Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2015

Supplementary Information

Enantioselective Synthesis of Bicyclo[3.n.1]alkanes by Chiral Phosphoric Acid-Catalyzed Desymmetrizing Michael Cyclizations

Alan R. Burns,^{a,b,†} Amaël G. E. Madec,^{b,†} Darryl W. Low,^a Iain D. Roy,^a and Hon Wai Lam*^{,a,b}

^a EaStCHEM, School of Chemistry, University of Edinburgh, Joseph Black Building, The King's Buildings, David Brewster Road, Edinburgh, EH9 3FJ (UK)

^b School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD (UK)

[†] These authors contributed equally.

Supporting Information

Contents	Page
General Information	2
Preparation of Chiral Phosphoric Acids	3
Preparation of Cyclization Precursors	3
Enantioselective Michael Cyclizations	19
Tests for the Self-Disproportionation of Enantiomers (SDE) Phenomenon	46
Preliminary Kinetic Experiments	49
Measurement of Enantioselectivity of 2j with Increasing Conversion	50
NMR Spectra	54
HPLC Traces	129

General Information

All commercially available reagents were used as received. "Petroleum ether" refers to Sigma-Aldrich product 24587 (petroleum ether boiling point 40-60 °C). Thin layer chromatography (TLC) was performed on Merck DF-Alufoilien 60F₂₅₄ 0.2 mm precoated plates. Product spots were visualized by UV light at 254 nm, and subsequently developed using potassium permanganate or vanillin solution as appropriate. Flash column chromatography was carried out using silica gel (Fisher Scientific 60Å particle size 35-70 micron). Melting points were recorded on a Griffin melting point apparatus and are uncorrected. Infra-red spectra were recorded on a Nicolet Avatar 360 FT instrument on the neat compound using an attenuated total reflection (ATR) accessory with a diamond crystal and a germanium sample plate or on a Bruker Tensor 27 FT instrument as a CHCl₃ solution. NMR spectra were acquired on Bruker AVA500, Bruker AVA400, Bruker DPX400, or Bruker DPX300 spectrometers. ¹H and ¹³C NMR spectra were referenced to external tetramethylsilane via the residual protonated solvent (¹H) or the solvent itself (¹³C). All chemical shifts are reported in parts per million (ppm). For CDCl₃, the shifts are referenced to 7.27 ppm for ¹H NMR spectroscopy and 77.0 ppm for ¹³C NMR spectroscopy. Abbreviations used in the description of resonances are: s (singlet), d (doublet), t (triplet), q (quartet), quin (quintet), app (apparent), br (broad), m (multiplet). Coupling constants (J) are quoted to the nearest 0.1 Hz. Assignments were made using the DEPT sequence with secondary pulses at 90° and 135° and 2D COSY and HSQC experiments. Proton-decoupled ¹⁹F NMR spectra were recorded on a Bruker DPX300 (282 MHz), a Bruker DPX400 (376 MHz), or a Bruker AV400 (376 MHz) spectrometer. Chemical shifts (δ) are quoted in parts per million (ppm) downfield of CFCl₃ ($\delta = 0$ ppm), using fluorobenzene as internal reference (C_6H_5F at -113.5 ppm). Proton-decoupled ³¹P NMR spectra were recorded on a Bruker DPX400 (162 MHz), or a Bruker AV400 (162 MHz) spectrometer. Chemical shifts (δ) are quoted in parts per million (ppm) downfield of tetramethylsilane, using residual protonated solvent as internal reference (aqueous 85% H₃PO₄ at 162 MHz with respect to tetramethylsilane at 400.00 MHz). High-resolution mass spectra were recorded using electrospray ionization (ESI) or electron impact ionization (EI) techniques. Optical rotations were performed on a Bellingham and Stanley ADP 400 polarimeter. Chiral HPLC analysis was performed on an Agilent 1290 series or Agilent 1260 series instrument using 4.6 x 250 mm columns. Authentic racemic samples of products for chiral HPLC assay determinations were obtained using (±)-CSA (20 mol%) as a racemic catalyst, or NaOMe (1.0 equiv) as an achiral base in THF.

Preparation of Phosphoric Acids

Phosphoric acids **4a** and **4f** were purchased from commercial sources. Phosphoric acids **4b**,¹ **4c**,² **4d**,³ and **4e**² were prepared according to the reported procedures (**4b** and **4d** are also commercially available).

Preparation of Cyclization Precursors

Substrates were prepared *via* a Wittig reaction of the corresponding aldehyde and phosphorane. Enone diones 1a, ${}^4 1c$, ${}^5 1d$, ${}^5 1k$, ${}^5 5a$, ${}^4 5c$, ${}^5 5f$, ${}^5 5f$, ${}^5 5f$, ${}^5 and 5m^5$ are known compounds prepared *via* literature procedures.

- 1. M. Klussmann, L. Ratjen, S. Hoffmann, V. Wakchaure, R. Goddard, B. List, *Synlett* **2010**, 2189-2192.
- 2. F. Romanov-Michailidis, L. Guénée, A. Alexakis, Angew. Chem., Int. Ed. 2013, 52, 9266-9270.
- 3. F. Romanov-Michailidis, L. Guénée, A. Alexakis, Org. Lett. 2013, 15, 5890-5893.
- 4. R. R. Huddleston, M. J. Krische, Org. Lett. 2003, 5, 1143-1146.
- 5. A. R. Burns, J. Solana González, H. W. Lam, Angew. Chem., Int. Ed. 2012, 51, 10827-10831.

3-(1-Ethyl-2,5-dioxocyclopentyl)propanal (S1)⁵

To a stirred solution of 2-ethyl-1,3-cyclopentanedione (500 mg, 3.96 mmol) in H₂O (20 mL) was added acrolein (0.40 mL, 5.94 mmol) in one portion and the resulting mixture was stirred at room temperature for 22 h. The reaction mixture was extracted with CH_2Cl_2 and the combined organic layerss were dried (MgSO₄), filtered, and concentrated *in vacuo* to give the aldehyde **S1** as a yellow oil (679 mg, 94%) that displayed spectroscopic data consistent with those reported in the literature.⁵

3-(2,6-Dioxo-1-phenylcyclohexyl)propanal (S2)

To a suspension of 3-hydroxy-2-phenylcyclohex-2-en-1-one⁶ (1.00 g, 5.30 mmol) and Et₃N (82 μ L, 0.59 mmol) in CH₂Cl₂ (4 mL) was added acrolein (5.31 mL, 79.5 mmol) and the reaction was heated at 50 °C for 1.5 h. The reaction was concentrated *in vacuo* to afford the crude residue. Purification of the residue by column chromatography (15% EtOAc/petroleum ether) gave the *aldehyde* **S2** as an orange oil (323 mg, 25%). R_f = 0.35 (15% EtOAc/petroleum ether); IR 2940, 1707 (C=O), 1680 (C=O), 1601, 1499, 1448, 1379, 1240, 1154, 914 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 9.65-9.62 (1H, m, **H**C=O), 7.45-7.29 (3H, m, Ar**H**), 7.05-6.95 (2H, m, Ar**H**), 2.85-2.71 (2H, m, CH_AH_BCH₂CH_AH_B), 2.62-2.49 (2H, m, CH_AH_BCH₂CH_AH_B), 2.39-2.23 (4H, m, CH₂CH₂CHO), 1.97-1.83 (1H, m, CH₂CH_AH_BCH₂), 1.79-1.64 (1H, m, CH₂CH_AH_BCH₂); ¹³C NMR (75 MHz, CDCl₃) δ 207.1 (2 x C), 201.8 (C), 137.5 (C), 129.7 (2 x CH), 128.2 (CH), 126.5 (2 x CH), 75.0 (C), 40.3 (CH₂), 39.0 (2 x CH₂), 27.1 (CH₂), 17.5 (CH₂); HRMS (ESI) Exact mass calculated for C₁₆H₂₀NaO₄ [M+Na+MeOH]⁺: 299.1254 found: 299.1246.

^{6. (}a) T. N. Wheeler, J. Org. Chem. **1979**, 44, 4906-4912. (b) S. Reddy Chidipudi, I. Khan, H. W. Lam, Angew. Chem., Int. Ed. **2012**, 51, 12115-12119.

3-(2,6-Dioxo-1-phenylcyclohexyl)propanal (S3)

A solution of 3-hydroxy-2-(4-methoxyphenyl)cyclohex-2-en-1-one^{6b} (600 mg, 2.75 mmol) and acrolein (7.35 mL, 110 mmol) was stirred at room temperature for 14 h. The reaction mixture was concentrated *in vacuo* to afford the crude residue. Purification of the residue by column chromatography (15% acetone/petroleum ether) gave the aldehyde **S3** as a yellow oil (400 mg, 53%). $R_f = 0.30$ (15% acetone/petroleum ether); IR 2960, 2837, 1725 (C=O), 1698 (C=O), 1608, 1511, 1255, 1187, 1033, 832cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 9.58 (1H, t, *J* = 1.5 Hz, **H**C=O), 6.89-6.84 (4H, m, Ar**H**), 3.76 (3H, s, C**H**₃), 2.78-2.69 (2H, m, C**H**_AH_BCH₂C**H**_AH_B), 2.54-2.45 (2H, m, CH_AH_BCH₂CH_AH_B), 2.31-2.25 (2H, m, C**H**₂CHO), 2.23-2.17 (2H, m, C**H**₂CH₂CHO), 1.91-1.79 (CH₂C**H**_AH_BCH₂), 1.73-1.60 (CH₂CH_AH_BCH₂); ¹³C NMR (100.6 MHz, CDCl₃) δ 207.2 (2 x C), 201.8 (C), 159.3 (C), 129.1 (C), 127.7 (2 x CH), 115.0 (2 x CH), 74.1 (C), 55.2 (CH₃), 40.2 (CH₂), 38.7 (2 x CH₂), 26.9 (CH₂), 17.3 (CH₂); HRMS (ESI) Exact mass calculated for C₁₆H₁₉O₄ [M+H]⁺: 275.1278 found: 275.1268.

Representative Procedure for the Preparation of Phosphoranes

1-(3-Chlorophenyl)-2-(triphenyl- λ^5 -phosphanylidene)ethan-1-one (S4)

To a stirred solution of 2-bromo-3'-chloroacetophenone (4.40 g, 18.9 mmol) and Et₃N (0.26 mL, 1.89 mmol) in toluene (63 mL) was added PPh₃ (5.44 g, 20.7 mmol) and the mixture was stirred at room temperature for 24 h. The resulting precipitate was filtered, washed copiously with Et₂O, and dried *in vacuo* to give the phosphonium salt. To a stirred suspension of the phosphonium salt in CH₂Cl₂ (20 mL) was added Na₂CO₃ (2.20 g, 20.7 mmol) in H₂O (20 mL) and the resulting biphasic solution was stirred vigorously at room temperature for 18 h. The layers were separated and the aqueous layers was extracted with CH₂Cl₂ (20mL). The combined organic layerss were dried (MgSO₄), filtered, and concentrated *in vacuo* to give the *phosphorane* **S4** as a pale brown solid (6.57 g, 84%). R_f = 0.14 (40% EtOAc/petroleum ether); m.p. 135-137 °C (cyclohexane/CH₂Cl₂); IR 1514, 1441, 1435, 1378, 1105, 887, 742 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.97 (1H, t, *J* = 1.8 Hz, Ar**H**), 7.85 (1H, dt, *J* = 7.4, 1.4 Hz, Ar**H**), 7.77-7.68 (6H, m, Ar**H**), 7.62-7.56 (3H, m, Ar**H**),

7.53-7.46 (6H, m, Ar**H**), 7.36-7.26 (2H, m, Ar**H**), 4.43 (1H, br s, Ph₃P=C**H**); ¹³C NMR (100.6 MHz, CDCl₃) δ 183.0 (C, d, *J* = 3.4 Hz), 143.2 (C, d, *J* = 14.9 Hz), 133.8 (C), 133.1 (6 x CH, *J* = 10.2 Hz), 132.2 (3 x CH, *J* = 2.9 Hz), 129.2 (CH), 129.0 (CH), 128.92 (6 x CH, *J* = 12.4 Hz), 127.2 (CH), 126.7 (3 x C, d, *J* = 91.4 Hz), 125.0 (CH), 51.4 (CH, d, *J* = 112.1 Hz); ³¹P NMR (162 MHz, CDCl₃) δ 16.7; HRMS (ESI) Exact mass calculated for C₂₆H₂₁ClOP [M+H]⁺: 415.1013, found: 415.1014.

Ph₃P₄ + 1-(**Pyridin-2-yl**)-2-(triphenyl-λ⁵-phosphanylidene)ethan-1-one (S5). The title compound was prepared according to the Representative Procedure from (2bromoacetyl)pyridin-1-ium bromide⁷ (9.50 g, 33.8 mmol) to give an off-white gummy solid (11.6 g, 90%). R_f = 0.18 (9/18/73 MeOH/EtOAc/petroleum ether); IR 2959, 2928, 1724 (C=O), 1572, 1522, 1483, 1438, 1397, 1239, 1107 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.59 (1H, d, *J* = 4.0 Hz, Ar**H**), 8.15 (1H, d, *J* = 7.9 Hz, Ar**H**), 7.80-7.70 (6H, m, Ar**H**), 7.60-7.53 (3H, m, Ar**H**), 7.52-7.45 (6H, m, Ar**H**), 7.31-7.25 (2H, m, Ar**H**), 5.32 (1H, d, *J* = 21.4 Hz, Ph₃P=C**H**); ¹³C NMR (100.6 MHz, CDCl₃) δ 196.5 (C, d, *J* = 5.7 Hz), 148.0 (CH), 141.1 (C) 136.6 (CH), 133.3 (6 x CH, d, *J* = 10.2 Hz), 132.1 (3 x CH, d, *J* = 2.7 Hz), 128.9 (6 x CH, d, *J* = 12.3 Hz), 127.0 (3 x C, d, *J* = 91.5 Hz), 126.1 (3 x C, d, *J* = 91.5 Hz), 124.1 (CH), 120.6 (CH), 51.9 (CH, d, *J* = 110.9 Hz); ³¹P NMR (162 MHz, CDCl₃) δ 17.4; HRMS (ESI) Exact mass calculated for C₂₅H₂₁NOP [M+H]⁺: 382.1365, found: 382.1369.

1-(Thiophen-2-yl)-2-(triphenyl-λ⁵-phosphanylidene)ethan-1-one (S6). The title compound was prepared according to the Representative Procedure from 2-bromo-1-(thiophen-2-yl)ethan-1-one⁸ (3.80 g, 18.5 mmol) to give a beige solid (5.87 g, 82%). $R_f = 0.27$ (70% EtOAc/petroleum ether); m.p. 209-211 °C (cyclohexane/CH₂Cl₂); IR 1506, 1384, 1231, 1107, 880 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.78-7.66 (6H, m, ArH), 7.61-7.52 (4H, m, ArH), 7.52-7.44 (6H, m, ArH), 7.30 (1H, d, *J* = 4.9 Hz, ArH), 7.02 (1H, dd, *J* = 4.9, 3.7 Hz, ArH), 4.32 (1H, br s, Ph₃P=CH); ¹³C NMR (100.6 MHz, CDCl₃) δ 178.3 (C, d, *J* = 4.1 Hz), 148.5 (C, d, *J* = 18.1 Hz), 133.1 (6 x CH, d, *J* = 10.3 Hz), 132.1 (3 x CH, d, *J* = 2.8 Hz), 128.9 (6 x CH, d, *J* = 12.3 Hz), 127.3 (3 x C, d, *J* = 91.4 Hz), 127.11 (CH), 127.09 (CH), 126.8 (3 x C, d, *J* = 91.4 Hz), 126.0 (CH), 50.2 (CH, d, *J* = 113.3 Hz); ³¹P NMR (162 MHz, CDCl₃) δ 16.3; HRMS (ESI) Exact mass calculated for C₂₄H₂₀OPS [M+H]⁺: 387.0967, found: 387.0965.

^{7.} F. Mjambili, M. Njoroge, K. Naran, C. De Kock, P. J. Smith, V. Mizrahi, D. Warner, K. Chibale, *Bioorg. Med. Chem. Lett.* **2014**, *24*, 560-564.

^{8.} J. Chen, D. Liu, N. Butt, C. Li, D. Fan, Y. Liu, W. Zhang, Angew. Chem., Int. Ed. 2013, 52, 11632-11636.

1-(2-Chlorophenyl)-2-(triphenyl- λ^5 -phosphanylidene)ethan-1-one (S7). title compound was prepared according to the Representative Procedure from 2bromo-1-(2-chlorophenyl)ethan-1-one⁸ (2.33 g, 10.0 mmol) to give a pale yellow solid (4.15 g, >95%, but contaminated with a small quantity of $Ph_3P=O$). $R_f = 0.30$ (70%) EtOAc/petroleum ether); m.p. 144-146 °C (cyclohexane/CH₂Cl₂); IR 3059, 1528, 1435, 1393, 1189, 1121, 748 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.81-7.72 (6H, m, ArH), 7.71-7.53 (4H, m, ArH), 7.53-7.44 (6H, m, ArH), 7.37-7.29 (1H, m, ArH), 7.24-7.15 (2H, m, ArH), 4.11 (1H, br s, Ph₃P=CH); ¹³C NMR (100.6 MHz, CDCl₃) δ 185.5 (C, d, J = 3.4 Hz), 143.2 (C, d, J = 15.9 Hz), 133.2 (6 x CH, d, J = 10.3 Hz), 132.2 (3 x CH, d, J = 2.9 Hz), 130.9 (C), 129.6 (CH), 129.3 (CH), 128.7 (CH), 128.9 (6 x CH, d, J = 12.3 Hz), 126.5 (3 x C, d, J = 90.9 Hz), 55.4 (CH, d, J = 106.2 Hz); ³¹P NMR (162 MHz, CDCl₃) δ 14.8; HRMS (ESI) Exact mass calculated for C₂₆H₂₁ClOP [M+H]⁺: 415.1013, found: 415.1014.

N,*N*-Dibenzyl-2-(triphenyl- λ^5 -phosphanylidene)acetamide **(S8)**. The title NBn₂ compound was prepared according to the Representative Procedure from N,Ndibenzyl-2-chloroacetamide⁹ (4.90 g, 20.0 mmol) to give a brown oil (9.69 g, >95%). $R_f = 0.36$ (70% EtOAc/petroleum ether); IR 3056, 1653 (C=O), 1636, 1541, 1495, 1437, 1183, 1120, 1028, 721 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.80-7.62 (6H, m, ArH), 7.62-7.40 (9H, m, ArH), 7.39-7.15 (10H, m, ArH), 4.63-4.46 (4H, m, 2 x CH₂Ph), 3.02 (1H, br s, Ph₃P=CH); ¹³C NMR (100.6 MHz, CDCl₃) δ 171.1 (C), 139.7 (C), 137.3 (3 x C, d, *J* = 90.9 Hz), 136.6 (3 x C, d, *J* = 90.9 Hz), 133.0 (6 x CH, d, J = 9.8 Hz), 132.0 (6 x CH, d, J = 9.9 Hz), 131.9 (3 x CH, d, J = 2.8 Hz), 131.4 (CH), 128.9 (CH), 128.54 (CH), 128.49 (CH), 128.42 (CH), 128.38 (CH), 128.24 (CH), 126.16 (CH), 127.6 (CH), 126.5 (CH), 126.3 (CH), 50.7 (CH₂), 47.9 (CH₂), 31.5 (CH, d, J = 130.9 Hz), peaks not in metafile; ³¹P NMR (162 MHz, CDCl₃) & 18.1; HRMS (ESI) Exact mass calculated for C₃₄H₃₀NOP [M+H]⁺: 500.2138, found: 500.2147.

2-Bromomethylbenzoxazole (S9)¹⁰

Prepared according to a modified literature procedure:¹⁰ To a mixture of 2-aminophenol (2.50 g, 22.9 mmol) in polyphosphoric acid (22.9 g) was added bromoacetic acid (4.78 g, 34.4 mmol) and the resulting mixture was stirred at 130 °C for 4 h. The reaction was poured into ice water (1.0 L)

The

^{9.} D. Bernier, A. J. Blake, S. Woodward, J. Org. Chem. 2008, 73, 4229-4232.

^{10.} A. M. S. Soares, S. P. G. Costa, M. S. T. Gonçalves, Tetrahedron 2010, 66, 8189-8195.

and the mixture was stirred for 1 h to give a fine brown precipitate, which was collected by filtration. The solid was washed with cold water (2 x 100 mL), dissolved in CH₂Cl₂ (250 mL), and the solution was washed with saturated aqueous NaHCO₃ solution (2 x 250 mL). The organic layer was dried (MgSO₄), filtered, and concentrated *in vacuo* to leave 2-bromomethylbenzoxazole (**S9**) as a brown oil (3.49 g, 16.5 mmol, 72%). $R_f = 0.33$ (10% EtOAc/hexane); IR 3046, 2970, 1611, 1566, 1452, 1422, 1346, 1290, 1240, 1215, 1173, 1117, 1001, 951, 858, 837, 762, 746, 691, 592 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.74-7.68 (1H, m, Ar**H**), 7.54-7.48 (1H, m, Ar**H**), 7.38-7.29 (2H, m, Ar**H**), 4.57 (2H, s, C**H**₂); ¹³C NMR (125.8 MHz, CDCl₃) δ 161.0 (C), 151.1 (C), 141.0 (C), 126.0 (CH), 124.8 (CH), 120.5 (CH), 110.8 (CH), 20.6 (CH₂); HRMS (EI) Exact mass calculated for C₈H₆ON⁷⁹Br [M]⁺: 210.9626, found: 210.9627.

