz, THF- D_8) ppm: 0.99 (s, 3H, CH₃-Zn), 0.96 (t, 3H, CH₃CH₂-), 2.16 (q, 2H, CH₃CH₂-).

Tert-butylzinc propionate tBuZn(O₂CEt)

To a stirred solution of propionic acid (0.148 g, 2.00 mmol) in toluene (6 mL) was added 1.4 M solution of tBu_2Zn (1.43 mL, 2.00 mmol) in toluene (4 mL) at -78 °C. The reaction mixture was allowed to warm up to RT and stirred for 2 h. All volatile material was removed under vacuum and white polycrystalline solid of *tert*-butylzinc propionate was obtained with quantitative yield and used in the model reaction without further purification. $\delta_{H}(400 \text{ MHz}, C_6D_6)$ ppm: 0.88 (t, 3H, CH_3CH_2 -); 1.07 (s, 9H, $(CH_3)_3C$ -Zn); 2.13 (q, 2H, CH_3CH_2 -); elemental analysis (%) found: C 43.05, H 7.15, calcd for $C_7H_{14}O_2Zn$: C 42.99, H 7.22; v_{max}/cm^{-1} (Nujol): 1596(s), 1464(s), 1411(s), 1379(m), 1357(w), 1290(s), 1167(w), 1082(w), 1009(w), 936(w), 893(w), 814(w), 721(w), 684(w).

<u>Procedures used in the model reaction mediated by $Me_2Zn(tBuDAB)$, TEMPO/Et₂Zn and [(EtZn)₂Zn(OAr)₄]/O₂ systems</u>

Addition of THF to **1a** in the presence of Me₂Zn(tBuDAB)

To a stirred solution of *t*BuDAB (0.673 g, 4.00 mmol) in toluene (2 mL) a 2 M solution of Me₂Zn in toluene (2.00 mL, 4.00 mmol) was added at -78 °C. Reaction mixture was allowed to warm up to 0 °C and a solution of **1a** (0.220 g, 1.00 mmol) in THF (14 mL) was added and the reaction mixture was warmed up to 30 °C and stirred for 48 h. The post-reaction mixture was analyzed by ¹H NMR without hydrolysis. Spectrum did not show any signals associated with **2a** or any other product of a reaction of **1a**.

Addition of THF to 1a in the presence of TEMPO and Et_2Zn

To a stirred solution of Et_2Zn (0.492 g, 4.00 mmol) and **1a** (0.220 g, 1.00 mmol) in THF (7 mL) was added a dark-orange solution of TEMPO (0.624 g, 4.00 mmol) in THF (7 mL) at -78 °C. Reaction mixture was allowed to slowly warm up to room temperature (decolouration was observed) and was further stirred for 48 h. The post-reaction mixture was analyzed by ¹H NMR without hydrolysis. Spectrum did not show any signals associated with **2a** or any other product of a reaction of **1a**.

Addition of THF to 1a in the presence of TEMPO and Et_2Zn (dropwise addition of TEMPO)

To a stirred solution of Et_2Zn (0.492 g, 4.00 mmol) and **1a** (0.220 g, 1.00 mmol) in THF (7 mL) a solution of TEMPO (0.624 g, 4.00 mmol) in bezene (2 mL) was added dropwise over 10 minutes at room temperature. Mixture was further stirred for 48 h. The post-reaction mixture was analyzed by ¹H NMR without hydrolysis. Spectrum did not show any signals associated with **2a** or any other product of a reaction of **1a**.

Addition of THF to 1a in the presence of the $[(EtZn)_2Zn(OAr)_4]/O_2$ system

To a stirred solution of the $[(EtZn)_2Zn(OAr)_4]$ complex (4.32 g, 4.00 mmol) in THF (7 mL) a solution of **1a** (0.220 g, 1.00 mmol) in THF (7 mL) was added at 0 °C. The reaction mixture was exposed to an excess of dry air for 48 h at room temperature. The post-reaction mixture was analyzed by ¹H NMR without hydrolysis. Spectrum did not show any signals associated with **2a** or any other product of a reaction of **1a**.

Table 1S. Conversion ratios of 1a in the reaction of addition THF radical initiated by the tested initiating systems.

