Supplementary Information

Probing the Vibrational Spectroscopy of the Deprotonated Thymine Radical by Photodetachment and State-Selective Autodetachment Photoelectron Spectroscopy via Dipole-Bound States

Dao-Ling Huang,¹ Hong-Tao Liu,^{1,2} Chuan-Gang Ning,³ Guo-Zhu Zhu,¹ and Lai-Sheng Wang^{1,a)}

¹Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA

²Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China

³Department of Physics, State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua University,

Beijing 100084, China

^{a)}Email: Lai-Sheng_Wang@brown.edu

Figure S1. Comparison of the current 354.84 nm photoelectron spectrum (red) with the previous spectrum at the same wavelength (dotted line) and the previous Franck-Condon simulation (vertical bars) for the N1[T-H]⁻ isomer.²³

v ₁ (A")	v ₂ (A")	v ₃ (A")
v ₄ (A")	v ₅ (A')	<i>v</i> ₆ (A")
v ₇ (A')	<i>v</i> ₈ (A')	v ₉ (A')
ν ₁₀ (A')	v ₁₁ (A")	v ₁₂ (A')
v ₁₃ (A")		

Figure S2. The thirteen lowest frequency normal modes of N1[T-H]•. The arrows indicate the displacement vectors. See Table S1 and Table 2 for their calculated frequencies.

Mode	Symmetry	Theoretical (cm ⁻¹)
<i>V</i> 1	Α″	70
V2	Α"	93
- V3	Α"	135
V4	Α"	262
V5	A'	285
V6	Α"	388
v7	A'	397
v ₈	A'	450
V9	A'	555
V10	A'	608
V11	Α"	670
v ₁₂	A'	720
v ₁₃	Α"	727
V14	Α"	751
v_{15}	A'	795
v_{16}	A'	918
V17	Α"	941
v ₁₈	A'	998
V ₁₉	A″	1019
v_{20}	A'	1179
v_{21}	A'	1223
V22	A'	1300
v_{23}	A'	1342
v_{24}	A'	1402
V25	A'	1413
v_{26}	A'	1423
V27	Α"	1453
V28	A'	1484
V29	A'	1488
v ₃₀	A'	1708
v_{31}	A'	1720
V32	A'	3021
V33	Α"	3063
v_{34}	A'	3121
v_{35}	A'	3127
v_{36}	A'	3581

Table S1 The complete list of the symmetries and vibrational frequencies of the N1[T-H]•radical calculated with the B3LYP/6-311++G(d, p) method.