2-Benzoxazolylmethyl triphenylphosphonium bromide (S10)

A solution of 2-bromomethylbenzoxazole (**S9**) (1.06 g, 5.00 mmol) and triphenylphosphine (1.57 g, 6.00 mmol) in toluene (50 mL) was heated to reflux for 2 h. The mixture was cooled to room temperature and the precipitate was collected by filtration and washed with toluene (2 x 25 mL) to leave the *phosphonium salt* **S10** as a pale yellow solid. (1.65 g, 84%). m.p. decomposes at ~90 °C; IR 3051, 2814, 2743, 1609, 1560, 1452, 1437, 1238, 1107, 995, 847, 748, 719, 689, 556 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.91 (6H, dd, J = 13.2, 7.8 Hz, Ar**H**), 7.78-7.71 (3H, m, Ar**H**), 7.67-7.60 (6H, m, Ar**H**), 7.50 (1H, app d, J = 6.8 Hz, Ar**H**), 7.34 (1H, app d, J = 7.3 Hz, Ar**H**), 7.29-7.20 (2H, m, Ar**H**), 6.07 (2H, d, J = 14.9 Hz, C**H**₂); ¹³C NMR (125.8 MHz, CDCl₃) δ 155.8 (C), 150.9 (C), 140.5 (C, br s), 135.3 (3 x CH, d, J = 2.2 Hz), 134.1 (6 x CH, d, J = 10.6 Hz), 130.2 (6 x CH, d, J = 13.1 Hz), 125.7 (CH), 124.6 (CH), 119.9 (CH), 117.4 (3 x C, d, J = 88.2 Hz), 110.8 (CH), 26.9 (CH₂, d, J = 54.3 Hz); ³¹P NMR (161.9 MHz, CDCl₃) δ 22.0; HRMS (EI) Exact mass calculated for C₂₆H₂₀ON⁷⁹BrP [M–H]⁺: 472.0460, found: 472.0460.

Representative Procedure for Preparation of Cyclization Precursors via Wittig reaction

2-Methyl-2-[(*E*)-5-(4-methylphenyl)-5-oxopent-3-en-1-yl]cyclopentane-1,3-dione (1b)

To a stirred solution of 3-(1-methyl-2,5-dioxocyclopentyl)propanal¹¹ (589 mg, 3.50 mmol) in CHCl₃ (12 mL) was added 1-(4-methylphenyl)-2-(triphenyl- λ^5 -phosphanylidene)ethan-1-one¹² (1.66 g, 4.20 mmol) in one portion at room temperature and the resulting mixture was stirred under reflux for 16 h before being concentrated *in vacuo*. Purification of the residue by column chromatography (20 to 40% EtOAc/petroleum ether) gave the *enone* **1b** as an off-white solid (897 mg, 90%). R_f = 0.38 (40% EtOAc/petroleum ether); m.p. 76-77 °C (cyclohexane/CH₂Cl₂); IR 2924, 1717 (C=O), 1670 (C=O), 1620, 1603, 1308, 802 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.81 (2H, d, *J* = 8.2 Hz, Ar**H**), 7.26 (2H, d, *J* = 8.2 Hz, Ar**H**), 6.92-6.85 (2H, m, C**H**=C**H**), 2.88-2.68 (4H, m, COCH₂CH₂CO), 2.41 (3H, s, ArCH₃), 2.25-2.17 (2H, m, CH₂CH=), 1.91-1.82 (2H, m, CH₂CH=CH=), 1.17 (3H, s, CH₃CC=O); ¹³C NMR (100.6 MHz, CDCl₃) δ 215.9 (2 x C), 189.8 (C), 146.6 (CH), 143.6 (C), 135.0 (C), 129.2 (2 x CH), 128.6 (2 x CH), 126.6 (CH), 56.1 (C), 35.0 (2 x CH₂), 32.9 (CH₂), 27.8 (CH₂), 21.6 (CH₃), 19.8 (CH₃); HRMS (ESI) Exact mass calculated for C₁₈H₂₀NaO₃ [M+Na]⁺: 307.1305, found: 307.1298.

2-[(E)-5-(3-Chlorophenyl)-5-oxopent-3-en-1-yl]-2-

methylcyclopentane-1,3-dione (1e). The title compound was prepared

according to the Representative Procedure from 3-(1-methyl-2,5dioxocyclopentyl)propanal¹¹ (505 mg, 3.00 mmol) and phosphorane **S4** (1.49 g, 3.60 mmol). Purification by column chromatography (20 to 30% EtOAc/petroleum ether) gave an orange solid (608 mg, 66%). $R_f = 0.28$ (30% EtOAc/petroleum ether); m.p. 56-57 °C (cyclohexane/CH₂Cl₂); IR 2932, 1714 (C=O), 1666 (C=O), 1621, 1570, 1419, 1253, 1208, 1079, 10338, 791, 727 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.86 (1H, t, *J* = 1.8 Hz, Ar**H**), 7.76 (1H, dt, *J* = 7.8, 1.2 Hz, Ar**H**), 7.53 (1H, ddd, *J* = 8.0, 2.1, 1.1 Hz, Ar**H**), 7.41 (1H, t, *J* = 7.8 Hz, Ar**H**), 6.91 (1H, dt, *J* = 15.4, 6.7 Hz, CH₂C**H**=), 6.77 (1H, dt, *J* = 15.4, 1.3 Hz, CH₂CH=C**H**), 2.95-2.66 (4H, m, COC**H**₂C**H**₂CO), 2.28-2.17 (2H, m, C**H**₂CH=), 1.93-1.81 (2H, m, C**H**₂CH₂CH=), 1.18 (3H, s, C**H**₃); ¹³C NMR (100.6 MHz, CDCl₃) δ 215.8 (2 x C), 189.0 (C), 148.2 (CH), 139.2 (C), 134.9 (C), 132.7 (CH), 129.9 (CH), 128.6 (CH), 126.5 (CH), 126.2 (CH), 56.1 (C), 35.0 (2 x CH₂), 32.6 (CH₂), 27.8 (CH₂), 19.9

^{11.} J. Deschamp, O. Riant, Org. Lett. 2009, 11, 1217-1220.

^{12.} D. G. Stark, L. C. Morrill, P.-P. Yeh, A. M. Z. Slawin, T. J. C. O'Riordan, A. D. Smith, *Angew. Chem., Int. Ed.* **2013**, *52*, 11642-11646.

(CH₃); HRMS (ESI) Exact mass calculated for $C_{17}H_{17}CINaO_3$ [M+Na]⁺: 327.0758, found: 327.0751.

2-Methyl-2-[(E)-5-(naphthalen-2-yl)-5-oxopent-3-en-1-

yl]cyclopentane-1,3-dione (1f). The title compound was prepared

according to the Representative Procedure from 3-(1-methyl-2,5dioxocyclopentyl)propanal¹¹ (589 mg, 3.50 mmol) and 1-(naphthalen-2-yl)-2-(triphenyl- λ^{5} phosphanylidene)ethan-1-one¹² (1.81 g, 4.20 mmol). Purification by column chromatography (20 to 40% EtOAc/petroleum ether) gave a yellow solid (770 mg, 69%). R_f = 0.22 (30% EtOAc/petroleum ether); m.p. 83-84 °C (cyclohexane/CH₂Cl₂); IR 1717 (C=O), 1701, 1668 (C=O), 1652, 1646, 1507, 1457, 1178, 808 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.42 (1H, s, Ar**H**), 8.03-7.95 (2H, m, Ar**H**), 7.94-7.85 (2H, m, Ar**H**), 7.64-7.52 (2H, m, Ar**H**), 7.05-6.89 (2H, m, C**H**=C**H**), 2.94-2.68 (4H, m, COC**H**₂C**H**₂CO), 2.35-2.19 (2H, m, C**H**₂CH=), 1.98-1.86 (2H, m, C**H**=C**H**), 2.94-2.68 (4H, m, COC**H**₂C**H**₂CO), 2.35-2.19 (2H, m, C**H**₂CH=), 1.98-1.86 (2H, m, C**H**₂CH₂CH=), 1.19 (3H, s, C**H**₃); ¹³C NMR (100.6 MHz, CDCl₃) δ 215.9 (2 x C), 190.1 (C), 147.1 (CH), 135.4 (C), 134.9 (C), 132.5 (C), 130.0 (CH), 129.5 (CH), 128.5 (CH), 128.4 (CH), 127.8 (CH), 126.8 (CH), 126.6 (CH), 124.4 (CH), 56.1 (C), 35.0 (2 x CH₂), 32.9 (CH₂), 27.9 (CH₂), 19.9 (CH₃); HRMS (ESI) Exact mass calculated for C₂₁H₂₀NaO₃ [M+Na]⁺: 343.1305, found: 343.1293.

(E)-2-(6,6-Dimethyl-5-oxohept-3-en-1-yl)-2-methylcyclopentane-1,3dione (1g). The title compound was prepared according to the RepresentativeProcedure from 3-(1-methyl-2,5-dioxocyclopentyl)propanal¹¹ (700 mg, 4.20 $mmol) and 3,3-dimethyl-1-(triphenyl-<math>\lambda^5$ -phosphanylidene)butan-2-one¹³ (1.62 g, 4.50 mmol).

mmol) and 3,3-dimethyl-1-(triphenyl- λ^{-} -phosphanylidene)butan-2-one¹⁰ (1.62 g, 4.50 mmol). Purification by column chromatography (20% EtOAc/petroleum ether) gave a yellow solid (470 mg, 44%). R_f = 0.43 (30% EtOAc/petroleum ether); m.p. 49-50 °C (CHCl₃); IR 1765 (C=O), 1687 (C=O), 1624, 1508, 1477, 1367, 1239, 1152, 1077, 949 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 6.80-6.70 (1H, m, CH₂CH=), 6.73 (1H, dt, J = 15.2, 1.4 Hz, CH₂CH=CH), 2.88-2.67 (4H, m, COCH₂CH₂CO), 2.15-2.04 (2H, m, CH₂CH=), 1.82-1.76 (2H, m, CH₂CH=CH), 1.14 (3H, s, CH₃CC=O), 1.12 (9H, s, C(CH₃)₃); ¹³C NMR (100.6 MHz, CDCl₃) δ 215.9 (2 x C) , 203.9 (C), 144.9 (CH), 124.9 (CH), 56.1 (C), 42.8 (C), 35.0 (2 x CH₂), 33.0 (CH₂), 27.4 (CH₂), 26.1 (3 x CH₃), 19.7 (CH₃); HRMS (ESI) Exact mass calculated for C₁₅H₂₂NaO₃ [M+Na]⁺: 273.1461, found: 273.1470.

2-Methyl-2-[(E)-5-oxo-5-(pyridin-2-yl)pent-3-en-1-yl]cyclopentane-1,3dione (1h). The title compound was prepared according to the Representative Procedure 3-(1-methyl-2,5from dioxocyclopentyl)propanal¹¹ (505 mg, 3.00 mmol) and phosphorane **S5** (1.37 g, 3.60 mmol). Purification by column chromatography (20 to 40% EtOAc/petroleum ether) gave a brown solid (762 mg, 94%). $R_f = 0.19$ (40% EtOAc/petroleum ether); m.p. 107-109 °C (cyclohexane/CH₂Cl₂); IR 1718 (C=O), 1680 (C=O), 1619, 1179, 995, 754 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 8.69 (1H, ddd, J = 4.8, 1.7, 0.9 Hz, ArH), 8.10 (1H, dt, J = 7.9, 1.0 Hz, ArH), 7.85 (1H, td, J = 7.7, 1.7 Hz, ArH), 7.54 (1H, dt, J = 15.7, 1.5 Hz, CH₂CH=CH), 7.47 (1H, ddd, J = 7.6, 4.8, 1.2 Hz, ArH), 7.04 (1H, dt, J = 15.7, 6.9 Hz, CH₂CH=), 2.86-2.71 (4H, m, COCH₂CH₂CO), 2.30-2.22 (2H, m, CH₂CH=), 1.95-1.88 (2H, m, CH₂CH₂CH=), 1.17 (3H, s, CH₃); ¹³C NMR (125.8 MHz, CDCl₃) δ 216.0 (2 x C), 189.1 (C), 153.8 (C), 148.8 (CH), 147.5 (CH), 137.0 (CH), 126.9 (CH), 125.3 (CH), 122.9 (CH), 56.1 (C), 35.0 (2 x CH₂), 32.9 (CH₂), 27.9 (CH₂), 19.7 (CH₃); HRMS (ESI) Exact mass calculated for C₁₆H₁₇NNaO₃ [M+Na]⁺: 294.1101, found: 294.1105.

2-[(E)-5-(Furan-2-yl)-5-oxopent-3-en-1-yl]-2-methylcyclopentane-1,3-

dione (1i). The title compound was prepared according to the Procedure Representative from 3-(1-methyl-2,5dioxocyclopentyl)propanal¹¹ 1-(furan-2-yl)-2-(triphenyl- λ^{5} -(505 mg, 3.00 mmol) and phosphanylidene)ethan-1-one¹⁴ (1.33 g, 3.60 mmol). Purification by column chromatography (10 to 40% EtOAc/petroleum ether) gave a yellow solid (582 mg, 74%). $R_f = 0.25$ (40% EtOAc/petroleum ether); m.p. 80-81 °C (cyclohexane/CH₂Cl₂); IR 1719 (C=O), 1667 (C=O), 1613, 1566, 1467, 1319, 1157, 1046, 884, 781 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.61 (1H, dd, J = 1.7, 0.7 Hz, Ar**H**), 7.22 (1H, dd, J = 3.6, 0.7 Hz, ArH), 6.96 (1H, dt, J = 15.5, 6.9 Hz, CH₂CH=), 6.73 (1H, dt, J = 15.5, 1.5)Hz, CH₂CH=CH), 6.55 (1H, dd, J = 3.6, 1.7 Hz, ArH), 2.89-2.67 (4H, m, COCH₂CH₂CO), 2.24-2.16 (2H, m, CH₂CH=), 1.90-1.81 (2H, m, CH₂CH₂CH=), 1.16 (3H, s, CH₃); ¹³C NMR (125.8 MHz, CDCl₃) δ 215.9 (2 x C), 177.7 (C), 153.1 (C), 146.6 (CH), 146.5 (CH), 125.7 (CH), 117.7 (CH), 112.4 (CH), 56.1 (C), 35.0 (2 x CH₂), 32.7 (CH₂), 27.6 (CH₂), 19.8 (CH₃); HRMS (ESI) Exact mass calculated for $C_{15}H_{16}NaO_4$ [M+Na]⁺: 283.0941, found: 283.0932.

^{14.} S. J. Sabounchei, V. Jodaian, S. Salehzadeh, S. Samiee, A. Dadrass, M. Bayat, H. R. Khavasi, Helv. Chim. Acta 2010, 93, 1105-1119.

dioxocyclopentyl)propanal¹¹ (505 mg, 3.00 mmol) and phosphorane **S6** (1.39 g, 3.60 mmol). Purification by column chromatography (20 to 40% EtOAc/petroleum ether) gave a pale yellow solid (553 mg, 67%). $R_f = 0.26$ (40% EtOAc/petroleum ether); m.p. 80-82 °C (cyclohexane/CH₂Cl₂); IR 2934, 1716 (C=O), 1660 (C=O), 1607, 1415, 1274, 1229, 953, 752 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.74 (1H, dd, J = 3.8, 1.1 Hz, Ar**H**), 7.66 (1H, dd, J = 4.9, 1.1 Hz, Ar**H**), 7.15 (1H, dd, J = 4.9, 3.8 Hz, Ar**H**), 6.94 (1H, dt, J = 15.3, 6.9 Hz, CH₂C**H**=), 6.74 (1H, dt, J = 15.3, 1.4 Hz, CH₂CH=C**H**), 2.92-2.67 (4H, m, COCH₂CH₂CO), 2.27-2.17 (2H, m, CH₂CH=), 1.92-1.83 (2H, m, CH₂CH=), 1.18 (3H, s, CH₃); ¹³C NMR (100.6 MHz, CDCl₃) δ 215.9 (2 x C), 181.8 (C), 146.4 (CH), 144.8 (C), 133.9 (CH), 132.0 (CH), 128.2 (CH), 126.2 (CH), 56.1 (C), 35.0 (2 x CH₂), 32.8 (CH₂), 27.7 (CH₂), 19.9 (CH₃); HRMS (ESI) Exact mass calculated for C₁₅H₁₆NaO₃S [M+Na]⁺: 299.0712, found: 299.0706.

2-Methyl-2-[(E)-5-(4-methylphenyl)-5-oxopent-3-en-1-

yl]cyclohexane-1,3-dione (5b). The title compound was prepared

according to the Representative Procedure from 3-(1-methyl-2,6dioxocyclohexyl)propanal¹¹ (638 mg, 3.50 mmol) and 1-(4-methylphenyl)-2-(triphenyl- λ^5 phosphanylidene)ethan-1-one (1.66 g, 4.20 mmol). Purification by column chromatography (10 to 40% EtOAc/petroleum ether) gave a yellow solid (793 mg, 76%). R_f = 0.44 (40% EtOAc/petroleum ether); m.p. 69-70 °C (cyclohexane/EtOAc); IR 2960, 1690 (C=O), 1665 (C=O), 1617, 1604, 1424, 1302, 1182, 1030, 812 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.85-7.80 (2H, m, Ar**H**), 7.29-7.23 (2H, m, Ar**H**), 6.93 (1H, dt, *J* = 15.4, 6.3 Hz, CH₂C**H**=), 6.85 (1H, dt, *J* = 15.4, 1.1 Hz, CH₂CH=C**H**), 2.76-2.61 (4H, m, C**H**₂CH₂C**H**₂), 2.41 (3H, s, ArC**H**₃), 2.19-2.11 (2H, m, C**H**₂CH=), 2.04-1.92 (4H, m, CH₂C**H**₂CH₂ and C**H**₂CH₂CH=), 1.31 (3H, s, C**H**₃CC=O); ¹³C NMR (100.6 MHz, CDCl₃) δ 209.9 (2 x C), 190.0 (C), 147.2 (CH), 143.5 (C), 135.1 (C), 129.2 (2 x CH), 128.6 (2 x CH), 126.3 (CH), 64.9 (C), 37.9 (2 x CH₂), 34.3 (CH₂), 28.1 (CH₂), 21.6 (CH₃), 21.1 (CH₃), 17.5 (CH₂); HRMS (ESI) Exact mass calculated for C₁₉H₂₂NaO₃ [M+Na]⁺: 321.1461, found: 321.1444.

2-[(E)-5-(4-Fluorophenyl)-5-oxopent-3-en-1-yl]-2-

methylcyclohexane-1,3-dione (5d). The title compound was prepared according to a modification of the Representative Procedure from 3-(1-

methyl-2,6-dioxocyclohexyl)propanal¹¹ (1.20 g, 6.60 mmol) and 1-(4-fluorophenyl)-2-(triphenyl- λ -5-phosphanylidene)ethan-1-one¹⁵ (3.10 g, 7.90 mmol) using toluene (60 mL) as solvent and by heating to 90 °C for 14 h. Purification by column chromatography (20 to 40% EtOAc/petroleum

^{15.} E. Venkateswararao, M.-S. Kim, V. K. Sharma, K.-C. Lee, S. Subramanian, E. Roh, Y. Kim, S.-H. Jung, *Eur. J. Med. Chem.* **2013**, *59*, 31-38.

ether) gave a pale yellow solid (1.10 g, 55%). $R_f = 0.27$ (40% EtOAc/petroleum ether); m.p. 123-125 °C (CH₂Cl₂); IR 2936, 2860, 1727 (C=O), 1696 (C=O), 1671, 1622, 1599, 1507, 1486, 1306, 1240, 988 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.96-7.85 (2H, m, Ar**H**), 7.15-7.04 (2H, m, Ar**H**), 6.92 (1H, dt, J = 15.4, 6.3 Hz, CH₂C**H**=), 6.56 (1H, dt, J = 15.4, 1.0 Hz, CH₂CH=C**H**), 2.76-2.56 (4H, m, C**H**₂CH₂C**H**₂), 2.18-2.06 (2H, m, C**H**₂CH=), 2.02-1.88 (4H, m, C**H**₂CH₂CH₂ and CH₂C**H**₂CH₂), 1.28 (3H, s, C**H**₃); ¹³C NMR (100.6 MHz, CDCl₃) δ 209.8 (2 x C), 188.7 (C), 165.4 (C, d, J = 253.4 Hz), 148.0 (CH), 133.9 (C, d, J = 3.0 Hz), 131.1 (2 x CH, d, J = 9.2 Hz), 125.8 (CH), 115.5 (2 x CH, d, J = 21.8 Hz,), 64.8 (C), 37.9 (2 x CH₂), 33.9 (CH₂), 28.0 (CH₂), 21.4 (CH₃), 17.4 (CH₂); ¹⁹F NMR (282 MHz, CDCl₃) δ -105.7; HRMS (ESI) Exact mass calculated for C₁₈H₁₉FNaO₃ [M+Na]⁺: 303.1377, found: 303.1391.