	Reaction time (min)								
Mediating system	1.5	5	15	60	120	240	1440	2880	Isolated yield of 2a after 24 h, [%]
				0	Conversio	n			
$Me_2Zn(tBuDAB)$	0	0	0	0	0	0	0	0	0
TEMPO ZnEt ₂	0	0	0	0	0	0	0	0	0
[(EtZn) ₂ Zn(OAr) ₄]/O ₂	0	0	0	0	0	0	0	0	0
EtZn(O ₂ CPh)/air	0.11	0.38	0.68	0.90	0.97	0.99	0.99	-	95
MeZn(O ₂ CPh)/air	0.12	0.21	0.62	0.93	0.98	0.99	0.99	-	92
EtZn(O ₂ CEt)/air	0.07	0.21	0.52	0.87	0.95	0.99	0.99	-	96
MeZn(O ₂ CEt)/air	0.11	0.32	0.71	0.90	0.98	0.99	0.99	-	95
tBuZn(O ₂ CEt)/air	0.01	0.02	0.05	0.07	0.08	0.10	0.10	-	6
Me ₂ Zn/air	0.12	0.26	0.43	0.66	0.75	0.76	0.76	-	72

X-ray Structure Determination

Figure 1S. Molecular structure of 3 with thermal ellipsoids set at 30% probability.

abie 25. Selected	bolid lengths (11) and t	ingles (deg) for compound s.		
Zn1 – O1	1.970(3)	Zn4 – O9	1.993(3)	
Zn1 – O7	1.974(3)	Zn4 – O11	1.960(3)	
Zn1 – O12	1.945(3)	Zn4 – O13	2.441(3)	
Zn1 – O11	1.929(3)			
Zn2 - O2	1.957(3)	Zn1 - O12 - C16	115.7(2)	
Zn2 - O3	1.953(3)	Zn1 - O11 - Zn2	107.89(14)	
Zn2 – O10	1.955(3)	Zn1 - O11 - Zn3	116.56(14)	
Zn2 – O11	1.948(3)	Zn1 - O11 - Zn4	113.26(14)	
Zn3 – O4	1.996(3)	O10 - Zn2 - O11	111.09(12)	
Zn3 – O5	1.953(3)	O3 - Zn2 - O11	110.59(13)	
Zn3 – O12	1.937(3)	O2 - Zn2 - O10	106.14(13)	
Zn3 – O11	1.951(3)	Zn4 - O13 - C16	120.5(3)	
Zn4 – O6	2.079(3)	Zn4 - O13 - C19	129.6(3)	
Zn4 – O8	1.990(3)	Zn3 - O11 - Zn4	104.94(13)	

Table 2S. Selected bond lengths (Å) and angles (deg) for compound 3.

Crystal data for **3**, $[Zn_4(\mu_3-OOtBu)_3(\mu_4-O)(O_2CEt)_3]_2$, $C_{42}H_{84}O_{26}Zn_8$: M = 1528.05, crystal dimensions 0.42 × 0.28 × 0.22 mm³, monoclinic, space group *C* 2/c (no. 15), a = 22.502(2) Å, b = 12.8820(12) Å, c = 21.7730(14) Å, $\beta = 98.995(5)$ °, U = 6233.7(9) Å³, Z = 4, F(000) = 3136, $D_c = 1.628$ g cm⁻³, T = 100(2)K, μ (Mo-K α) = 3.097 mm⁻¹, Nonius Kappa-CCD diffractometer, $\theta_{max} = 21.97^{\circ}$, 3779 unique reflections. The structure was solved by direct methods using the SHELXS97¹ program and was refined by full matrix least–squares on F² using the program SHELXL97.² All non-hydrogen atoms were refined with anisotropic displacement parameters. The hydrogen atoms were introduced at geometrically idealized coordinates with a fixed isotropic displacement parameter equal to 1.2. Refinement converged at R1 = 0.1605, wR2 = 0.2492 for all data and 343 parameters (R1 = 0.0956, wR2 = 0.1910 for 2200 reflections with $I_o > 2\sigma(I_o)$). The goodness-of-fit on F² was equal 1.132. A weighting scheme $w = [\sigma^2(F_o^2 + (0.0418P)^2 + 3.1964P]^{-1}$ where $P = (F_o^2 + 2F_c^2)/3$ was used in the final stage of refinement. The residual electron density = +1.01/-0.93eÅ⁻³. Crystallographic data (excluding structure factors) for the structure reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC 746458. Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB21EZ, UK (fax: (+44)1223-336-033; e-mail: deposit@ccdc.cam.ac.uk).