2-[(E)-5-(2-methoxyphenyl)-5-oxopent-3-en-1-yl]-2-

methylcyclohexane-1,3-dione (5h). The title compound was prepared

according to a modification of the Representative Procedure from 3-(1methyl-2,6-dioxocyclohexyl)propanal¹¹ (455 mg, 2.50 mmol) and 1-(2-methoxyphenyl)-2-(triphenyl- λ^5 -phosphanylidene)ethan-1-one¹⁶ (1.23 g, 3.00 mmol), using toluene (30 mL) as solvent and by heating to 90 °C for 16 h. Purification by column chromatography (30 to 40% EtOAc/petroleum ether) gave a yellow oil (504 mg, 66%). R_f = 0.25 (40% EtOAc/petroleum ether); IR 2943, 2841, 1726 (C=O), 1696 (C=O), 1662, 1617, 1599, 1376, 1286, 1025 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.42-7.30 (2H, m, Ar**H**), 6.94-6.85 (2H, m, Ar**H**), 6.64 (1H, dt, *J* = 15.6, 6.3 Hz, CH₂CH=), 6.56 (1H, app d, *J* = 15.6 Hz, CH₂CH=C**H**), 3.76 (3H, s, OC**H**₃), 2.58 (4H, t, *J* = 6.9 Hz, CH₂CH₂CH₂), 2.05-1.96 (2H, m, CH₂CH=), 1.91-1.81 (4H, m, CH₂CH₂CH₂ and CH₂CH₂CH=), 1.19 (3H, s, CCH₃); ¹³C NMR (100.6 MHz, CDCl₃) δ 209.7 (2 x C), 192.9 (C), 157.5 (C), 146.5 (CH), 132.4 (CH), 130.8 (CH), 129.7 (CH), 128.6 (C), 120.2 (CH), 111.3 (CH), 64.6 (C), 55.3 (CH₃), 37.6 (2 x CH₂), 34.0 (CH₂), 27.6 (CH₂), 20.7 (CH₃), 17.2 (CH₂); HRMS (ESI) Exact mass calculated for C₁₉H₂₃O₄ [M+H]⁺: 315.1588, found: 315.1591.

2-[*(E)*-**5-**(**2-Chlorophenyl**)-**5-oxopent-3-en-1-yl**]-**2-methylcyclohexane-1,3-dione** (**5i**). The title compound was prepared according to the Representative Procedure from 3-(1-methyl-2,6-dioxocyclohexyl)propanal

 $(680 \text{ mg}, 3.73 \text{ mmol})^{11}$ and phosphorane **S7** (1.86 g, 4.48 mmol). Purification by column chromatography (20 to 40% EtOAc/petroleum ether) gave an orange oil (482 mg, 41%). $R_f = 0.33$ (40% EtOAc/petroleum ether); IR 2961, 1725 (C=O), 1693 (C=O), 1658, 1618, 1432, 1301, 1026,

765, 739 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.43-7.36 (2H, m, Ar**H**), 7.35-7.28 (2H, m, Ar**H**), 6.59 (1H, dt, J = 15.8, 6.7 Hz, CH₂C**H**=), 6.41 (1H, dt, J = 15.8, 1.4 Hz, CH₂CH=C**H**), 2.75-2.57 (4H, m, C**H**₂CH₂C**H**₂), 2.15-2.05 (2H, m, C**H**₂CH=), 2.03-1.85 (4H, m, CH₂C**H**₂CH₂, C**H**₂CH₂CH=), 1.28 (3H, s, C**H**₃); ¹³C NMR (100.6 MHz, CDCl₃) δ 209.9 (2 x C), 194.1 (C), 150.7 (CH), 138.8 (C), 131.2 (CH), 131.1 (C), 130.7 (CH), 130.2 (CH), 129.1 (CH), 126.7 (CH), 64.8 (C), 38.0 (2 x CH₂), 33.6 (CH₂), 28.2 (CH₂), 21.9 (CH₃), 17.5 (CH₂); HRMS (ESI) Exact mass calculated for C₁₈H₁₉ClNaO₃ [M+Na]⁺: 341.0915, found: 341.0897.

2-Methyl-2-[(*E*)-5-(naphthalen-2-yl)-5-oxopent-3-en-1-

yl]cyclohexane-1,3-dione (5j). The title compound was prepared

according to the Representative Procedure from 3-(1-methyl-2,6dioxocyclohexyl)propanal¹¹ (638 mg, 3.50 mmol) and 1-(naphthalen-2-yl)-2-(triphenyl- λ^5 phosphanylidene)ethan-1-one (1.81 g, 4.20 mmol). Purification by column chromatography (20 to 40% EtOAc/petroleum ether) gave a yellow solid (695 mg, 59%). R_f = 0.38 (40% EtOAc/petroleum ether); m.p. 88-89 °C (cyclohexane/EtOAc); IR 2961, 1723 (C=O), 1692 (C=O), 1667, 1617, 1465, 1323, 1277, 1192, 1124, 1029, 817 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.43 (1H, s, Ar**H**), 8.01 (1H, dd, *J* = 8.6, 1.7 Hz, Ar**H**), 7.98 (1H, app d, *J* = 8.0 Hz, Ar**H**), 7.94-7.86 (2H, m, Ar**H**), 7.64-7.53 (2H, m, Ar**H**), 7.08-6.96 (2H, m, C**H**=C**H**), 2.78-2.63 (4H, m, C**H**₂CH₂C**H**₂), 2.26-2.17 (2H, m, C**H**₂CH=), 2.09-2.02 (2H, m, C**H**₂CH₂CH=), 1.98 (2H, quintet, *J* = 6.8 Hz, CH₂C**H**₂C**H**₂), 1.33 (3H, s, C**H**₃); ¹³C NMR (100.6 MHz, CDCl₃) δ 209.9 (2 x C), 190.3 (C), 147.7 (CH), 135.4 (C), 135.0 (C), 132.5 (C), 130.0 (CH), 129.5 (CH), 128.5 (CH), 128.3 (CH), 127.8 (CH), 126.7 (CH), 126.3 (CH), 124.4 (CH), 64.9 (C), 38.0 (2 x CH₂), 34.2 (CH₂), 28.2 (CH₂), 21.3 (CH₃), 17.5 (CH₂); HRMS (ESI) Exact mass calculated for C₂₂H₂₂NaO₃ [M+Na]⁺: 357.1461, found: 357.1450.

m, CH₂CH₂CH₂), 1.31 (3H, s, CH₃); ¹³C NMR (100.6 MHz, CDCl₃) δ 209.9 (2 x C), 189.3 (C), 154.0 (C), 148.8 (CH), 148.0 (CH), 137.0 (CH), 126.8 (CH), 125.0 (CH), 122.9 (CH), 65.0 (C), 38.0 (2 x CH₂), 34.5 (CH₂), 28.1 (CH₂), 20.5 (CH₃), 17.6 (CH₂); HRMS (ESI) Exact mass calculated for $C_{17}H_{19}NNaO_3 [M+Na]^+$: 308.1257, found: 308.1245.

2-[(E)-5-(4-Chlorophenyl)-5-oxopent-3-en-1-yl]-2-(prop-2-en-1-

yl)cyclohexane-1,3-dione (5n). The title compound was prepared according to the Representative Procedure from 3-[2,6-dioxo-1-(prop-2en-1-yl)cyclohexyl]propanal¹¹ (194 mg, 0.93 mmol) and 1-(4-chlorophenyl)-2-(triphenylphosphoranylidene)ethanone¹⁷ (464 mg, 1.12 mmol). Purification by column chromatography (20 to 30% EtOAc/petroleum ether) gave a pale yellow solid (180 mg, 56%). $R_f =$ 0.46 (40% EtOAc/petroleum ether); m.p. 57-59 °C (CH₂Cl₂); IR 2928, 1715, 1688 (C=O), 1673 (C=O), 1619, 1584, 1440, 1331, 1293, 1215, 1089, 1007, 928, 800 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.85 (2H, d, J = 8.5 Hz, Ar**H**), 7.44 (2H, d, J = 8.5 Hz, Ar**H**), 6.94 (1H, dt, J = 15.4, 6.4Hz, CH₂CH=CH), 6.79 (1H, app d, J = 15.4 Hz, CH₂CH=CH), 5.69-5.49 (1H, m, CH₂CH=CH₂), 5.18-5.00 (2H, m, CH₂CH=CH₂), 2.75-2.56 (4H, m, CH₂CH₂CH₂), 2.54 (2H, d, J = 7.4 Hz, CH₂CH=CH₂), 2.17-1.95 (5H, m, CH₂CH₂CH= and CH₂CH_AH_BCH₂), 1.94-1.81 (1H, m, $CH_2CH_AH_BCH_2$; ¹³C NMR (100.6 MHz, CDCl₃) δ 209.8 (2 x C), 189.3 (C), 148.5 (CH), 139.1 (C), 136.1 (C), 131.7 (CH), 129.9 (2 x CH), 128.9 (2 x CH), 125.9 (CH), 119.8 (CH₂), 68.3 (C), 41.8 (CH₂), 39.4 (2 x CH₂), 32.6 (CH₂), 28.3 (CH₂), 16.9 (CH₂); HRMS (ESI) Exact mass calculated for C₂₀H₂₁ClNaO₃ [M+Na]⁺: 367.1071, found: 367.1056.

2-[(E)-5-Oxo-5-phenylpent-3-en-1-yl]-2-phenylcyclohexane-1,3-dione (50).

The title compound was prepared according to a modification of the Representative Procedure from aldehyde S2 (300 mg, 1.30 mmol) and 1phenyl-2-(triphenyl- λ^5 -phosphanylidene)ethan-1-one (570 mg, 1.50 mmol) using toluene (30 mL) as solvent and by heating to 90 °C for 14 h. Purification by column chromatography (15% EtOAc/toluene) gave a yellow oil (110 mg, 25%). $R_f = 0.68$ (40 % EtOAc/petroleum ether); IR 2934, 2870, 1728 (C=O), 1698 (C=O), 1670, 1620, 1599, 1494, 1312, 1267, 1025 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.91-7.85 (2H, m, ArH), 7.57-7.50 (1H, m, ArH), 7.48-7.29 (5H, m, ArH), 7.06-6.92 (3H, m, 2 x Ar**H** and CH₂C**H**=), 6.73 (1H, app d, J = 15.4 Hz, CH₂CH=C**H**), 2.85-2.72 (2H, m, CH_AH_BCH₂CH_AH_B), 2.63-2.52 (2H, m, CH_AH_BCH₂CH_AH_B), 2.19-2.15 (4H, m, CH₂CH₂CH=), 1.98-1.83 (1H, m, CH₂CH_AH_BCH₂), 1.79-1.65 (1H, m, CH₂CH_AH_BCH₂); ¹³C NMR

^{17.} D. Belmessieri, L. C. Morrill, C. Simal, A. M. Z. Slawin, A. D. Smith, J. Am. Chem. Soc. 2011, 133, 2714-2720.

(75 MHz, CDCl₃) δ 207.2 (2 x C), 191.0 (C), 149.5 (CH), 137.9 (C), 137.5 (C), 132.5 (CH), 129.7 (2 x CH), 128.5 (2 x CH), 128.4 (2 x CH), 128.1 (CH), 126.5 (2 x CH), 125.8 (CH), 75.3 (C), 39.1 (2 x CH₂), 33.2 (CH₂), 28.9 (CH₂), 17.5 (CH₂); HRMS (ESI) Exact mass calculated for C₂₃H₂₂NaO₃ [M+Na]⁺: 369.1461, found: 369.1454.

2-[(E)-5-Oxo-5-(thiophen-2-yl)pent-3-en-1-yl]-2-phenylcyclohexane-1,3-dione (5p). The title compound was prepared according to a modification of the Representative Procedure from aldehyde S2 (300 mg,

1.30 mmol) and phosphorane **S6** (475 mg, 1.30 mmol) using toluene (30 mL) as solvent and by heating at 90 °C for 14 h. Purification by column chromatography (20% EtOAc/petroleum ether) gave a yellow oil (260 mg, 55%). $R_f = 0.59$ (40% EtOAc/petroleum ether); IR 3011, 2414, 1728 (C=O), 1698 (C=O), 1659, 1614, 1517, 1418, 1235, 976, 660 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.73 (1H, dd, J = 3.8, 1.1 Hz, Ar**H**), 7.62 (1H, dd, J = 4.9, 1.1 Hz, Ar**H**), 7.43-7.28 (3H, m, Ar**H**), 7.13 (1H, dd, J = 4.9, 3.8 Hz, Ar**H**), 7.07-7.00 (3H, m, 2 x Ar**H** and CH₂C**H**=), 6.73 (1H, app d, J = 15.2 Hz, CH₂CH=C**H**), 2.86-2.72 (2H, m, C**H**₄H_BCH₂C**H**₄H_B), 2.66-2.49 (2H, m, CH₄H_BCH₂CH₄H_B), 2.21-2.12 (4H, m, CH₂CH₂CH=), 1.98-1.82 (1H, m, CH₂C**H**₄H_BCH₂), 1.79-1.66 (1H, m, CH₂CH₄H_BCH₂); ¹³C NMR (125.8 MHz, CDCl₃) δ 207.2 (2 x C), 182.3 (C), 148.5 (CH), 145.1 (C), 137.5 (C), 133.5 (CH), 131.8 (CH), 129.7 (2 x CH), 128.1 (CH), 128.0 (CH), 126.5 (2 x CH), 125.1 (CH), 75.3 (C), 39.1 (2 x CH₂), 33.2 (CH₂), 28.8 (CH₂), 17.5 (CH₂); HRMS (ESI) Exact mass calculated for C₂₁H₂₀NaO₃S [M+Na]⁺: 375.1025, found: 375.1014.

2-(4-Methoxyphenyl)-2-[(E)-5-oxo-5-phenylpent-3-en-1-yl]cyclohexane-

1,3-dione (5q). The title compound was prepared according to a modification of the Representative Procedure from aldehyde **S3** (215 mg, 0.80 mmol) and 1-phenyl-2-(triphenyl- λ^5 -phosphanylidene)ethan-1-one (387 mg, 1.00 mmol)

using toluene (30 mL) as solvent and by heating at 90 °C for 14 h. Purification by column chromatography (20% EtOAc/toluene) gave a yellow oil (143 mg, 48%). $R_f = 0.51$ (40% EtOAc/petroleum ether); IR 2960, 2939, 1727 (C=O), 1697 (C=O), 1669, 1648, 1511, 1295, 1255, 1033, 832 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.91-7.85 (2H, m, ArH), 7.56-7.51 (1H, m, ArH), 7.47-7.42 (2H, m, ArH), 7.00-6.92 (3H, m, 2 x ArH and CH₂CH=), 6.91-6.87 (2H, m, ArH), 6.79 (1H, dt, *J* = 15.5, 1.3 Hz, CH₂CH=CH), 3.79 (3H, s, CH₃), 2.82-2.74 (2H, m, CH_AH_BCH₂CH_AH_B), 2.58-2.51 (2H, m, CH_AH_BCH₂CH_AH_B), 2.20-2.11 (4H, m, CH₂CH₂CH=), 1.94-1.86 (1H, m, CH₂CH_AH_BCH₂), 1.77-1.67 (1H, m, CH₂CH_AH_BCH₂); ¹³C NMR (125.8 MHz, CDCl₃) δ 207.4 (2 x C), 191.0 (C), 159.3 (C), 149.6 (CH), 138.0 (C), 132.5 (CH), 129.3 (C), 128.5 (2 x CH), 128.4 (2 x CH), 127.8 (2 x CH), 125.7 (CH), 115.0 (2 x CH), 74.6 (C), 55.3 (CH₃), 39.0 (2 x CH₂), 33.2 (CH₂),

29.0 (CH₂), 17.4 (CH₂); HRMS (ESI) Exact mass calculated for $C_{24}H_{24}NaO_4$ [M+Na]⁺: 399.1567, found: 399.1564.

2-(4-Methoxyphenyl)-2-[(E)-5-oxo-5-(thiophen-2-yl)pent-3-en-1-

yl]cyclohexane-1,3-dione (5r). The title compound was prepared

according to a modification of the Representative Procedure from aldehyde **S3** (400 mg, 1.50 mmol) and phosphorane **S6** (732 mg, 1.90 mmol) using toluene (20 mL) as solvent and by heating at 90 °C for 14 h. Purification by column chromatography (15% acetone/petroleum ether) gave a yellow oil (440 mg, 79%). $R_f = 0.45$ (40 % EtOAc/petroleum ether); IR 2960, 2840, 1727 (C=O), 1698 (C=O), 1659, 1610, 1511, 1417, 1255, 976, 832 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.72 (1H, dd, J = 3.8, 1.1 Hz, Ar**H**), 7.61 (1H, dd, J = 4.9, 1.1 Hz, Ar**H**), 7.12 (1H, dd, J = 4.9, 3.8 Hz, Ar**H**), 7.07-6.98 (1H, m, CH₂C**H**=), 6.95-6.86 (4H, m, Ar**H**), 6.73 (1H, app d, J = 15.3 Hz, CH₂CH=C**H**), 3.77 (3H, s, C**H**₃), 2.83-2.72 (2H, m, CH₄H_BCH₂CH₄H_B), 2.58-2.50 (2H, m, CH₄H_BCH₂CH₄H_B), 2.20-2.09 (4H, m, C**H**₂C**H**₂CH=), 1.95-1.83 (1H, m, CH₂C**H**₄H_BCH₂), 1.77-1.65 (1H, m, CH₂CH₄H_BCH₂); ¹³C NMR (100.6 MHz, CDCl₃) δ 207.4 (2 x C), 182.3 (C), 159.3 (C), 148.6 (CH), 145.1 (C), 133.4 (CH), 131.8 (CH), 129.3 (C), 128.0 (CH), 127.8 (2 x CH), 125.0 (CH), 115.0 (2 x CH), 74.5 (C), 55.3 (CH₃), 39.0 (2 x CH₂), 33.1 (CH₂), 28.8 (CH₂), 17.4 (CH₂); HRMS (ESI) Exact mass calculated for C₂₂H₂₂NaO₄S [M+Na]⁺: 405.1131, found: 405.1119.

(E)-N,N-Dibenzyl-5-(1-methyl-2,6-dioxocyclohexyl)pent-2-enamide (8).

The title compound was prepared according to the Representative Procedure from 3-(1-methyl-2,6-dioxocyclohexyl)propanal¹¹ (1.64 g, 9.00 mmol) and

phosphorane **S8** (4.99 g, 10.0 mmol). Purification by column chromatography (35% EtOAc/petroleum ether) gave a pale yellow solid (2.20 g, 60%). $R_f = 0.18$ (40% EtOAc/petroleum ether); m.p. 79-80 °C (CH₂Cl₂); IR 2927, 1721 (C=O), 1689 (C=O), 1653, 1607, 1442, 1424, 1216, 1028, 749, 699 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.44-7.19 (8H, m, ArH), 7.16 (2H, d, *J* = 7.2 Hz, ArH), 6.93 (1H, dt, *J* = 14.9, 6.8 Hz, CH₂CH=), 6.25 (1H, dt, *J* = 14.9, 1.3 Hz, CH₂CH=CH), 4.63 (2H, s, CH₂Ph), 4.49 (2H, s, CH₂Ph), 2.63 (4H, t, *J* = 6.8 Hz, CH₂CH₂CH₂), 2.07-1.97 (2H, m, CH₂CH=), 1.96-1.84 (4H, m, CH₂CH₂CH= and CH₂CH₂CH₂), 1.24 (3H, s, CH₃); ¹³C NMR (100.6 MHz, CDCl₃) δ 209.8 (2 x C), 166.7 (C), 145.8 (CH), 137.2 (C), 136.5 (C), 128.8 (2 x CH), 128.5 (2 x CH), 128.2 (2 x CH), 127.6 (CH), 127.3 (CH), 126.5 (2 x CH), 120.9 (CH), 64.9 (C), 49.8 (CH₂), 48.4 (CH₂), 37.8 (2 x CH₂), 34.7 (CH₂), 27.7 (CH₂), 20.3 (CH₃), 17.5 (CH₂); HRMS (ESI) Exact mass calculated for C₂₆H₂₉NNaO₃ [M+Na]⁺: 426.2040, found: 426.2043.

2-[(E)-4-Benzoxazol-2-yl-but-3-enyl]-2-methylcyclohexane-1,3-dione (10)

To a solution of the phosphonium bromide S10 (470 mg, 1.00 mmol) in CH₂Cl₂ (10 mL) at room temperature was added concentrated aqueous NaOH solution (10 mL) and the resulting mixture was stirred for 15 min. The aqueous layer was separated and extracted with CH₂Cl₂ (10 mL). The organic layers were dried (MgSO₄) and filtered before 3-(1-methyl-2,6combined dioxocyclohexyl)propanal¹¹ (273 mg, 1.50 mmol) was added to the resulting solution which was then heated to reflux for 12 h. The mixture was cooled to room temperature, dried (MgSO₄), filtered, and concentrated in vacuo. Purification of the residue by column chromatography (5% EtOAc/hexane) gave the *alkenvlbenzoxazole* 10 as a colorless oil (181 mg, 61%). $R_f = 0.29$ (20%) EtOAc/hexane); IR 2930, 1724, 1692 (C=O), 1659, 1537, 1454, 1427, 1242, 1177, 1026, 966, 851, 762, 746, 623 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.69-7.66 (1H, m, ArH), 7.49-7.46 (1H, m, ArH), 7.33-7.29 (2H, m, ArH), 6.92 (1H, dt, J = 15.8, 6.9 Hz, ArCH=CH), 6.41 (1H, dt J = 15.8, 1.3 Hz, ArCH=CH), 2.76-2.62 (4H, m, CH2), 2.22-2.15 (2H, m, CH2), 2.07-2.01 (2H, m, CH2), 2.00-1.94 (2H, m, CH₂), 1.32 (3H, s, CH₃); ¹³C NMR (100.6 MHz, CDCl₃) δ 209.9 (2 x C), 162.1 (C), 150.3 (C), 142.3 (CH), 141.9 (C), 125.0 (CH), 124.3 (CH), 119.8 (CH), 117.5 (CH), 110.3 (CH), 64.8 (C), 38.0 (2 x CH₂), 34.4 (CH₂), 28.4 (CH₂), 21.5 (CH₃), 17.5 (CH₂); HRMS (EI) Exact mass calculated for $C_{18}H_{19}NO_3$ [M]⁺: 297.1359, found: 297.1359.

Enantioselective Michael Cyclizations

Representative Procedure

(1R,2S,5R)-5-Methyl-2-(2-oxo-2-phenylethyl)bicyclo[3.2.1]octane-6,8-dione (2a) and (1S,2S,5S)-5-methyl-2-[2-oxo-2-(4-methylphenyl)ethyl]bicyclo[3.2.1]octane-6,8-dione (3a).

A suspension of enone **1a** (54 mg, 0.20 mmol) and (*R*)-TRIP (**4b**, 4.5 mg, 0.006 mmol) in cyclohexane (2 mL) was stirred at 50 °C for 24 h. After cooling to room temperature, the reaction mixture was diluted with EtOAc (20 mL) and washed with sat. NaHCO₃ (aq.) (20 mL). The aqueous layers was extracted with EtOAc (20 mL) and the combined organic layers were dried (MgSO₄), filtered, and concentrated *in vacuo*. Purification of the residue by column chromatography (20% EtOAc/petroleum ether) gave the *bicyclo[3.2.1]octanes* **2a** as a pale yellow solid (50 mg, 93%) and **3a** as white solid (4 mg, 7%).

Data for **2a**: $\mathbf{R}_{f} = 0.40$ (20% EtOAc/petroleum ether); m.p. 104-107 °C (CH₂Cl₂); $[\alpha]_{D}^{20} -13.3$ (*c* 0.96, CHCl₃); IR 2934, 1768 (C=O), 1728 (C=O), 1681 (C=O), 1452, 1410, 1286, 1240, 977, 660 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.95-7.91 (2H, m, Ar**H**), 7.67-7.58 (1H, app t, *J* = 7.4 Hz, Ar**H**), 7.55-7.47 (2H, app t, *J* = 7.6 Hz, Ar**H**), 3.13-2.95 (3H, m, C**HCH**₂C(O)Ar), 2.92 (1H, dd, *J* = 7.5, 1.2 Hz, C**H**C=O), 2.75 (1H, d, *J* = 19.2 Hz, C**H**_AH_BC(O)CCH₃), 1.97 (1H, app dd, *J* = 11.8, 6.0 Hz, C**H**_AH_BCCH₃), 1.94-1.83 (2H, m, CH_AH_BCCH₃ and C**H**_AH_BCH₂CCH₃), 1.56-1.36 (1H, m, CH_AH_BCH₂CCH₃), 1.08 (3H, s, C**H**₃); ¹³C NMR (100.6 MHz, CDCl₃) δ 215.7 (C), 211.6 (C), 197.3 (C), 136.5 (C), 133.5 (CH), 128.8 (2 x CH), 128.0 (2 x CH), 58.7 (C), 49.8 (CH), 42.4 (CH₂), 42.1 (CH₂), 41.1 (CH), 39.3 (CH₂), 24.9 (CH₂), 11.8 (CH₃); HRMS (ESI) Exact mass calculated for C₁₇H₁₈NaO₃ [M+Na]⁺: 293.1148, found: 293.1148; Enantiomeric excess was determined by HPLC with a Chiralpak IA-3 column (60:40 *iso*hexane:*i*-PrOH, 1.5 mL/min, 254 nm, 25 °C); t_r (major) = 5.5 min, t_r (minor) = 8.6 min; 91% ee.

Data for **3a**: $R_f = 0.45$ (20% EtOAc/petroleum ether); m.p. 127-129 °C (CH₂Cl₂); $[\alpha]_D^{20}$ +12.7 (*c* 0.37, CHCl₃); IR 2930, 1764 (C=O), 1726 (C=O), 1687 (C=O), 1450, 1408, 1281, 1240, 982, 643 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.00-7.93 (2H, m, Ar**H**), 7.57 (1H, app tt, *J* = 7.6, 1.4 Hz,

Ar**H**), 7.48 (2H, app t, J = 7.6 Hz, Ar**H**), 3.26 (1H, dd, J = 17.3, 5.9 Hz, C**H**_AH_BC(O)Ar), 3.21-3.13 (1H, m, C**H**CH₂C(O)Ar), 2.96 (1H, dd, J = 17.3, 7.5 Hz, CH_A**H**_BC(O)Ar), 2.92-2.86 (1H, m, C**H**C=O), 2.79-2.73 (2H, m, C**H**₂C(O)CCH₃), 2.12-1.97 (3H, m, C**H**₂CCH₃ and C**H**_AH_BCH₂CCH₃), 1.59-1.53 (1H, m, CH_A**H**_BCH₂CCH₃); ¹³C NMR (100.6 MHz, CDCl₃) δ 216.7 (C), 211.7 (C), 197.9 (C), 136.7 (C), 133.4 (CH), 128.7 (2 x CH), 128.1 (2 x CH), 59.2 (C), 50.1 (CH), 44.1 (CH₂), 41.63 (CH), 41.57 (CH₂), 40.1 (CH₂), 23.0 (CH₂), 12.0 (CH₃); HRMS (ESI) Exact mass calculated for C₁₇H₁₈NaO₃ [M+Na]⁺: 293.1148, found: 293.1139; Enantiomeric excess was determined by HPLC with a Chiralpak IA-3 column (70:30 *iso*-hexane:*i*-PrOH, 2.0 mL/min, 230 nm, 25 °C); t_r (major) = 3.2 min, t_r (minor) = 3.8 min; 87% ee.

Slow diffusion of cyclohexane into a solution of 3a in CH_2Cl_2 gave crystals that were suitable for X-ray crystallography:

Purification by column chromatography (20% EtOAc/petroleum ether) gave a white solid (52 mg, 91%) as a >95:5 ratio of diastereomers. $R_f = 0.38$ (20% EtOAc/petroleum ether); m.p. 102-104 °C (CH₂Cl₂); $[\alpha]_D^{20}$ –9.5 (c 0.99, CHCl₃); IR 2934, 1768 (C=O), 1728 (C=O), 1682 (C=O), 1572, 1452, 1410, 1240, 977, 660 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.83 (2H, d, *J* = 8.1 Hz, Ar**H**), 7.28 (2H, d, *J* = 8.1 Hz, Ar**H**), 3.07-2.92 (3H, m, CHCH₂C(O)Ar), 2.90 (1H, dd, *J* = 7.6, 1.4 Hz, CHC=O), 2.74 (1H, d, *J* = 19.2 Hz, CH_AH_BC(O)CCH₃), 2.55 (1H, dd, *J* = 19.2, 7.6 Hz, CH_AH_BC(O)CCH₃), 2.42 (3H, s, ArCH₃), 1.96 (1H, app dd, *J* = 11.9, 5.7 Hz, CH_AH_BCCH₃), 1.91-1.81 (2H, m, CH_AH_BCCH₃ and CH_AH_BCH₂CCH₃), 1.55-1.35 (1H, m, CH_AH_BCH₂CCH₃), 1.07 (3H, s, CH₃CC=O); ¹³C NMR (100.6 MHz, CDCl₃) δ 215.8 (C), 211.7 (C), 197.0 (C), 144.4 (C), 134.1 (C),

129.4 (2 x CH), 128.2 (2 x CH), 58.7 (C), 49.8 (CH), 42.3 (CH₂), 42.1 (CH₂), 41.3 (CH), 39.3 (CH₂), 24.9 (CH₂), 21.6 (CH₃), 11.8 (CH₃); HRMS (ESI) Exact mass calculated for $C_{18}H_{20}NaO_3$ [M+Na]⁺: 307.1305, found: 307.1291; Enantiomeric excess was determined by HPLC with a Chiralpak IA-3 column (70:30 *iso*-hexane:*i*-PrOH, 1.5 mL/min, 254 nm, 25 °C); t_r (major) = 10.9 min, t_r (minor) = 27.4 min; 92% ee.

(1*R*,2*S*,5*R*)-2-[2-(4-Methoxyphenyl)-2-oxoethyl]-5methylbicyclo[3.2.1]octane-6,8-dione (2c). The title compound was prepared according to the Representative Procedure from enone 1c (60

mg, 0.20 mmol). Purification by column chromatography (25% EtOAc/petroleum ether) gave a white solid (55 mg, 92%) as a >95:5 ratio of diastereomers. $R_f = 0.26$ (20% EtOAc/petroleum ether); m.p. 107-110 °C (CH₂Cl₂); $[\alpha]_D^{20}$ –15.0 (*c* 0.95, CHCl₃); IR 2934, 1768 (C=O), 1727 (C=O), 1674 (C=O), 1569, 1468, 1290, 1156, 839, 644 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.91 (2H, d, *J* = 8.9 Hz, Ar**H**), 6.94 (2H, d, *J* = 8.9 Hz, Ar**H**), 3.87 (3H, s, OCH₃), 3.06-2.86 (4H, m, CHCHCH₂C(O)Ar), 2.74 (1H, d, *J* = 19.2 Hz, CH_AH_BC(O)CCH₃), 2.55 (1H, dd, *J* = 19.2, 7.6 Hz, CH_AH_BC(O)CCH₃), 1.06 (3H, s, CCH₃); ¹³C NMR (100.6 MHz, CDCl₃) δ 215.8 (C), 211.7 (C), 195.8 (C), 163.8 (C), 130.3 (2 x CH), 129.6 (C), 113.9 (2 x CH), 58.7 (C), 55.5 (CH₃), 49.8 (CH), 42.2 (CH₂), 42.1 (CH₂), 41.4 (CH), 39.3 (CH₂), 25.0 (CH₂), 11.8 (CH₃); HRMS (ESI) Exact mass calculated for C₁₈H₂₀NaO₄ [M+Na]⁺: 323.1254, found: 323.1248; Enantiomeric excess was determined by HPLC with a Chiralpak IA-3 column (50:50 *iso*-hexane:*i*-PrOH, 2.0 mL/min, 254 nm, 25 °C); t_r (major) = 7.7 min, t_r (minor) = 17.1 min; 91% ee.

(1R,2S,5R)-2-[2-(4-Chlorophenyl)-2-oxoethyl]-5-

methylbicyclo[3.2.1]octane-6,8-dione (2d) and (1S,2S,5S)-2-[2-(4-chlorophenyl)-2-oxoethyl]-5-methylbicyclo[3.2.1]octane-6,8-dione
(3d). The title compounds 2d and 3d were prepared according to the

Representative Procedure from enone **1d** (61 mg, 0.20 mmol). Purification by column chromatography (20% EtOAc/petroleum ether) gave **2d** as an off-white solid (49 mg, 80%) and **3d** as a colorless film (7 mg, 11%).

Data for **2d**: $R_f = 0.18$ (20% EtOAc/petroleum ether); m.p. 117-121°C (CH₂Cl₂); $[\alpha]_D^{20}$ -10.0 (*c* 1.00, CHCl₃); IR 2934, 1768 (C=O), 1728 (C=O), 1687 (C=O), 1590, 1452, 1285, 1094, 980, 646 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.88 (2H, d, *J* = 8.6 Hz, Ar**H**), 7.46 (2H, d, *J* = 8.6 Hz, Ar**H**), 3.07-2.92 (3H, m, CHCH₂C(O)Ar), 2.91 (1H, app d, *J* = 7.6 Hz, CHC=O), 2.73 (1H, d, *J* = 19.2

Hz, CH_AH_BC(O)CCH₃), 2.57 (1H, dd, J = 19.2, 7.6 Hz, CH_AH_BC(O)CCH₃), 1.97 (1H, app dd, J = 12.0, 5.8 Hz, CH_AH_BCCH₃), 1.93-1.83 (2H, m, CH_AH_BCCH₃, CH_AH_BCH₂CCH₃), 1.52-1.37 (1H, m, CH_AH_BCH₂CCH₃), 1.08 (3H, s, CH₃); ¹³C NMR (100.6 MHz, CDCl₃) δ 215.6 (C), 211.5 (C), 196.0 (C), 140.0 (C), 134.8 (C), 129.4 (2 x CH), 129.1 (2 x CH), 58.7 (C), 49.7 (CH), 42.3 (CH₂), 42.1 (CH₂), 41.0 (CH), 39.3 (CH₂), 24.9 (CH₂), 11.8 (CH₃); HRMS (ESI) Exact mass calculated for C₁₇H₁₇ClNaO₃ [M+Na]⁺: 327.0758, found: 327.0750. Enantiomeric excess was determined by HPLC with a Chiralpak IA-3 column (60:40 *iso*-hexane:*i*-PrOH, 1.5 mL/min, 230 nm, 25 °C); t_r (major) = 7.5 min, t_r (minor) = 10.5 min; 94% ee.

Slow diffusion of cyclohexane into a solution of 2d in CH_2Cl_2 gave crystals that were suitable for X-ray crystallography:

Data for **3d**: $R_f = 0.20$ (20% EtOAc/petroleum ether); $[\alpha]_D^{20} + 38.4$ (*c* 0.40, CHCl₃); IR 2929, 1725 (C=O), 1686 (C=O), 1590, 1489, 1459, 1350, 1142, 1092, 980 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.91 (2H, d, J = 8.6 Hz, Ar**H**), 7.46 (2H, d, J = 8.6 Hz, Ar**H**), 3.24 (1H, dd, J = 17.2, 6.1 Hz, C**H**_AH_BC(O)Ar), 3.20-3.13 (1H, m, C**H**CH₂C(O)Ar), 2.96-2.87 (2H, m, CH_AH_BC(O)Ar and C**H**C=O), 2.81-2.70 (2H, m, C**H**₂C(O)CCH₃), 2.11-1.97 (3H, m, C**H**₂CCH₃ and C**H**_AH_BCH₂CCH₃), 1.59-1.53 (1H, m, CH_AH_BCH₂CCH₃, overlapped with H₂O), 1.07 (3H, s, C**H**₃); ¹³C NMR (100.6 MHz, CDCl₃) δ 216.8 (C), 211.6 (C), 196.7 (C), 140.0 (C), 135.0 (C), 129.5 (2 x CH), 129.0 (2 x CH), 59.2 (C), 50.0 (CH), 44.1 (CH₂), 41.6 (CH₂ and CH), 40.1 (CH₂), 23.0 (CH₂), 12.0 (CH₃); HRMS (ESI) Exact mass calculated for C₁₇H₁₇ClNaO₃ [M+Na]⁺: 327.0758, found: 327.0757. Enantiomeric excess was determined by HPLC with a Chiralpak IA-3 column (60:40 *iso*-hexane:*i*-PrOH, 1.5 mL/min, 230 nm, 25 °C); t_r (major) = 4.6 min, t_r (minor) = 5.5 min; 85% ee.

(1R,2S,5R)-2-[2-(3-Chlorophenyl)-2-oxoethyl]-5-

methylbicyclo[3.2.1]octane-6,8-dione (2e) and (1*S*,2*S*,5*S*)-2-[2-(3chlorophenyl)-2-oxoethyl]-5-methylbicyclo[3.2.1]octane-6,8-dione (3e). The title compounds 2e and 3e were prepared according to the Representative Procedure from enone 1e (61 mg, 0.20 mmol). Purification by column chromatography (25% EtOAc/petroleum ether) gave 2e as an off-white solid (48 mg, 79%) and 3e as a colorless film (8 mg, 13%).

Data for **2e**: $\mathbf{R}_{f} = 0.14$ (20% EtOAc/petroleum ether); m.p. 89-91 °C (CH₂Cl₂); $[\alpha]_{D}^{20} -17.6$ (*c* 1.22, CHCl₃); IR 2934, 1769 (C=O), 1728 (C=O), 1691 (C=O), 1572, 1453, 1420, 1240, 1044, 984 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.90 (1H, app t, *J* = 2.1 Hz, Ar**H**), 7.83-7.78 (1H, m, Ar**H**), 7.56 (1H, ddd, *J* = 8.0, 2.1, 1.0 Hz, Ar**H**), 7.43 (1H, app t, *J* = 8.0 Hz, Ar**H**), 3.08-2.92 (3H, m, C**HCH**₂C(O)Ar), 2.90 (1H, dd, *J* = 7.5, 1.5 Hz, C**H**C=O), 2.73 (1H, d, *J* = 19.2 Hz, C**H**_AH_BC(O)CCH₃), 2.57 (1H, dd, *J* = 19.2, 7.6 Hz, CH_AH_BC(O)CCH₃), 1.97 (1H, app dd, *J* = 12.0, 5.7 Hz, C**H**_AH_BCCH₃), 1.92-1.83 (2H, m, C**H**_AH_BCH_AH_BCCH₃), 1.52-1.38 (1H, m, CH_AH_BCH₂CCH₃), 1.07 (3H, s, C**H**₃); ¹³C NMR (100.6 MHz, CDCl₃) δ 215.6 (C), 211.5 (C), 196.0 (C), 138.0 (C), 135.2 (C), 133.4 (CH), 130.1 (CH), 128.1 (CH), 126.1 (CH), 58.7 (C), 49.7 (CH), 42.5 (CH₂), 42.0 (CH₂), 40.9 (CH), 39.3 (CH₂), 24.9 (CH₂), 11.8 (CH₃); HRMS (ESI) Exact mass calculated for C₁₇H₁₇ClNaO₃ [M+Na]⁺: 327.0758, found: 327.0743; Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column (95:5 *iso*-hexane:*i*-PrOH, 1.5 mL/min, 210 nm, 25 °C); t_r (minor) = 26.7 min, t_r (major) = 28.7 min; 86% ee.

Data **3e**: $R_f = 0.21$ (20% EtOAc/petroleum ether); $[\alpha]_D^{20} +6.7$ (*c* 0.50, CHCl₃); IR 2927, 1764 (C=O), 1725 (C=O), 1690 (C=O), 1572, 1455, 1373, 1262, 1085, 870 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.94 (1H, app t, *J* = 2.1 Hz, Ar**H**), 7.87-7.83 (1H, m, Ar**H**), 7.57 (1H, ddd, *J* = 8.0, 2.1, 1.1 Hz, Ar**H**), 7.44 (1H, app t, *J* = 8.0 Hz, Ar**H**), 3.24 (1H, dd, *J* = 17.4, 6.1 Hz, C**H**_AH_BC(O)Ar), 3.21-3.13 (1H, m, C**H**CH₂C(O)Ar), 2.96-2.87 (2H, m, CH_AH_BC(O)Ar and C**H**C=O), 2.80-2.70 (2H, m, C**H**₂C(O)CCH₃), 2.12-2.98 (3H, m, C**H**₂CCH₃ and C**H**_AH_BCH₂CCH₃), 1.59-1.53 (1H, m, CH_AH_BCH₂CCH₃ overlapped with H₂O), 1.07 (3H, s, C**H**₃); ¹³C NMR (100.6 MHz, CDCl₃) δ 216.7 (C), 211.5 (C), 196.6 (C), 138.2 (C), 135.1 (C), 133.4 (CH), 130.1 (CH), 128.2 (CH), 126.2 (CH), 59.2 (C), 50.0 (CH), 44.1 (CH₂), 41.6 (CH), 41.5 (CH₂), 40.3 (CH₂), 23.0 (CH₂), 12.0 (CH₃); HRMS (ESI) Exact mass calculated for C₁₇H₁₇ClNaO₃ [M+Na]⁺: 327.0758, found: 327.0752; Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column (95:5 *iso*-hexane:*i*-PrOH, 1.5 mL/min, 210 nm, 25 °C); t_r (major) = 12.0 min, t_r (minor) = 17.4 min; 66% ee.