Figure 28. Molecular structure of 4 with thermal ellipsoids set at 30% probability.

	Table 3S. Selected bond	lengths ((Å) and angles (deg) for compound 4.
--	-------------------------	-----------	------------------	----------------------

		- <i>b</i>)	
01 – 02	1.48(2)	Zn4 – O12	1.950(15)
O3 – O4	1.53(2)	Zn4 – O13	1.955(12)
O5 – O6	1.51(2)	C1 – O2	1.45(3)
Zn1 – O1	2.001(17)	C5 – O4	1.43(3)
Zn1 – O3	1.994(16)	C9 – O6	1.46(3)
Zn1 – O6	2.454(14)		
Zn1 – O13	1.995(14)	Zn1 - O1 - O2	101.2(10)
Zn2 - O2	2.428(16)	Zn1 – O1 – Zn3	103.3(8)
Zn2 - O3	1.986(19)	C1 - O2 - O1	110.7(14)
Zn2 - O5	2.009(15)	Zn1 - O3 - O4	108.9(11)
Zn2 – O13	2.000(13)	Zn1 - O3 - Zn2	104.0(8)
Zn3 – O1	2.037(15)	Zn1 – O13 – Zn3	114.9(6)
Zn3 – O4	2.415(15)	Zn2 - O3 - O4	99.7(12)
Zn3 – O5	1.998(14)	O3 - O4 - C5	109.5(15)
Zn3 – O13	1.934(14)	Zn2 - O5 - O6	108.7(10)
Zn4 - O7	1.957(15)	Zn3 - O5 - O6	100.7(10)
Zn4 – O10	1.943(14)	O5 - O6 - C9	107.9(15)

Crystal data for **4**, $[Zn_4(\mu_4-O)(\mu_3-2-OTHF)(O_2CEt)_5]_2$, $C_{38}H_{64}O_{26}Zn_8$: M = 1460.01, crystal dimensions 0.52 × 0.45 × 0.38 mm³, triclinic, space group P - 1 (no. 2), a = 9.5731(4) Å, b = 10.8542(6) Å, c = 13.0771(7) Å, $\alpha = 77.371(2)$ °, $\beta = 83.044(3)$ °, $\gamma = 80.914(3)$ °, U = 1304.01(12) Å³, Z = 1, F(000) = 740, $D_c = 1.859$ g cm⁻³, T = 100(2)K, μ (Mo-K α) = 3.696 mm⁻¹, Nonius Kappa-CCD diffractometer, $\theta_{max} = 24.71$ °, 4450 unique reflections. The structure was solved by direct methods using the SHELXS97⁵ program and was refined by full matrix least–squares on F² using the program SHELXL97.⁶ H-atoms were included in idealized positions and refined isotropically. Refinement converged at R1 = 0.0535, wR2 = 0.0831 for all data and 330 parameters (R1 = 0.0391, wR2 = 0.0774 for 3685 reflections with $I_o > 2\sigma(I_o)$). The goodness-of-fit on F² was equal 1.134 A weighting scheme $w = [\sigma^2(F_o^2 + (0.0418P)^2 + 3.1964P]^{-1}$ where $P = (F_o^2 + 2F_c^2)/3$ was used in the final stage of refinement. The residual electron density = +0.51/-0.56 eÅ⁻³. Crystallographic data (excluding structure factors) for the structure reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC 753795. Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB21EZ, UK (fax: (+44)1223-336-033; e-mail: deposit@ccdc.cam.ac.uk). **References:**

1 SHELXS-97, Program for Structure Solution: G.M. Sheldrick, *Acta Crystallogr. Sect. A* 1990, **46**, 467-473. 2 G. M. Sheldrick, SHELXL-97, Program for Structure Refinement, Universität Göttingen, 1997.