(1R,2S,5R)-5-Methyl-2-[2-(naphthalen-2-yl)-2-

oxoethyl]bicyclo[3.2.1]octane-6,8-dione (2f). The title compound was prepared according to the Representative Procedure from enone 1f (64

mg, 0.20 mmol). Purification by column chromatography (20% EtOAc/petroleum ether) gave an off white solid (62 mg, 97%) as a >95:5 ratio of diastereomers. $R_f = 0.39$ (30% EtOAc/petroleum ether); m.p. 131-134 °C (CH₂Cl₂); $[\alpha]_D^{20}$ –16.1 (*c* 1.19, CHCl₃); IR 2933, 1768 (C=O), 1728 (C=O), 1681 (C=O), 1598, 1469, 1453, 1276, 1096, 825 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.45 (1H, s, Ar**H**), 8.04-7.96 (2H, m, Ar**H**), 7.95-7.88 (2H, m, Ar**H**), 7.67-7.56 (2H, m, Ar**H**), 3.20 (1H, dd, J = 16.4, 7.3 Hz, C**H**_AH_BC(O)Ar), 3.15 (1H, dd, J = 16.4, 6.2 Hz, CH_AH_BC(O)Ar), 3.09-3.00 (1H, m, CHCH₂C(O)Ar), 2.97 (1H, dd, J = 7.6, 2.1 Hz, CHC=O), 2.80 (1H, d, J = 19.2 Hz, CH_AH_BC(O)CCH₃), 2.60 (1H, dd, J = 19.2, 7.7 Hz, CH_AH_BC(O)CCH₃), 2.03-1.84 (3H, m, CH_AH_BCH₂CCH₃), 1.58-1.46 (1H, m, CH_AH_BCH₂CCH₃), 1.09 (3H, s, C**H**₃); ¹³C NMR (100.6 MHz, CDCl₃) δ 215.7 (C), 211.7 (C), 197.3 (C), 135.7 (C), 133.9 (C), 132.5 (C), 129.8 (CH), 129.6 (CH), 128.8 (CH), 128.7 (CH), 127.8 (CH), 127.0 (CH), 123.6 (CH), 58.7 (C), 49.9 (CH), 42.5 (CH₂), 42.2 (CH₂), 41.3 (CH), 39.4 (CH₂), 25.0 (CH₂), 11.9 (CH₃); HRMS (ESI) Exact mass calculated for C₂₁H₂₀NaO₃ [M+Na]⁺: 343.1310, found: 343.1297; Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column (95:5 *iso*-hexane:*i*-PrOH, 1.5 mL/min, 254 nm, 25 °C); t_r (minor) = 51.1 min, t_r (major) = 55.7 min; 91% ee.

Gram-scale experiment: A suspension of enone **1f** (1.00 g, 3.12 mmol) and (*R*)-TRIP (**4b**, 35 mg, 0.05 mmol) in 4:1 cyclohexane:toluene (32 mL) was stirred at 50 °C for 90 h. After cooling to room temperature, the reaction mixture was diluted with EtOAc (100 mL) and washed with saturated aqueous NaHCO₃ solution (100 mL). The combined aqueous layers were extracted with EtOAc (100 mL) and the combined organic layers were dried (MgSO₄), filtered, and concentrated *in vacuo*. Purification of the residue by column chromatography (20% EtOAc/petroleum ether) gave the *bicyclo[3.2.1]octane* **2f** as an off-white solid (835 mg, 84%) as a >95:5 ratio of diastereomers. Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column (95:5 *iso*-hexane:*i*-PrOH, 1.5 mL/min, 254 nm, 25 °C); t_r (minor) = 51.6 min, t_r (major) = 57.1 min; 90% ee.

(1R,2S,5R)-2-(3,3-Dimethyl-2-oxobutyl)-5-methylbicyclo[3.2.1]octane-6,8-

dione (2g). The title compound was prepared according to the Representative

Procedure from enone **1g** (50 mg, 0.20 mmol). Purification by column chromatography (25% EtOAc/petroleum ether) gave a white solid (48 mg, 96%) as a >95:5 ratio of diastereomers. $R_f = 0.38$ (20% EtOAc/petroleum ether); m.p. 111-113 °C (CH₂Cl₂); $[\alpha]_D^{20}$ -34.1 (*c* 0.64, CHCl₃); IR 2972, 1768 (C=O), 1726 (C=O), 1704 (C=O), 1477, 1369, 1227, 1221, 1198, 986

cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.89-2.75 (2H, m, CHC=O and CHCH₂C(O)C(CH₃)₃), 2.65 (1H, d, J = 19.0 Hz, CH_AH_BC(O)CCH₃), 2.63-2.47 (3H, m, CH₂CH_AH_BC(O)CCH₃)₃), 1.97-1.74 (3H, m, CH_AH_BCCH₃ and CH_AH_BCH_AH_BCCH₃), 1.35-1.27 (1H, m, CH_AH_BCH₂CCH₃), 1.14 (9H, s, C(CH₃)₃), 1.07 (3H, m, CH₃); ¹³C NMR (100.6 MHz, CDCl₃) δ 215.8 (C), 212.9 (C), 211.8 (C), 58.6 (C), 49.8 (CH), 44.2 (C), 42.1 (CH₂), 40.6 (CH), 40.4 (CH₂), 39.2 (CH₂), 26.1 (3 x CH₃), 24.7 (CH₂), 11.8 (CH₃); HRMS (ESI) Exact mass calculated for C₁₅H₂₂NaO₃ [M+Na]⁺: 273.1461 found: 273.1463; Enantiomeric excess was determined by HPLC with a CHIRALPAK AD-H column (85:15 *iso*-hexane:*i*-PrOH, 1.0 mL/min, 210 nm, 25 °C); t_r (minor) = 7.2 min, t_r (major) = 9.6 min; 95% ee.

(1R,2S,5R)-5-Methyl-2-[2-oxo-2-(pyridin-2-

yl)ethyl]bicyclo[3.2.1]octane-6,8-dione (2h) and (1*S*,2*S*,5*S*)-5-methyl-2-[2-oxo-2-(pyridin-2-yl)ethyl]bicyclo[3.2.1]octane-6,8-dione (3h). The title compounds 2h and 3h were prepared according to a modification of the Representative Procedure from enone 1h (54 mg, 0.20 mmol) using toluene (2 mL) as solvent. Purification by column chromatography (40% EtOAc/petroleum ether) gave 2h as a vellow oil (41 mg, 76%) and 3h as a

pale brown film (11 mg, 20%).

Data for **2h**: $R_f = 0.29$ (40% EtOAc/petroleum ether); $[\alpha]_D^{20} -11.1$ (*c* 2.03, CHCl₃); IR 2979, 2934, 2874, 1767 (C=O), 1727 (C=O), 1700 (C=O), 1584, 1452, 1044, 997 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.67 (1H, ddd, *J* = 4.7, 1.6, 0.9 Hz, Ar**H**), 8.04 (1H, dt, *J* = 7.8, 1.0 Hz, Ar**H**), 7.85 (1H, td, *J* = 7.7, 1.7 Hz, Ar**H**), 7.49 (1H, ddd, *J* = 7.6, 4.8, 1.2 Hz, Ar**H**), 3.35 (1H, dd, *J* = 16.7, 7.1 Hz, CH_AH_BC(O)Ar), 3.25 (1H, dd, *J* = 16.7, 6.7 Hz, CH_AH_BC(O)Ar), 3.04-2.92 (1H, m, CHCH₂C(O)Ar), 2.88 (1H, dd, *J* = 7.6, 2.1 Hz, CHC=O), 2.82 (1H, d, *J* = 19.3 Hz, CH_AH_BC(O)CCH₃), 2.54 (1H, dd, *J* = 19.3, 7.7 Hz, CH_AH_BC(O)CCH₃), 1.96 (1H, app dd, *J* = 11.7, 5.7 Hz, CH_AH_BCCH₃), 1.06 (3H, s, CH₃); ¹³C NMR (100.6 MHz, CDCl₃) δ 216.1 (C), 211.9 (C), 199.3 (C), 152.9 (C), 149.0 (CH), 137.1 (CH), 127.5 (CH), 121.9 (CH), 58.8 (C), 49.9 (CH), 42.2 (CH₂), 41.5 (CH₂), 41.3 (CH), 39.4 (CH₂), 24.9 (CH₂), 11.8 (CH₃); HRMS (ESI) Exact mass calculated for C₁₆H₁₈NO₃ [M+H]⁺: 272.1281, found: 272.1275; Enantiomeric excess was determined by HPLC with a Chiralpak IA-3 column (70:30 *iso*-hexane:*i*-PrOH, 1.5 mL/min, 230 nm, 25 °C); t_r (major) = 7.4 min, t_r (minor) = 11.9 min; 87% ee.

Data for **3h**: $R_f = 0.34$ (40% EtOAc/petroleum ether); $[\alpha]_D^{20} - 2.8$ (*c* 0.20, CHCl₃); IR 2978, 2934, 2859, 1764 (C=O), 1726 (C=O), 1699 (C=O), 1585, 1453, 1045, 996 cm⁻¹; ¹H NMR (400 MHz,

CDCl₃) δ 8.69 (1H, ddd, J = 4.8, 1.7, 1.1 Hz, Ar**H**), 8.04 (1H, dt, J = 7.8, 1.1 Hz, Ar**H**), 7.85 (1H, td, J = 7.8, 1.1 Hz, Ar**H**), 7.49 (1H, ddd, J = 7.8, 4.8, 1.1 Hz, Ar**H**), 3.49 (1H, dd, J = 18.0, 6.8 Hz, C**H**_AH_BC(O)Ar), 3.32 (1H, dd, J = 18.0, 7.5 Hz, CH_AH_BC(O)Ar), 3.17-3.08 (1H, m, CHCH₂C(O)Ar), 3.01-2.94 (1H, m, CHC=O), 2.83-2.68 (2H, m, CH₂C(O)CCH₃), 2.19-1.95 (3H, m, CH_AH_BCH₂CCH₃), 1.59-1.53 (1H, m, CH_AH_BCH₂CCH₃ overlapped with H₂O), 1.07 (3H, s, CH₃); ¹³C NMR (100.6 MHz, CDCl₃) δ 216.2 (C), 212.1 (C), 199.9 (C), 153.0 (C), 149.1 (CH), 136.9 (CH), 127.4 (CH), 121.8 (CH), 59.2 (C), 50.0 (CH), 44.2 (CH₂), 41.7 (CH₂), 41.4 (CH), 39.5 (CH₂), 23.2 (CH₂), 12.1 (CH₃); HRMS (ESI) Exact mass calculated for C₁₆H₁₈NO₃ [M+H]⁺: 272.1281, found: 272.1300; Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column (90:10 *iso*-hexane:*i*-PrOH, 1.0 mL/min, 230 nm, 25 °C); t_r (minor) = 15.3 min, t_r (major) = 16.5 min; 29% ee. Due to the low enantiomeric excess, the absolute stereochemistry of **3h** should be considered as a tentative assignment.

(1*R*,2*S*,5*R*)-2-[2-(Furan-2-yl)-2-oxoethyl]-5-methylbicyclo[3.2.1]octane-6,8-dione (2i) and (1*S*,5*S*,6*S*)-6-[2-(furan-2-yl)-2-oxoethyl]-1methylbicyclo[3.3.1]nonane-2,9-dione (3i). The title compounds 2i and 3i were prepared according to the Representative Procedure from enone 1i (52 mg, 0.20 mmol). Purification by column chromatography (40% EtOAc/petroleum ether) gave 2i as a white solid (42 mg, 81%) and 3i as an off-white solid (9 mg, 17%).

Data for **2i**: $R_f = 0.34$ (40% EtOAc/petroleum ether); m.p. 137-140 °C (CH₂Cl₂); $[\alpha]_D^{20} -15.2$ (*c* 0.40, CHCl₃); IR 2934, 1768 (C=O), 1728 (C=O), 1675 (C=O), 1560, 1469, 1396, 1290, 1043, 884 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.59 (1H, dd, *J* = 1.7, 0.7 Hz, Ar**H**), 7.22 (1H, dd, *J* = 3.6, 0.7 Hz, Ar**H**), 6.57 (1H, dd, *J* = 3.6, 1.7 Hz, Ar**H**), 2.96-2.84 (4H, m, C**HCHCH**₂C(O)Ar), 2.76 (1H, d, *J* = 19.3 Hz, C**H**_AH_BC(O)CCH₃), 2.56 (1H, dd, *J* = 19.3, 7.6 Hz, CH_AH_BC(O)CCH₃), 1.96 (1H, app dd, *J* = 12.1, 5.6 Hz, C**H**_AH_BCCH₃), 1.90-1.81 (2H, m, C**H**_AH_BCH_AH_BCCH₃), 1.53-1.40 (1H, m, CH_AH_BCH₂CCH₃), 1.06 (3H, s, C**H**₃); ¹³C NMR (100.6 MHz, CDCl₃) δ 215.7 (C), 211.6 (C), 186.6 (C), 152.6 (C), 146.6 (CH), 117.3 (CH), 112.6 (CH), 58.7 (C), 49.8 (CH), 42.3 (CH₂), 42.1 (CH₂), 41.2 (CH), 39.2 (CH₂), 24.9 (CH₂), 11.8 (CH₃); HRMS (ESI) Exact mass calculated for C₁₅H₁₆NaO₄ [M+Na]⁺: 283.0941, found: 283.0931; Enantiomeric excess was determined by HPLC with a Chiralpak IA-3 column (70:30 *iso*-hexane:*i*-PrOH, 1.5 mL/min, 230 nm, 25 °C); t_r (major) = 6.9 min, t_r (minor) = 10.7 min; 88% ee.

Data for **3i**: $R_f = 0.39$ (40% EtOAc/petroleum ether); m.p. 132-134 °C (CH₂Cl₂); $[\alpha]_D^{20}$ +22.4 (*c* 1.00, CHCl₃); IR 2935, 1764 (C=O), 1726 (C=O), 1675 (C=O), 1468, 1454, 1397, 1285, 1035, 884

cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.61 (1H, dd, J = 1.7, 0.7 Hz, Ar**H**), 7.25 (1H, dd, J = 3.6, 0.7 Hz, Ar**H**), 6.56 (1H, dd, J = 3.6, 1.7 Hz, Ar**H**), 3.13-3.03 (2H, m, C**H**₂C(O)Ar), 2.90-2.79 (2H, m, C**H**CHCH₂C(O)Ar), 2.76-2.71 (2H, m, C**H**₂C(O)CCH₃), 2.08-1.97 (3H, m, C**H**_AH_BCH₂CCH₃), 1.62-1.52 (1H, m, CH_AH_BCH₂CCH₃ overlapped with H₂O), 1.07 (3H, s, C**H**₃); ¹³C NMR (100.6 MHz, CDCl₃) δ 216.4 (C), 211.6 (C), 187.0 (C), 152.6 (C), 146.7 (CH), 117.6 (CH), 112.4 (CH), 59.2 (C), 50.1 (CH), 44.1 (CH₂), 41.6 (CH₂), 41.4 (CH), 39.9 (CH₂), 22.9 (CH₂), 12.0 (CH₃); HRMS (ESI) Exact mass calculated for C₁₅H₁₆NaO₄ [M+Na]⁺: 283.0941, found: 283.0943; Enantiomeric excess was determined by HPLC with a Chiralpak IA-3 column (90:10 *iso*-hexane:*i*-PrOH, 1.5 mL/min, 254 nm, 25 °C); t_r (major) = 10.5 min, t_r (minor) = 12.3 min; 90% ee.

(1R,2S,5R)-5-Methyl-2-[2-oxo-2-(thiophen-2-yl)ethyl]bicyclo[3.2.1]octane-6,8-dione (2j). The title compound was prepared according to the Representative Procedure from enone 1j (55 mg, 0.20 mmol). Purification by column chromatography (40% EtOAc/petroleum ether) gave an off-white solid (53 mg, 97%) as a >95:5 ratio of diastereomers. $R_f = 0.33$ (40% EtOAc/petroleum ether); m.p. 141-143 °C (CH₂Cl₂); [α]²⁰_D -7.7 (*c* 1.06, CHCl₃); IR 2934, 1768 (C=O), 1728 (C=O), 1660 (C=O), 1571, 1453, 1415, 1355, 1022, 860 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.71 (1H, dd, J = 3.8, 1.1 Hz, Ar**H**), 7.68 (1H, dd, J = 5.0, 1.1 Hz, ArH), 7.15 (1H, dd, J = 5.0, 3.8 Hz, ArH), 3.04-2.86 (4H, m, CHCHCH₂C(O)Ar), 2.75 (1H, d, J = 19.2 Hz, CH_AH_BC(O)CCH₃), 2.57 (1H, dd, J = 19.2, 7.6 Hz, $CH_AH_BC(O)CCH_3$, 1.96 (1H, app dd, J = 11.9, 5.7 Hz, $CH_AH_BCCH_3$), 1.92-1.81 (2H, m, $CH_{A}H_{B}CH_{A}H_{B}CCH_{3}$, 1.54-1.40 (1H, m, $CH_{A}H_{B}CH_{2}CCH_{3}$), 1.07 (3H, s, CH_{3}); ¹³C NMR (100.6) MHz, CDCl₃) δ 215.6 (C), 211.6 (C), 190.2 (C), 143.9 (C), 134.3 (CH), 132.1 (CH), 128.3 (CH), 58.7 (C), 49.7 (CH), 43.2 (CH₂), 42.0 (CH₂), 41.5 (CH), 39.3 (CH₂), 24.9 (CH₂), 11.8 (CH₃); HRMS (ESI) Exact mass calculated for $C_{15}H_{16}NaO_3S$ [M+Na]⁺: 299.0712, found: 299.0699. Enantiomeric excess was determined by HPLC with a Chiralpak IA-3 column (70:30 iso-hexane:i-PrOH, 1.5 mL/min, 230 nm, 25 °C); t_r (major) = 10.5 min, t_r (minor) = 14.3 min; 92% ee.

(1R,2S,5R)-5-Ethyl-2-(2-oxo-2-phenylethyl)bicyclo[3.2.1]octane-6,8-dione (2k). The title compound was prepared according to the Representative Procedure from enone 1k (57 mg, 0.20 mmol). Purification by column chromatography (20% EtOAc/petroleum ether) gave a white solid (54 mg, 95%) as a >95:5 ratio of diastereomers. $R_f = 0.41$ (25% EtOAc/petroleum ether); m.p. 115-117 °C (CH₂Cl₂); $[\alpha]_D^{20}$ –19.9 (*c* 1.03, CHCl₃); IR 2941, 1766 (C=O), 1724 (C=O), 1686 (C=O), 1599, 1462, 1373, 1245, 989, 945 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.95-7.90 (2H, m, ArH), 7.59 (1H, dt, *J* = 7.4, 1.3 Hz, ArH),

7.51-7.45 (2H, m, Ar**H**), 3.09-2.92 (3H, m, C**H**C**H**₂C(O)Ph), 2.88 (1H, dd, J = 7.6, 1.9 Hz, C**H**C=O), 2.74 (1H, d, J = 19.1 Hz, C**H**_AH_BC(O)CCH₂), 2.50 (1H, dd, J = 19.1, 7.7 Hz, CH_AH_BC(O)CCH₂), 1.97-1.81 (3H, m, C**H**_AH_BC**H**₂CCH₂), 1.68 (1H, dq, J = 14.9, 7.4 Hz, C**H**_AH_BCH₃), 1.61 (1H, dq, J = 14.9, 7.4 Hz, CH_AH_BCH₃), 1.50-1.35 (1H, m, CH_AH_BCH₂CCH₂), 0.80 (3H, t, J = 7.4 Hz, C**H**₃); ¹³C NMR (100.6 MHz, CDCl₃) δ 216.0 (C), 211.9 (C), 197.3 (C), 136.5 (C), 133.5 (CH), 128.8 (2 x CH), 128.0 (2 x CH), 63.2 (C), 50.1 (CH), 42.4 (CH₂), 41.5 (CH), 41.1 (CH₂), 40.0 (CH₂), 24.8 (CH₂), 20.9 (CH₂), 9.1 (CH₃); HRMS (ESI) Exact mass calculated for C₁₈H₂₀NaO₃ [M+Na]⁺: 307.1305, found: 307.1308; Enantiomeric excess was determined by HPLC with a Chiralpak IA-3 column (60:40 *iso*-hexane:*i*-PrOH, 1.5 mL/min, 254 nm, 25 °C); t_r (major) = 4.5 min, t_r (minor) = 6.1 min; 93% ee.

(1*R*,5*R*,6*S*)-1-Methyl-6-(2-oxo-2-phenylethyl)bicyclo[3.3.1]nonane-2,9-dione (6a) and (1*S*,5*S*,6*S*)-1-methyl-6-(2-oxo-2-phenylethyl)bicyclo[3.3.1]nonane-2,9-dione (7a). The title compounds 6a and 7a were prepared according to the Representative Procedure from enone 5a (57 mg, 0.20 mmol). Purification by column chromatography (20 to 30% EtOAc/petroleum ether) gave 6a as a white solid (44 mg, 77%) and 7a as a colorless film (8 mg, 14%).

^{7a} Data for **6a**: $R_f = 0.50$ (40% EtOAc/petroleum ether); m.p. 142-144 °C (*iso*-hexane/CH₂Cl₂); $[\alpha]_D^{20} -20.2$ (*c* 1.95, CHCl₃); IR 3040, 2938, 1732 (C=O), 1703 (C=O), 1598, 1581, 1450, 1375, 1278, 980 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.97-7.89 (2H, m, Ar**H**), 7.63-7.55 (1H, m, Ar**H**), 7.52-7.44 (2H, m, Ar**H**), 3.08 (1H, dd, *J* = 15.6, 6.9 Hz, C**H**_AH_BC(O)Ar), 3.00 (1H, dd, *J* = 15.6, 5.4 Hz, CH_A**H**_BC(O)Ar), 2.93-2.85 (1H, m, C**H**C=O), 2.85-2.71 (1H, m, C**H**CH₂C(O)Ar), 2.60 (1H, dt, *J* = 16.2, 6.5 Hz, CH₂C**H**_AH_BC=O), 2.40 (1H, dt, *J* = 16.2, 8.8 Hz, CH₂CH_A**H**_BCCH₃), 1.57-1.47 (1H, m, CH_A**H**_BCH₂CCH₃), 1.16 (3H, s, C**H**₃); ¹³C NMR (100.6 MHz, CDCl₃) δ 211.8 (C), 211.7 (C), 197.7 (C), 136.6 (C), 133.4 (CH), 128.7 (2 x CH), 128.0 (2 x CH), 62.7 (C), 48.4 (CH), 41.5 (CH₂), 41.1 (CH₂), 40.6 (CH), 38.9 (CH₂), 25.7 (CH₂), 16.8 (CH₂), 16.6 (CH₃); HRMS (ESI) Exact mass calculated for C₁₈H₂₀NaO₃ [M+Na]⁺: 307.1305; found: 307.1302; Enantiomeric excess was determined by HPLC with a Chiralpak IA-3 column (60:40 *iso*-hexane:*i*-PrOH, 1.5 mL/min, 254 nm, 25 °C); t_r (major) = 4.8 min, t_r (minor) = 5.9 min; 82% ee.

Data for **7a**: $R_f = 0.56$ (40% EtOAc/petroleum ether); $[\alpha]_D^{20}$ +41.8 (*c* 0.63, CHCl₃); IR 3011, 2936, 1732 (C=O), 1701 (C=O), 1598, 1450, 1374, 1282, 1017 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.97-7.92 (2H, m, Ar**H**), 7.62-7.56 (1H, m, Ar**H**), 7.51-7.44 (2H, m, Ar**H**), 3.11 (1H, dd, *J* = 16.3, 5.8

Hz, CH_AH_BC(O)Ar), 3.04-2.96 (1H, m, CHCH₂C(O)Ar), 2.93 (1H, dd, J = 16.3, 7.0 Hz, CH_AH_BC(O)Ar), 2.79-2.67 (2H, m, CHC=O and CH₂CH_AH_BC=O), 2.40 (1H, dt, J = 16.0, 9.1 Hz, CH₂CH_AH_BC=O), 2.33-2.18 (2H, m, CH_AH_BCH₂C=O and CH_AH_BCCH₃), 2.08-1.90 (2H, m, CH_AH_BCH₂CCH₃ and CH_AH_BCH₂C=O), 1.83 (1H, td, J = 13.7, 4.6 Hz, CH_AH_BCCH₃), 1.57-1.48 (1H, m, CH_AH_BCH₂CCH₃), 1.17 (3H, s, CH₃); ¹³C NMR (125.8 MHz, CDCl₃) δ 213.2 (C), 211.9 (C), 198.1 (C), 136.8 (C), 133.4 (CH), 128.7 (2 x CH), 128.0 (2 x CH), 63.1 (C), 49.7 (CH), 41.7 (CH), 40.7 (CH₂), 39.2 (CH₂), 38.8 (CH₂), 23.6 (CH₂), 22.4 (CH₂), 16.8 (CH₃); HRMS (ESI) Exact mass calculated for C₁₈H₂₀NaO₃ [M+Na]⁺: 307.1305, found: 307.1301; Enantiomeric excess was determined by HPLC with a Chiralpak IA-3 column (90:10 *iso*-hexane:*i*-PrOH, 1.5 mL/min, 254 nm, 25 °C); t_r (major) = 7.1 min, t_r (minor) = 8.9 min; 94% ee.

(1R,5R,6S)-1-Methyl-6-[2-oxo-2-(4-

compound was prepared according to the Representative Procedure from enone 5b (60 mg, 0.20 mmol). Purification by column chromatography (20 to 30% EtOAc/isohexane) gave a colorless glassy film (57 mg, >95%) as a >95:5 ratio of diastereomers. $R_f = 0.63$ (40% EtOAc/petroleum ether); $[\alpha]_{D}^{20}$ –46.4 (*c* 1.00, CHCl₃); IR 3023, 2937, 1731 (C=O), 1703 (C=O), 1626, 1607, 1573, 1453, 1410, 1376, 1278, 1109, 979 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.84 (2H, d, J = 8.1 Hz, ArH), 7.28 (2H, d, J = 8.1 Hz, ArH), 3.04 (1H, dd, J = 16.2, 7.7 Hz, $CH_AH_BC(O)Ar$), 2.98 (1H, dd, J = 16.2, 6.3 Hz, $CH_AH_BC(O)Ar$), 2.92-2.85 (1H, m, CHC=O), 2.84-2.71 (1H, m, CHCH₂C(O)Ar), 2.60 (1H, dt, J = 16.2, 6.5 Hz, CH₂CH_AH_BC=O), 2.46-2.34 (1H, m, CH₂CH_AH_BC=O), 2.43 (3H, s, ArCH₃), 2.27-2.16 (1H, m, CH_AH_BCCH₃), 2.04-1.93 (2H, m, CH₂CH₂C=O), 1.79-1.63 (2H, m, CH_AH_BCH_AH_BCCH₃), 1.55-1.40 (1H, m, CH_AH_BCH₂CCH₃), 1.16 (3H, s, CH₃C=O); ¹³C NMR (100.6 MHz, CDCl₃) δ 211.9 (C), 211.8 (C), 197.4 (C), 144.3 (C), 134.2 (C), 129.4 (2 x CH), 128.2 (2 x CH), 62.7 (C), 48.5 (CH), 41.4 (CH₂), 41.1 (CH₂), 40.7 (CH), 39.0 (CH₂), 25.7 (CH₂), 21.6 (CH₃), 16.8 (CH₂), 16.6 (CH₃); HRMS (ESI) Exact mass calculated for C₁₉H₂₂NaO₃ [M+Na]⁺: 321.1461, found: 321.1451; Enantiomeric excess was determined by HPLC with a Chiralpak IA-3 column (80:20 iso-hexane:i-PrOH, 1.5 mL/min, 210 nm, 25 °C); tr $(major) = 7.7 \text{ min}, t_r (minor) = 11.0 \text{ min}; 86\% \text{ ee}.$

(1R,5R,6S)-6-[2-(4-Methoxyphenyl)-2-oxoethyl]-1-

methylbicyclo[**3.3.1**]**nonane-2,9-dione** (**6c**). The title compound was prepared according to the Representative Procedure from enone **5c** (63

methylphenyl)ethyl]bicyclo[3.3.1]nonane-2,9-dione (6b). The title

mg, 0.20 mmol). Purification by column chromatography (30 to 40% EtOAc/petroleum ether) gave a white solid (59 mg, 94%) as a >95:5 ratio of diastereomers. $R_f = 0.11$ (20% EtOAc/petroleum

ether); m.p. 110-112 °C (CH₂Cl₂); $[\alpha]_D^{20} -11.4$ (c 1.12, CHCl₃); IR 2937, 1731 (C=O), 1703 (C=O), 1676 (C=O), 1650, 1575, 1511, 1262, 1112, 831 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.92 (2H, d, *J* = 8.7 Hz, Ar**H**), 6.95 (2H, d, *J* = 8.7 Hz, Ar**H**), 3.88 (3H, s, OC**H**₃), 3.01 (1H, dd, *J* = 15.9, 7.7 Hz, C**H**_AH_BC(O)Ar), 2.95 (1H, dd, *J* = 15.9, 6.2 Hz, CH_AH_BC(O)Ar), 2.91-2.85 (1H, m, C**H**C=O), 2.82-2.72 (1H, m, C**H**CH₂C(O)Ar), 2.60 (1H, app dt, *J* = 16.2, 6.5 Hz, CH₂CH_AH_BC=O), 2.46-2.35 (1H, m, CH₂CH_AH_BC=O), 2.27-2.17 (1H, m, C**H**_AH_BCCH₃), 2.05-1.93 (2H, m, C**H**₂CH₂C=O), 1.78-1.64 (2H, m, C**H**_AH_BCH₃), 1.55-1.41 (1H, m, CH_AH_BCH₂CCH₃), 1.16 (3H, s, C**H**₃); ¹³C NMR (100.6 MHz, CDCl₃) δ 211.3 (C), 211.5 (C), 196.3 (C), 163.7 (C), 130.4 (2 x CH), 129.7 (C), 113.9 (2 x CH), 62.7 (C), 55.5 (CH₃), 48.5 (CH), 41.2 (CH₂), 41.1 (CH₂), 40.8 (CH), 39.0 (CH₂), 25.7 (CH₂), 16.8 (CH₂), 16.6 (CH₃); HRMS (ESI) Exact mass calculated for C₁₉H₂₂NaO₄ [M+Na]⁺: 337.1410, found: 337.1406; Enantiomeric excess was determined by HPLC with a Chiralpak IA-3 column (60:40 *iso*-hexane:*i*-PrOH, 1.5 mL/min, 254 nm, 25 °C); t_r (major) = 6.4 min, t_r (minor) = 11.4 min; 87% ee.

(1*R*,5*R*,6*S*)-6-[2-(4-Fluorophenyl)-2-oxoethyl]-1-

methylbicyclo[3.3.1]nonane-2,9-dione (6d) and (1*S*,5*S*,6*S*)-6-[2-(4-fluorophenyl)-2-oxoethyl]-1-methylbicyclo[3.3.1]nonane-2,9-dione

(7d). The title compounds 6d and 7d were prepared according to the Representative Procedure from enone 5d (60 mg, 0.20 mmol). Purification by column chromatography (20% EtOAc/petroleum ether) gave 6d as a colorless oil (49 mg, 82%) and 7d as a colorless film

(8 mg, 13%).

Data for **6d**: $R_f = 0.56$ (40% EtOAc/petroleum ether); $[\alpha]_{D}^{20} - 14.5$ (*c* 1.18, CHCl₃); IR 2935, 1731 (C=O), 1703 (C=O), 1599, 1508, 1453, 1411, 1276, 983, 838 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.03-7.91 (2H, m, Ar**H**), 7.21-7.10 (2H, m, Ar**H**), 3.05 (1H, dd, *J* = 15.8, 7.1 Hz, C**H**_AH_BC(O)Ar), 2.98 (1H, dd, *J* = 15.8, 5.5 Hz, CH_A**H**_BC(O)Ar), 2.92-2.85 (1H, m, C**H**C=O), 2.84-2.72 (1H, m, C**H**CH₂C(O)Ar), 2.61 (1H, ddd, *J* = 16.2, 7.0, 5.9 Hz, CH₂C**H**_AH_BC=O), 2.41 (1H, app dt, *J* = 16.2, 8.8 Hz, CH₂CH_A**H**_BC=O), 2.29-2.19 (1H, m, C**H**_AH_BCCH₃), 2.06-1.93 (2H, m, C**H**₂CH₂C=O), 1.80-1.62 (2H, m, C**H**_AH_BCH₃), 1.56-1.43 (1H, m, CH_A**H**_BCH₂CCH₃), 1.17 (3H, s, C**H**₃); ¹³C NMR (100.6 MHz, CDCl₃) δ 211.8 (C), 211.7 (C), 196.0 (C), 165.9 (C, d, *J* = 255.6 Hz), 133.0 (C, d, *J* = 3.1 Hz), 130.7 (CH, d, *J* = 9.4 Hz), 115.9 (CH, d, *J* = 21.9 Hz), 62.7 (C), 48.4 (CH), 41.4 (CH₂), 41.0 (CH), 40.5 (CH₂), 38.9 (CH₂), 25.7 (CH₂), 16.8 (CH₂), 16.6 (CH₃); ¹⁹F NMR (376 MHz, CDCl₃) δ -104.4; HRMS (ESI) Exact mass calculated for C₁₈H₁₉FNaO₃ [M+Na]⁺: 325.1210, found: 325.1203; Enantiomeric excess was determined by HPLC with a Chiralpak IA-3 column

(90:10 *iso*-hexane:*i*-PrOH, 1.5 mL/min, 254 nm, 25 °C); t_r (major) = 7.0 min, t_r (minor) = 8.6 min; 86% ee.

Data for **7d**: $R_f = 0.63$ (40% EtOAc/petroleum ether); $[\alpha]_D^{20} + 20.2$ (*c* 0.45, CHCl₃); IR 2931, 1731 (C=O), 1700 (C=O), 1599, 1507, 1456, 1374, 1157, 999, 837 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.04-7.93 (2H, m, ArH), 7.22-7.10 (2H, m, ArH), 3.10 (1H, dd, *J* = 16.2, 6.1 Hz, CH_AH_BC(O)Ar), 3.04-2.95 (1H, m, CHCH₂C(O)Ar), 2.89 (1H, dd, *J* = 16.2, 6.5 Hz, CH_AH_BC(O)Ar), 2.78-2.67 (2H, m, CHC=O and CH₂CH_ACH_BC=O), 2.48-2.18 (3H, m, CH₂CH_ACH_BC=O), CH_AH_BCCH₃, and CH_AH_BCH₂C=O), 2.11-1.92 (2H, m, CH_AH_BCH₂CCH₃ and CH_AH_BCH₂C=O), 1.82 (1H, app td , *J* = 13.8, 4.6 Hz, CH_AH_BCCH₃), 1.57-1.48 (1H, m, CH_AH_BCH₂CCH₃ overlapped with H₂O), 1.18 (3H, s, CH₃); ¹³C NMR (100.6 MHz, CDCl₃) δ 213.2 (C), 211.8 (C), 196.5 (C), 165.6 (C, d, *J* = 255.6 Hz), 133.3 (CH, d, *J* = 3.2 Hz), 130.7 (2 x CH, d, *J* = 9.3 Hz), 115.8 (2 x CH, d, *J* = 21.9 Hz), 63.1 (C), 49.7 (CH), 41.7 (CH₂), 40.6 (CH), 39.2 (CH₂), 38.8 (CH₂), 23.6 (CH₂), 22.4 (CH₂), 16.8 (CH₃); ¹⁹F NMR (376 MHz, CDCl₃) δ -104.6; HRMS (ESI) Exact mass calculated for C₁₈H₁₉FNaO₃ [M+Na]⁺: 325.1216, found: 325.1244; Enantiomeric excess was determined by HPLC with a Chiralpak IA-3 column (90:10 *iso*-hexane:*i*-PrOH, 1.5 mL/min, 230 nm, 25 °C); t_r (major) = 7.5 min, t_r (minor) = 9.9 min; 86% ee.

(1*R*,5*R*,6*S*)-6-[2-(4-Chlorophenyl)-2-oxoethyl]-1methylbicyclo[3.3.1]nonane-2,9-dione (6e) and (1*S*,5*S*,6*S*)-6-[2-(4chlorophenyl)-2-oxoethyl]-1-methylbicyclo[3.3.1]nonane-2,9-dione

(7e). The title compounds **6e** and **7e** were prepared according to the Representative Procedure from enone **5e** (64 mg, 0.20 mmol). Purification by column chromatography (20 to 30% EtOAc/*iso*-hexane) gave **6e** as a white solid (47 mg, 73%) and **7e** as a colorless film (12 mg, 19%).

Data for **6e**: $R_f = 0.48$ (40% EtOAc/petroleum ether); m.p. 155-157 °C (*iso*-hexane/CH₂Cl₂); $[\alpha]_D^{20}$ -22.1 (c 1.80, CHCl₃); IR 3018, 2937, 1731 (C=O), 1703 (C=O), 1626, 1590, 1453, 1401, 1277, 1094, 982 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.88 (2H, d, J = 8.8 Hz, Ar**H**), 7.46 (2H, d, J = 8.6Hz, Ar**H**), 3.04 (1H, dd, J = 16.5, 7.6 Hz, C**H**_AH_BC(O)Ar), 2.98 (1H, dd, J = 16.5, 6.7 Hz, CH_A**H**_BC(O)Ar), 2.91-2.84 (1H, m, C**H**C=O), 2.83-2.72 (1H, m, C**H**CH₂C(O)Ar), 2.60 (1H, ddd, J= 16.2, 6.9, 6.0 Hz, CH₂C**H**_AH_BC=O), 2.40 (1H, dt, J = 16.2, 8.9 Hz CH₂CH_A**H**_BC=O), 2.28-2.19 (1H, m, C**H**_AH_BCCH₃), 2.08-1.90 (2H, m, C**H**₂CH₂C=O), 1.80-1.65 (2H, m, C**H**_AH_BCH_A**H**_BCCH₃), 1.54-1.40 (1H, m, CH_A**H**_BCH₂CCH₃), 1.17 (3H, s, C**H**₃); ¹³C NMR (125.8 MHz, CDCl₃) δ 211.8 (C), 211.6 (C), 196.4 (C), 139.9 (C), 134.9 (C), 129.4 (2 x CH), 129.1 (2 x CH), 62.7 (C), 48.3 (CH), 41.4 (CH₂), 41.0 (CH₂), 40.4 (CH), 38.9 (CH₂), 25.6 (CH₂), 16.7 (CH₂), 16.6 (CH₃); HRMS (ESI) Exact mass calculated for $C_{18}H_{19}CINaO_3$ [M+Na]⁺: 341.0915, found: 341.0912; Enantiomeric excess was determined by HPLC with a Chiralpak IA-3 column (60:40 *iso*-hexane:*i*-PrOH, 1.5 mL/min, 254 nm, 25 °C); t_r (major) = 5.5 min, t_r (minor) = 6.7 min; 87% ee.

Slow diffusion of cyclohexane into a solution of **6e** in CH_2Cl_2 gave crystals that were suitable for X-ray crystallography:

Data for **7e**: $R_f = 0.56$ (40% EtOAc/petroleum ether); $[\alpha]_D^{20} + 33.1$ (c 0.41, CHCl₃); IR 3011, 2937, 1733 (C=O), 1700 (C=O), 1590, 1455, 1375, 1283, 1094, 999 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.89 (2H, d, J = 8.6 Hz, Ar**H**), 7.46 (2H, d, J = 8.6 Hz, Ar**H**), 3.08 (1H, dd, J = 16.8, 6.4 Hz, C**H**_AH_BC(O)Ar), 3.03-2.93 (1H, m, C**H**CH₂C(O)Ar), 2.88 (1H, dd, J = 16.8, 8.8 Hz, CH_AH_BC(O)Ar), 2.78-2.66 (2H, m, C**H**C=O and CH₂C**H**_AH_BC=O), 2.40 (1H, dt, J = 15.9, 9.2 Hz, CH₂CH_AH_BC=O), 2.33-2.19 (2H, m, C**H**_AH_BCH₂C=O and C**H**_AH_BCCH₃), 2.09-1.89 (2H, m, C**H**_AH_BCH₂CCH₃ and CH_AH_BCH₂C=O), 1.82 (1H, td, J = 13.7, 4.6 Hz, CH_AH_BCCH₃), 1.55-1.47 (1H, m, CH_AH_BCH₂CCH₃), 1.17 (3H, s, C**H**₃); ¹³C NMR (125.8 MHz, CDCl₃) δ 213.2 (C), 211.8 (C), 196.8 (C), 139.9 (C), 135.1 (C), 129.5 (2 x CH), 129.0 (2 x CH), 63.0 (C), 49.7 (CH), 41.6 (CH), 40.6 (CH₂), 39.2 (CH₂), 38.8 (CH₂), 23.6 (CH₂), 22.4 (CH₂), 16.8 (CH₃); HRMS (ESI) Exact mass calculated for C₁₈H₁₉ClNaO₃ [M+Na]⁺: 341.0915, found: 341.0916; Enantiomeric excess was determined by HPLC with a Chiralpak IA-3 column (95:5 *iso*-hexane:*i*-PrOH, 1.5 mL/min, 254 nm, 25 °C); t_r (major) = 12.8 min, t_r (minor) = 17.4 min; 96% ee.

(1R,5R,6S)-1-Methyl-6-[2-(4-nitrophenyl)-2-

oxoethyl]bicyclo[3.3.1]nonane-2,9-dione (6f) and (15,55,65)-1-Methyl-6-[2-(4-nitrophenyl)-2-oxoethyl]bicyclo[3.3.1]nonane-2,9-

dione (**7f**). The title compounds **6f** and **7f** were prepared according to a modification of the Representative Procedure from enone **5f** (66 mg, 0.20 mmol) using toluene (2 mL) as solvent. Purification by column chromatography (20 to 40% EtOAc/*iso*-hexane) gave **6f** as a pale yellow

solid (56 mg, 85%) and **7f** as an off-white solid (10 mg, 15%).

Data for **6f**: $R_f = 0.35$ (40% EtOAc/petroleum ether); m.p. 142-144 °C (*iso*-hexane/CH₂Cl₂); $[\alpha]_D^{20}$ -23.7 (c 0.80, CHCl₃); IR 2934, 2860, 1732 (C=O), 1702 (C=O), 1626, 1604, 1530 (NO₂), 1348 (NO₂), 1318, 1109, 855 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.37-8.29 (2H, m, Ar**H**), 8.14-8.07 (2H, m, Ar**H**), 3.12 (1H, dd, J = 17.1, 7.6 Hz, C**H**_AH_BC(O)Ar), 3.06 (1H, dd, J = 17.1, 6.3 Hz, CH_A**H**_BC(O)Ar), 2.89 (1H, dt, J = 8.3, 3.0 Hz, C**H**C=O), 2.86-2.73 (1H, m, C**H**CH₂C(O)Ar), 2.68-2.53 (1H, m, CH₂C**H**_AH_BC=O), 2.41 (1H, dt, J = 16.2, 8.9 Hz, CH₂CH_A**H**_BC=O), 2.29-2.20 (1H, m, C**H**_AH_BCCH₃), 2.10-1.89 (2H, m, C**H**₂CH₂C=O), 1.81-1.62 (2H, m, C**H**_AH_BCH_A**H**_BCCH₃), 1.56-1.41 (1H, m, CH_A**H**_BCH₂CCH₃), 1.16 (3H, s, C**H**₃); ¹³C NMR (100.6 MHz, CDCl₃) δ 211.6 (C), 211.4 (C), 196.0 (C), 150.5 (C), 140.9 (C), 129.1 (2 x CH), 124.0 (2 x CH), 62.6 (C), 48.3 (CH), 41.9 (CH₂), 40.9 (CH₂), 40.1 (CH), 38.9 (CH₂), 25.6 (CH₂), 16.7 (CH₃), 16.6 (CH₂); HRMS (ESI) Exact mass calculated for C₁₈H₁₉NNaO₅ [M+Na]⁺: 352.1155, found: 352.1145; Enantiomeric excess was determined by HPLC with a Chiralpak IA-3 column (60:40 *iso*-hexane:*i*-PrOH, 1.5 mL/min, 254 nm, 25 °C); t_r (major) = 11.8 min, t_r (minor) = 13.8 min; 72% ee.

Slow diffusion of cyclohexane into a solution of **6e** in CH_2Cl_2 gave crystals that were suitable for X-ray crystallography:

Data for **7f**: $R_f = 0.42$ (40% EtOAc/petroleum ether); m.p. 102-104 °C (cyclohexane/CH₂Cl₂); $[\alpha]_D^{20}$ +61.6 (c 0.27, CHCl₃); IR 3012, 2937, 1733 (C=O), 1700 (C=O), 1604, 1530 (NO₂), 1455, 1347 (NO₂), 1013, 855 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.36-8.30 (2H, m, Ar**H**), 8.13-8.07 (2H, m, Ar**H**), 3.17 (1H, dd, J = 17.0, 6.3 Hz, C**H**_AH_BC(O)Ar), 3.05-2.98 (1H, m, C**H**CH₂C(O)Ar), 2.94 (1H, dd, J = 17.0, 6.6 Hz, CH_A**H**_BC(O)Ar), 2.78-2.67 (2H, m, C**H**C=O and CH₂C**H**_AH_BC=O), 2.40 (1H, dt, J = 15.6, 9.2 Hz, CH₂CH_A**H**_BC=O), 2.35-2.21 (2H, m, C**H**_AH_BCH₂C=O and C**H**_AH_BCCH₃), 2.12-1.90 (2H, m, C**H**_AH_BCH₂CCH₃ and CH_A**H**_BCH₂C=O), 1.82 (1H, td, J = 13.8, 4.6 Hz, CH_A**H**_BCCH₃), 1.57-1.47 (1H, m, CH_A**H**_BCH₂CCH₃), 1.17 (3H, s, C**H**₃); ¹³C NMR (100.6 MHz, CDCl₃) δ 213.1 (C), 211.6 (C), 196.6 (C), 150.5 (C), 141.1 (C), 129.1 (2 x CH), 124.0 (2 x CH), 63.0 (C), 49.5 (CH), 41.5 (CH), 41.3 (CH₂), 39.2 (CH₂), 38.9 (CH₂), 23.6 (CH₂), 22.3 (CH₂), 16.8 (CH₃); HRMS (ESI) Exact mass calculated for C₁₈H₁₉NNaO₅ [M+Na]⁺: 352.1155, found: 352.1150; Enantiomeric excess was determined by HPLC with a Chiralpak IA-3 column (60:40 *iso*hexane:*i*-PrOH, 1.5 mL/min, 254 nm, 25 °C); t_r (major) = 6.8 min, t_r (minor) = 9.0 min; 88% ee.

(1R,5R,6S)-1-Methyl-6-{2-oxo-2-[3-

(trifluoromethyl)phenyl]ethyl}bicyclo[3.3.1]nonane-2,9-dione (6g) and (15,55,65)-1-methyl-6-{2-oxo-2-[3-

(trifluoromethyl)phenyl]ethyl}bicyclo[3.3.1]nonane-2,9-dione (7g).

The title compounds **6g** and **7g** were prepared according to a modification of the Representative Procedure from enone **5g** (71 mg, 0.20 mmol) using cyclohexane (4 mL) as solvent. Purification by column chromatography

(20 to 30% EtOAc/*iso*-hexane) gave **6g** as a pale yellow solid (48 mg, 68%) and **7g** as a pale yellow film (15 mg, 21%).

Data for **6g**: $R_f = 0.28$ (30% EtOAc/petroleum ether); m.p. 94-96 °C (*iso*-hexane/CH₂Cl₂); $[\alpha]_D^{20}$ -23.6 (c 1.90, CHCl₃); IR 3024, 2937, 1732 (C=O), 1702 (C=O), 1612, 1453, 1333, 1173, 1137, 1072 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 8.18 (1H, s, Ar**H**), 8.13 (1H, d, J = 7.8 Hz, Ar**H**), 7.85 (1H, d, J = 7.8 Hz, Ar**H**), 7.64 (1H, t, J = 7.8 Hz, Ar**H**), 3.11 (1H, dd, J = 16.0, 6.6 Hz, C**H**_AH_BC(O)Ar), 3.03 (1H, dd, J = 16.0, 5.2 Hz, CH_A**H**_BC(O)Ar), 2.89 (1H, ddd, J = 7.0, 6.7, 3.4 Hz, C**H**C=O), 2.86-2.74 (1H, m, C**H**CH₂C(O)Ar), 2.61 (1H, ddd, J = 16.2, 7.1, 5.9 Hz, CH₂CH_AH_BC=O), 2.41 (1H, dt, J = 16.2, 8.8 Hz, CH₂CH_A**H**_BC=O), 2.30-2.19 (1H, m, C**H**_AH_BCCH₃), 2.11-1.90 (2H, m, C**H**₂CH₂C=O), 1.82-1.65 (2H, m, C**H**_AH_BCH_A**H**_BCCH₃), 1.58-1.37 (1H, m, CH_A**H**_BCH₂CCH₃), 1.16 (3H, s, C**H**₃); ¹³C NMR (100.6 MHz, CDCl₃) δ 211.7 (C), 211.5 (C), 196.2 (C), 137.1 (C), 131.4 (C, q, J = 33.0 Hz), 131.2 (CH), 129.8 (CH, q, J = 3.5 Hz), 129.5 (CH), 124.8 (CH, q, J = 3.8 Hz), 123.6 (C, q, J = 272.5 Hz), 62.7 (C), 48.3 (CH), 41.5 (CH₂), 41.0 (CH₂), 40.2 (CH), 38.9 (CH₂), 25.7 (CH₂) 16.8 (CH₂), 16.6 (CH₃); HRMS (ESI) Exact mass calculated for C₁₉H₁₉F₃NaO₃ [M+Na]⁺: 375.1179, found: 375.1172; Enantiomeric excess was determined by HPLC with a Chiralpak IA-3 column (95:5 *iso*-hexane:*i*-PrOH, 1.5 mL/min, 230 nm, 25 °C); t_r (major) = 15.0 min, t_r (minor) = 17.5 min; 86% ee.

Data for **7g**: $R_f = 0.33$ (30% EtOAc/petroleum ether); $[\alpha]_D^{20} + 42.8$ (*c* 1.30, CHCl₃); IR 3011, 2937, 1732 (C=O), 1699 (C=O), 1613, 1489, 1375, 1332, 1173, 1137, 1073, 1002, 927 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.19 (1H, s, Ar**H**), 8.12 (1H, d, *J* = 7.9 Hz, Ar**H**), 7.85 (1H, d, *J* = 7.9 Hz, Ar**H**), 7.63 (1H, t, *J* = 7.9 Hz, Ar**H**), 3.13 (1H, dd, *J* = 16.8, 6.1 Hz, C**H**_AH_BC(O)Ar), 3.05-2.97 (1H, m, CHCH₂C(O)Ar), 2.94 (1H, dd, *J* = 16.8, 6.7 Hz, CH₂H_BC(O)Ar), 2.79-2.66 (2H, m, CHC=O and CH₂CH_AH_BC=O), 2.40 (1H, dt, *J* = 15.8, 9.2 Hz, CH₂CH_AH_BC=O), 2.35-2.20 (2H, m, CH_AH_BCH₂C=O and CH_AH_BCCH₃), 2.11-1.90 (2H, m, CH_AH_BCH₂CCH₃ and CH_AH_BCH₂C=O), 1.83 (1H, td, *J* = 13.7, 4.6 Hz, CH_AH_BCCH₃), 1.58-1.48 (1H, m, CH_AH_BCH₂CCH₃), 1.17 (3H, s, CH₃); ¹³C NMR (100.6 MHz, CDCl₃) δ 213.1 (C), 211.8 (C), 196.7 (C), 137.3 (C), 131.4 (C, q, *J* = 33.1 Hz), 131.2 (CH), 129.8 (CH, q, *J* = 3.6 Hz), 129.4 (CH), 124.8 (C, q, *J* = 3.7 Hz), 123.6 (C, q, *J*)

J = 272.5 Hz), 63.0 (C), 49.6 (CH), 41.5 (CH), 40.8 (CH₂), 39.2 (CH₂), 38.8 (CH₂), 23.6 (CH₂), 22.4 (CH₂), 16.8 (CH₃); HRMS (ESI) Exact mass calculated for C₁₉H₁₉F₃NaO₃ [M+Na]⁺: 375.1179, found: 375.1184; Enantiomeric excess was determined by HPLC with a Chiralpak IA-3 column (95:5 *iso*-hexane:*i*-PrOH, 1.5 mL/min, 230 nm, 25 °C); t_r (major) = 8.6 min, t_r (minor) = 13.0 min; 94% ee.

(1*R*,5*R*,6*S*)-6-[2-(2-Methoxyphenyl)-2-oxoethyl]-1methylbicyclo[3.3.1]nonane-2,9-dione (6h) and (1*S*,5*S*,6*S*)-6-[2-(2methoxyphenyl)-2-oxoethyl]-1-methylbicyclo[3.3.1]nonane-2,9-dione

(7h). The title compounds **6h** and **7h** were prepared according to the Representative Procedure from enone **5h** (63 mg, 0.20 mmol). Purification by column chromatography (20% EtOAc/petroleum ether) gave **6h** as a pale yellow solid (38 mg, 60%) and **7h** as a pale yellow oil (15 mg, 24%).

Data for **6h**: $R_f = 0.23$ (20% EtOAc/petroleum ether); m.p. 133-135 °C (CH₂Cl₂); $[\alpha]_D^{20} -24.0$ (*c* 1.12, CHCl₃); IR 2937, 1730 (C=O), 1703 (C=O), 1680 (C=O), 1485, 1466, 1437, 1245, 1025, 984 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.66 (1H, dd, *J* = 7.6, 1.8 Hz, Ar**H**), 7.48 (1H, ddd, *J* = 8.4, 7.6, 1.8 Hz, Ar**H**), 7.03 (1H, app td, *J* = 7.6, 0.9 Hz, Ar**H**), 6.97 (1H, app d, *J* = 8.4 Hz, Ar**H**), 3.92 (3H, s, OCH₃), 3.05 (2H, d, *J* = 6.9 Hz, C**H**₂C(O)Ar), 2.88-2.83 (1H, m, C**H**C=O), 2.79-2.68 (1H, m, C**H**CH₂C(O)Ar), 2.58 (1H, app dt, *J* = 16.4, 6.7 Hz, CH₂CH₄H_BC=O), 2.39 (1H, app dt, *J* = 16.4, 8.6 Hz, CH₂CH₄H_BC=O), 1.99-1.92 (2H, m, C**H**₂CH₂C=O), 1.78-1.62 (2H, m, C**H**₄H_BCH₄H_BCCH₃), 1.53-1.42 (1H, m, CH₄H_BCH₂CCH₃), 1.15 (3H, s, CCH₃); ¹³C NMR (100.6 MHz, CDCl₃) δ 212.12 (C), 212.06 (C), 200.1, (C), 158.3 (C), 133.8 (CH), 130.3 (CH), 128.0 (C), 120.9 (CH), 111.6 (CH), 62.8 (C), 55.6 (CH₃), 48.6 (CH), 46.7 (CH₂), 41.2 (CH₂), 40.6 (CH), 39.0 (CH₂), 25.7 (CH₂), 16.9 (CH₂), 16.6 (CH₃); HRMS (ESI) Exact mass calculated for C₁₉H₂₂NaO₄ [M+Na]⁺: 337.1410, found: 337.1397; Enantiomeric excess was determined by HPLC with a Chiralpak IA-3 column (90:10 *iso*-hexane:*i*-PrOH, 1.5 mL/min, 254 nm, 25 °C); t_r (major) = 11.8 min, t_r (minor) = 13.7 min; 83% ee.

Data for **7h**: $R_f = 0.29$ (20% EtOAc/petroleum ether); $[\alpha]_D^{20} -18.4$ (*c* 0.38, CHCl₃); IR 2928, 1727 (C=O), 1700 (C=O), 1598, 1486, 1465, 1375, 1290, 1057, 883 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.65 (1H, dd, J = 7.7, 1.8 Hz, Ar**H**), 7.48 (1H, ddd, J = 8.4, 7.3, 1.8 Hz, Ar**H**), 7.04-6.95 (2H, m, Ar**H**), 3.91 (3H, s, OC**H**₃), 3.10 (1H, dd, J = 17.0, 6.2 Hz, C**H**_AH_BC(O)Ar), 3.04-2.91 (2H, m, C**H**CH_A**H**_BC(O)Ar), 2.77-2.66 (2H, m, C**H**C=O and CH₂C**H**_AH_BC=O), 2.39 (1H, app dt, J = 16.2, 9.0 Hz, CH₂CH_A**H**_BC=O), 2.29-2.16 (2H, m, C**H**_AH_BCCH₃ and C**H**_AH_BCH₂C=O), 2.03-1.89 (2H, m, C**H**_AH_BCH₂CCH₃ and CH_A**H**_BCH₂CCH₃ and CH_A**H**_BCCH₃),

1.55-1.47 (1H, m, $CH_AH_BCH_2CCH_3$), 1.15 (3H, s, CCH_3); ¹³C NMR (100.6 MHz, $CDCl_3$) δ 213.1 (C), 212.2 (C), 200.5, (C), 158.4 (C), 133.6 (CH), 130.1 (CH), 128.3 (C), 120.8 (CH), 111.6 (CH), 63.1 (C), 55.5 (CH₃), 49.8 (CH), 46.0 (CH₂), 41.7 (CH₂), 39.1 (CH), 38.8 (CH₂), 23.5 (CH₂), 22.5 (CH₂), 16.8 (CH₃), HRMS (ESI) Exact mass calculated for C₁₉H₂₂NaO₄ [M+Na]⁺: 337.1410, found: 337.1394; Enantiomeric excess was determined by HPLC with a Chiralpak IA-3 column (90:10 *iso*-hexane:*i*-PrOH, 1.5 mL/min, 254 nm, 25 °C); t_r (major) = 8.6 min, t_r (minor) = 9.7 min; 93% ee.

(1R,5R,6S)-6-[2-(2-Chlorophenyl)-2-oxoethyl]-1-

methylbicyclo[3.3.1]nonane-2,9-dione (6i) and (1*S*,5*S*,6*S*)-6-[2-(2-chlorophenyl)-2-oxoethyl]-1-methylbicyclo[3.3.1]nonane-2,9-dione (7i). The title compounds 6i and 7i were prepared according to the Representative Procedure from enone 1i (64 mg, 0.20 mmol). Purification by column chromatography (20 to 25% EtOAc/*iso*-hexane) gave 6i as a colorless film (48 mg, 75%) and 7i as a colorless film (13 mg, 20%).

Data for **6i**: $R_f = 0.25$ (30% EtOAc/petroleum ether); $[\alpha]_D^{20} -15.0$ (*c* 1.00, CHCl₃); IR 3043, 2938, 1731 (C=O), 1703 (C=O), 1592, 1469, 1453, 1433, 1376, 982 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.46-7.38 (3H, m, Ar**H**), 7.37-7.31 (1H, m, Ar**H**), 3.07 (1H, dd, *J* = 16.9, 7.6 Hz, C**H**_AH_BC(O)Ar), 3.01 (1H, dd, *J* = 16.9, 6.2 Hz, CH_AH_BC(O)Ar), 2.92-2.85 (1H, m, C**H**C=O), 2.81-2.70 (1H, m, C**H**CH₂C(O)Ar), 2.57 (1H, ddd, *J* = 16.3, 7.2, 5.9 Hz, CH₂C**H**_AH_BC=O), 2.39 (1H, app dt, *J* = 16.3, 8.8 Hz, CH₂CH_AH_BC=O), 2.26-2.17 (1H, m, C**H**_AH_BCCH₃), 2.04-1.86 (2H, m, C**H**₂CH₂C=O), 1.81-1.64 (2H, m, C**H**_AH_BCH_AH_BCCH₃), 1.54-1.41 (1H, m, CH_AH_BCH₂CCH₃), 1.16 (3H, s, C**H**₃); ¹³C NMR (100.6 MHz, CDCl₃) δ 211.8 (C), 211.6 (C), 201.0 (C), 139.2 (C), 132.0 (CH), 130.7 (CH), 130.6 (C), 128.7 (CH), 127.1 (CH), 62.7 (C), 48.3 (CH), 45.9 (CH₂), 41.0 (CH₂), 40.4 (CH), 38.9 (CH₂), 25.6 (CH₂), 16.8 (CH₂), 16.6 (CH₃); HRMS (ESI) Exact mass calculated for C₁₈H₂₀ClO₃ [M+H]⁺: 319.1095, found: 319.1091; Enantiomeric excess was determined by HPLC with a Chiralpak IA-3 column (90:10 *iso*-hexane:*i*-PrOH, 1.5 mL/min, 210 nm, 25 °C); t_r (major) = 9.9 min, t_r (minor) = 11.6 min; 92% ee.

Data for **7i**: $R_f = 0.31$ (30% EtOAc/petroleum ether); $[\alpha]_D^{20} + 22.8$ (*c* 1.42, CHCl₃); IR 3011, 2938, 1732 (C=O), 1702 (C=O), 1591, 1470, 1455, 1433, 1375, 1287, 1069,1016 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.47-7.37 (3H, m, Ar**H**), 7.34 (1H, ddd, *J* = 7.3, 6.6, 2.1 Hz, Ar**H**), 3.13-2.86 (3H, m, C**H**C**H**₂C(O)Ar), 2.81-2.65 (2H, m, C**H**C=O and CH₂C**H**_AH_BC=O), 2.39 (1H, dt, *J* = 15.9, 9.1 Hz, CH₂CH_AH_BC=O), 2.28 (1H, ddd, *J* = 18.2, 9.1, 4.4 Hz, C**H**_AH_BCH₂C=O), 2.25-2.18 (1H, m, C**H**_AH_BCCH₃), 2.07-1.88 (2H, m, C**H**_AH_BCH₂CCH₃ and CH_AH_BCH₂C=O), 1.80 (1H, td, *J* = 13.7, 4.6 Hz, CH_AH_BCCH₃), 1.59-1.49 (1H, m, CH_AH_BCH₂CCH₃ overlapped with H₂O), 1.14 (3H, s, the set of the
CH₃); ¹³C NMR (100.6 MHz, CDCl₃) δ 212.8 (C), 211.8 (C), 201.2 (C), 139.2 (C), 131.9 (CH), 130.7 (C), 130.6 (CH), 128.6 (CH), 127.0 (CH), 63.0 (C), 49.5 (CH), 45.3 (CH₂), 41.6 (CH), 39.1 (CH₂), 38.8 (CH₂), 23.4 (CH₂), 22.4 (CH₂), 16.8 (CH₃); HRMS (ESI) Exact mass calculated for C₁₈H₁₉ClNaO₃ [M+Na]⁺: 341.0915, found: 341.0925; Enantiomeric excess was determined by HPLC with a Chiralpak IA-3 column (95:5 *iso*-hexane:*i*-PrOH, 1.5 mL/min, 210 nm, 25 °C); t_r (major) = 10.8 min, t_r (minor) = 12.1 min; 85% ee.

(1R,5R,6S)-1-Methyl-6-[2-(naphthalen-2-yl)-2-

oxoethyl]bicyclo[3.3.1]nonane-2,9-dione (6j). The title compound was

prepared according to the Representative Procedure from enone 5j (67 mg, 0.20 mmol). Purification by column chromatography (20 to 25% EtOAc/iso-hexane) gave a yellow oil (64 mg, 96%) as a >95:5 ratio of diastereomers. $R_f = 0.30$ (30% EtOAc/petroleum ether); [α]²⁰_D -16.7 (*c* 2.20, CHCl₃); IR 3009, 2937, 1731 (C=O), 1703 (C=O), 1628, 1598, 1469, 1453, 1412, 1376, 1278, 1181, 1125, 823 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.45 (1H, s, ArH), 8.04-7.95 (2H, m, ArH), 7.94-7.87 (2H, m, ArH), 7.67-7.55 (2H, m, ArH), 3.21 (1H, dd, J = 16.4, 7.7 Hz, $CH_AH_BC(O)Ar$), 3.15 (1H, dd, J = 16.4, 6.5 Hz, $CH_AH_BC(O)Ar$), 2.94 (1H, dd, J = 9.4, 5.4 Hz, CHC=O), 2.91-2.81 (1H, m, CHCH₂C(O)Ar), 2.63 (1H, app dt, J = 16.3, 6.5 Hz, CH₂CH_AH_BC=O), 2.42 (1H, app dt, J = 16.3, 8.8 Hz, CH₂CH_AH_BC=O), 2.28-2.20 (1H, m, $CH_AH_BCCH_3$), 2.03 (2H, app dt, J = 8.8, 6.1 Hz, $CH_2CH_2C=O$), 1.85-1.67 (2H, m, CH_AH_BCH_AH_BCCH₃), 1.59-1.46 (1H, m, CH_AH_BCH₂CCH₃), 1.17 (3H, s, CH₃); ¹³C NMR (125.8 MHz, CDCl₃) δ 211.9 (C), 211.8 (C), 197.7 (C), 135.7 (C), 134.0 (C), 132.4 (C), 129.7 (CH), 129.5 (CH), 128.7 (2 x CH), 127.8 (CH), 127.0 (CH), 123.7 (CH), 62.7 (C), 48.5 (CH), 41.5 (CH₂), 41.1 (CH₂), 40.7 (CH), 39.0 (CH₂), 25.7 (CH₂), 16.8 (CH₂), 16.6 (CH₃); HRMS (ESI) Exact mass calculated for C₂₂H₂₂NaO₃ [M+Na]⁺: 357.1461, found: 357.1460; Enantiomeric excess was determined by HPLC with a Chiralpak IA-3 column (80:20 iso-hexane:i-PrOH, 1.5 mL/min, 254 nm, 25 °C); t_r (major) = 9.5 min, t_r (minor) = 11.4 min; 87% ee.

(1R,5R,6S)-1-Methyl-6-[2-oxo-2-(pyridin-2-

yl)ethyl]bicyclo[3.3.1]nonane-2,9-dione (6k) and (1*S*,5*S*,6*S*)-1 methyl-6-[2-oxo-2-(pyridin-2-yl)ethyl]bicyclo[3.3.1]nonane-2,9-dione (7k). The title compounds 6k and 7k were prepared according to the Representative Procedure from enone 5k (57 mg, 0.20 mmol). Purification by column chromatography (20% EtOAc/petroleum ether) gave 6k as a white solid (43 mg, 75%) and 7k as a pale brown solid (11 mg, 19%). Data for **6k**: $\mathbf{R}_{f} = 0.31$ (40% EtOAc/petroleum ether); m.p. 101-103 °C (CH₂Cl₂); $[\alpha]_{D}^{20} -28.4$ (*c* 1.06, CHCl₃); IR 2937, 1730 (C=O), 1701 (C=O), 1584, 1453, 1376, 1242, 996, 835 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.66 (1H, ddd, J = 4.7, 1.7, 1.0 Hz, Ar**H**), 8.03 (1H, dt, J = 7.9, 1.0 Hz Ar**H**), 7.85 (1H, td, J = 7.7, 1.7 Hz, Ar**H**), 7.49 (1H, ddd, J = 7.6, 4.7, 1.0 Hz, Ar**H**), 3.35 (1H, dd, J = 16.4, 7.4 Hz, C**H**_AH_BC(O)Ar), 3.26 (1H, dd, J = 16.4, 6.3 Hz, CH_AH_BC(O)Ar), 2.93-2.75 (2H, m, C**H**C=O and C**H**CH₂C(O)Ar), 2.61 (1H, ddd, J = 16.4, 7.2, 6.2 Hz, CH₂C**H**_AH_BC=O), 2.39 (1H, app dt, J = 16.4, 8.2 Hz, CH₂CH_AH_BC=O), 2.24-2.16 (1H, m, C**H**_AH_BCCH₃), 2.11-1.91 (2H, m, C**H**₂CH₂CO), 1.78-1.65 (2H, m, C**H**_AH_BCH₃CH₃), 1.57-1.44 (1H, m, CH_AH_BCH₂CCH₃), 1.15 (3H, s, C**H**₃); ¹³C NMR (100.6 MHz, CDCl₃) δ 212.1 (C), 212.0 (C), 199.7 (C), 153.0 (C), 149.0 (CH), 137.0 (CH), 127.4 (CH), 121.9 (CH), 62.8 (C), 48.5 (CH), 41.2 (CH₂), 40.6 (CH), 40.5 (CH₂), 39.0 (CH₂), 25.8 (CH₂), 16.9 (CH₂), 16.5 (CH₃); HRMS (ESI) Exact mass calculated for C₁₇H₁₉NO₃ [M+H]⁺: 286.1438, found: 286.1422; Enantiomeric excess was determined by HPLC with a Chiralpak IA-3 column (80:20 *iso*-hexane:*i*-PrOH, 1.5 mL/min, 230 nm, 25 °C); t_r (major) = 7.2 min, t_r (minor) = 9.1 min; 82% ee.

Data for **7k**: $R_f = 0.36$ (40% EtOAc/petroleum ether); m.p. 115-118 °C (CH₂Cl₂); $[\alpha]_D^{20} + 36.0$ (*c* 0.15, CHCl₃); IR 3010, 2937, 1732 (C=O), 1700 (C=O), 1585, 1455, 1375, 1243, 998, 926 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.67 (1H, ddd, *J* = 4.8, 1.7, 1.0 Hz, Ar**H**), 8.03 (1H, dt, *J* = 7.9, 1.0 Hz, Ar**H**), 7.84 (1H, td, *J* = 7.9, 1.7 Hz, Ar**H**), 7.49 (1H, ddd, *J* = 7.6, 4.8, 1.2 Hz, Ar**H**), 3.33 (1H, dd, *J* = 15.4, 4.9 Hz, C**H**_ACH_BC(O)Ar), 3.28 (1H, dd, *J* = 15.4, 4.5 Hz, CH_AC**H**_BC(O)Ar), 2.99-2.92 (1H, m, C**H**CH₂C(O)Ar), 2.82 (1H, td, *J* = 9.6, 2.8 Hz, C**H**C=O), 2.70 (1H, ddd, *J* = 16.0, 7.4, 5.0 Hz, CH₂C**H**_AH_BC=O), 2.39 (1H, app dt, *J* = 16.0, 9.1 Hz, CH₂CH_AH_BC=O), 2.27 (1H, ddd, *J* = 18.1, 9.0, 4.4 Hz, C**H**_AH_BCH₂C=O), 2.22-2.16 (1H, m, C**H**_AH_BCCH₃), 2.02-1.89 (3H, m, CH_AH_BCH₂C=O and C**H**_AH_BCH_AH_BCCH₃), 1.57-1.44 (1H, m, CH_AH_BCH₂CCH₃), 1.15 (3H, s, C**H**₃); ¹³C NMR (100.6 MHz, CDCl₃) δ 212.8 (C), 212.3 (C), 200.1 (C), 153.1 (C), 149.0 (CH), 136.9 (CH), 127.4 (CH), 121.8 (CH), 63.1 (C), 49.6 (CH), 41.6 (CH₂), 40.1 (CH), 39.0 (CH₂), 38.8 (CH₂), 23.7 (CH₂), 22.5 (CH₂), 16.8 (CH₃); HRMS (ESI) Exact mass calculated for C₁₇H₁₉NO₃ [M+H]⁺: 286.1438, found: 286.1451; Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column (90:10 *iso*-hexane:*i*-PrOH, 1.0 mL/min, 230 nm, 25 °C); t_r (major) = 13.8 min, t_r (minor) = 15.5 min; 46% ee.

(1*R*,5*R*,6*S*)-6-[4-(Benzyloxy)-2-oxobutyl]-1-

methylbicyclo[3.3.1]nonane-2,9-dione (6l) and (1*S*,5*S*,6*S*)-6-[4-(benzyloxy)-2-oxobutyl]-1-methylbicyclo[3.3.1]nonane-2,9-dione (7l). The title compounds 6l and 7l were prepared according to the Representative Procedure from enone 5l (75 mg, 0.22 mmol). Purification by column chromatography (20 to 30% EtOAc/cyclohexane) gave 6l as a pale yellow oil (26 mg, 35%) and 7l as a pale yellow oil (18 mg, 24%).

Data for **6**I: $\mathbf{R}_{f} = 0.20$ (30% EtOAc/petroleum ether); $[\alpha]_{D}^{20} - 24.3$ (*c* 1.35, CHCl₃); IR 3011, 2935, 1704 (C=O), 1602, 1454, 1376, 1276, 1240, 1102, 909 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.39-7.25 (5H, m, Ar**H**), 4.49 (2H, s, PhC**H**₂O), 3.77-3.71 (2H, m, C**H**₂OBn), 2.81-2.74 (1H, m, C**H**C=O), 2.71-2.58 (3H, m, OCH₂C**H**₂C=O and C**H**CH₂C(O)CH₂), 2.57-2.46 (3H, m, CHC**H**₂C(O)CH₂ and C**H**_AH_BC(O)CCH₃), 2.34 (1H, dt, *J* = 16.4, 8.8 Hz, CH_A**H**_BC(O)CCH₃), 2.19-2.12 (1H, m, C**H**_AH_BCCH₃), 1.95-1.74 (2H, m, C**H**₂CHC=O), 1.72-1.59 (2H, m, CH_A**H**_BCCH₃, C**H**_AH_BCCH₃), 1.95-1.74 (2H, m, C**H**₂CHC=O), 1.72-1.59 (2H, m, CH_A**H**_BCCH₃), C**H**_AH_BCCH₃), 1.95-1.74 (2H, m, C**H**₂CHC=O), 1.72-1.59 (2H, m, CH_A**H**_BCCH₃), 1¹³C NMR (100.6 MHz, CDCl₃) δ 211.9 (C), 211.8 (C), 206.9 (C), 137.8 (C), 129.5 (CH), 128.4 (2 x CH), 127.8 (2 x CH), 73.3 (CH₂), 65.4 (CH₂), 62.7 (C), 48.3 (CH), 46.4 (CH₂), 43.2 (CH₂), 41.0 (CH₂), 39.6 (CH), 38.9 (CH₂), 25.5 (CH₂), 16.7 (CH₂), 16.5 (CH₃); HRMS (ESI) Exact mass calculated for C₂₁H₂₆NaO₄ [M+H]⁺: 365.1723, found: 365.1723; Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column (90:10 *iso*-hexane:*i*-PrOH, 1.5 mL/min, 210 nm, 25 °C); t_r (major) = 12.6 min, t_r (minor) = 14.8 min; 92% ee.

Data for **7I**: $\mathbf{R}_{f} = 0.28$ (30% EtOAc/petroleum ether); $[\alpha]_{D}^{20} + 29.0$ (*c* 0.97, CHCl₃); IR 3011, 2935, 1702 (C=O), 1602, 1455, 1375, 1276, 1240, 1101, 1028 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.39-7.25 (5H, m, ArH), 4.50 (2H, s, PhCH₂O), 3.80-3.68 (2H, m, CH₂OBn), 2.85-2.74 (1H, m, CHCH₂C(O)CH₂), 2.74-2.62 (4H, m, BnOCH₂CH₂C=O, CHC=O, and CH_AH_BC(O)CCH₃), 2.57 (1H, dd, J = 17.9, 7.0 Hz, CHCH_AH_BC(O)CH₂), 2.44 (1H, dd, J = 17.9, 7.3 Hz, CHCH_AH_BC(O)CH₂), 2.35 (1H, dt, J = 16.1, 9.2 Hz, CH_AH_BC(O)CCH₃), 2.17-2.08 (2H, m, CH_AH_BCHC=O and CH_AH_BCCH₃), 1.98-1.81 (2H, m, CH_AH_BCH₂CCH₃ and CH_AH_BCHC=O), 1.70 (1H, td, J = 13.7, 4.6 Hz, CH_AH_BCCH₃), 1.43-1.35 (1H, m, CH_AH_BCH₂CCH₃), 1.11 (3H, s, CH₃); ¹³C NMR (100.6 MHz, CDCl₃) δ 213.0 (C), 212.0 (C), 207.3 (C), 137.9 (C), 129.6 (CH), 128.4 (2 x CH), 127.7 (2 x CH), 73.3 (CH₂), 65.3 (CH₂), 63.0 (C), 49.4 (CH), 45.5 (CH₂), 43.6 (CH₂), 41.1 (CH), 39.0 (CH₂), 38.8 (CH₂), 23.3 (CH₂), 22.3 (CH₂), 16.7 (CH₃); HRMS (ESI) Exact mass calculated for C₂₁H₂₆NaO₄ [M+H]⁺: 365.1723, found: 365.1722; Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column (90:10 *iso*-hexane:*i*-PrOH, 1.5 mL/min, 210 nm, 25 °C); t_r (major) = 8.4 min, t_r (minor) = 9.7 min; 80% ee.

(1*S*,5*R*,6*S*)-1-Allyl-6-(2-oxo-2-phenylethyl)bicyclo[3.3.1]nonane-2,9-dione (6m) and (1*R*,5*S*,6*S*)-1-allyl-6-(2-oxo-2-phenylethyl)bicyclo[3.3.1]nonane-2,9-dione (7m). The title compounds 6m and 7m were prepared according to the Representative Procedure from enone 5m (62 mg, 0.20 mmol). Purification by column chromatography (20 to 25% EtOAc/*iso*-hexane) gave 6m as an off-white solid (55 mg, 89%) and 7m as a colorless film (4 mg, 6%).

Data for **6m**: $R_f = 0.42$ (30% EtOAc/petroleum ether); m.p. 69-70 °C (*iso*-hexane/CH₂Cl₂); $[\alpha]_{D}^{20}$ -27.2 (c 1.60, CHCl₃); IR 3083, 3022, 2948, 1736 (C=O), 1703 (C=O), 1626, 1599, 1449, 1002, 925 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.96-7.90 (2H, m, ArH), 7.62-7.56 (1H, m, ArH), 7.51-7.45 (2H, m, Ar**H**), 5.80 (1H, dddd, J = 16.8, 10.8, 8.2, 6.4 Hz, C**H**=CH₂), 5.08-4.97 (2H, m, CH=CH₂), 3.03 (1H, dd, J = 16.3, 7.5 Hz, CH_AH_BC(O)Ar), 2.97 (1H, dd, J = 16.3, 6.2 Hz, $CH_AH_BC(O)Ar$), 2.90 (1H, app dt, J = 9.7, 3.0 Hz, $CHCH_2C(O)Ar$), 2.79-2.70 (1H, m, CHC=O), 2.58 (1H, ddd, J = 15.1, 6.5, 3.4 Hz, CH_AH_BC(O)CCH₂CH=), 2.47 (1H, dd, J = 13.5, 6.4 Hz, $CH_AH_BCH=$), 2.34 (1H, dd, J = 13.5, 8.2 Hz, $CH_AH_BCH=$), 2.26-2.17 (2H, m, $CH_AH_BC(O)CCH_2CH=$ and $CH_AH_BCCH_2CH=$), 2.11-2.00 (1H, m, $CH_ACH_BCH_2C=O$), 1.86 (1H, dddd, J14.2, 11.6, 6.5, 2.7 Hz, $CH_ACH_BCH_2C=O),$ 1.75-1.63 (2H, = m, $CH_{A}H_{B}CH_{A}H_{B}CCH_{2}CH_{2}$, 1.47-1.32 (1H, m, $CH_{A}H_{B}CH_{2}CCH_{2}CH_{2}$); ¹³C NMR (125.8 MHz, CDCl₃) § 211.6 (C), 211.5 (C), 197.8 (C), 136.6 (C), 133.4 (CH), 133.1 (CH), 128.8 (2 x CH), 128.0 (2 x CH), 118.6 (CH₂), 65.8 (C), 48.6 (CH), 41.3 (CH₂), 41.2 (CH), 40.6 (CH₂), 39.8 (CH₂), 36.3 (CH₂), 25.0 (CH₂), 16.2 (CH₂); HRMS (ESI) Exact mass calculated for C₂₀H₂₃O₃ [M+H]⁺: 311.1642, found: 311.1641; Enantiomeric excess was determined by HPLC with a Chiralpak IA-3 column (60:40 *iso*-hexane:*i*-PrOH, 1.5 mL/min, 254 nm, 25 °C); t_r (major) = 4.4 min, t_r (minor) = 5.4 min; 86% ee.

Data for **7m**: $R_f = 0.53$ (30% EtOAc/petroleum ether); $[\alpha]_D^{20} + 26.4$ (*c* 0.33, CHCl₃); IR 3043, 2935, 1733 (C=O), 1701 (C=O), 1600, 1449, 1279, 1247, 1004, 926 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.97-7.92 (2H, m, Ar**H**), 7.62-7.56 (1H, m, Ar**H**), 7.52-7.45 (2H, m, Ar**H**), 5.81 (1H, dddd, *J* = 16.7, 10.1, 8.2, 6.5 Hz, C**H**=CH₂), 5.10-4.98 (2H, m, CH=C**H**₂), 3.10 (1H, dd, *J* = 16.1, 5.5 Hz, C**H**_AH_BC(O)Ar), 2.98-2.85 (2H, m, C**H**CH_A**H**_BC(O)Ar), 2.78-2.73 (1H, m, C**H**C=O), 2.68 (1H, ddd, *J* = 15.2, 6.6, 3.1 Hz, C**H**_AH_BC(O)CCH₂CH=), 2.49 (1H, dd, *J* = 13.5, 6.4 Hz, C**H**_AH_BCH₂CH=), 2.40-2.28 (2H, m, CH_AH_BCH= and CH_AH_BC(O)CCH₂CH=), 2.25-2.13 (2H, m, C**H**_AH_BCCH₂CH= and C**H**_ACH_BCH₂C=O), 2.11-2.00 (1H, m, CH_ACH_BCH₂C=O), 1.90-1.79 (2H, m, C**H**_AH_BCH_AH_BCCH₂CH=), 1.54-1.46 (1H, m, CH_AH_BCH₂CCH₂CH=); ¹³C NMR (125.8 MHz, CDCl₃) δ 212.9 (C), 211.5 (C), 198.1 (C), 136.8 (C), 133.4 (CH), 133.0 (CH), 128.7 (2 x CH),

128.0 (2 x CH), 118.7 (CH₂), 66.3 (C), 49.9 (CH), 42.1 (CH), 40.8 (CH₂), 40.2 (CH₂), 37.8 (CH₂), 36.5 (CH₂), 23.0 (CH₂), 22.2 (CH₂); HRMS (ESI) Exact mass calculated for C₂₀H₂₂NaO₃ [M+Na]⁺: 333.1461, found: 333.1452; Enantiomeric excess was determined by HPLC with a Chiralpak IA-3 column (90:10 *iso*-hexane:*i*-PrOH, 1.5 mL/min, 254 nm, 25 °C); t_r (major) = 6.3 min, t_r (minor) = 7.6 min; 94% ee.

(1S,5R,6S)-1-Allyl-6-[2-(4-chlorophenyl)-2-

oxoethyl]bicyclo[3.3.1]nonane-2,9-dione (6n). The title compound was prepared according to the Representative Procedure from enone

5n (69 mg, 0.20 mmol). Purification by column chromatography (15 to 20% EtOAc/petroleum ether) gave a white solid (65 mg, 94%) as a >95:5 ratio of diastereomers. $R_f = 0.42$ (30% EtOAc/petroleum ether); m.p. 100-102 °C (CH₂Cl₂); [α]²⁰_D -22.5 (*c* 1.09, CHCl₃); IR 2929, 1736 (C=O), 1703 (C=O), 1639, 1590, 1449, 1349, 1280, 1094, 985 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.86 (2H, d, J = 8.7 Hz, Ar**H**), 7.45 (2H, d, J = 8.7 Hz, Ar**H**), 5.79 (1H, dddd, J = 16.7, 10.1, 8.2, 10.1,6.4 Hz, CH=CH₂), 5.08-4.96 (2H, m, CH=CH₂), 2.99 (1H, dd, J = 16.4, 7.5 Hz, CH_AH_BC(O)Ar), 2.93 (1H, dd, J = 16.4, 6.2 Hz, CH_AH_BC(O)Ar), 2.88 (1H, app dt, J = 9.9, 2.9 Hz CHC=O), 2.77-2.66 (1H, m, CHCH₂C(O)Ar), 2.57 (1H, ddd, J = 15.0, 6.5, 3.3 Hz, CH_AH_BC(O)CCH₂CH=), 2.46 (1H, dd, J = 13.5, 6.4 Hz, CH_AH_BCH=), 2.32 (1H, dd, J = 13.5, 8.2 Hz, CH_AH_BCH=), 2.24-2.13 (2H, m, $CH_AH_BC(O)CCH_2CH=$ and $CH_AH_BCCH_2CH=$), 2.10-1.99 (1H, m, $CH_ACH_BCH_2C=O$), 1.89-1.78 (1H, m, CH_ACH_BCH₂C=O), 1.73-1.62 (2H, m, CH_AH_BCH_AH_BCCH₂CH=), 1.46-1.30 (1H, m, $CH_AH_BCH_2CCH_2CH_2$); ¹³C NMR (100.6 MHz, CDCl₃) δ 211.5 (C), 211.4 (C), 196.4 (C), 139.9 (C), 134.9 (C), 133.1 (CH), 129.4 (2 x CH), 129.1 (2 x CH), 118.6 (CH₂), 65.7 (C), 48.5 (CH), 41.2 (CH₂), 41.0 (CH), 40.6 (CH₂), 39.7 (CH₂), 36.3 (CH₂), 25.0 (CH₂), 16.1 (CH₂); HRMS (ESI) Exact mass calculated for $C_{20}H_{21}CINaO_3$ [M+Na]⁺: 367.1071, found: 367.1052; Enantiomeric excess was determined by HPLC with a Chiralpak IC column (90:10 iso-hexane:EtOH, 1.0 mL/min, 210 nm, 25 °C); t_r (major) = 13.4 min, t_r (minor) = 14.4 min; 88% ee.

(15,5R,6S)-6-(2-Oxo-2-phenylethyl)-1-phenylbicyclo[3.3.1]nonane-2,9-dione

(60). The title compound was prepared according to the Representative Procedure from enone 50 (69 mg, 0.20 mmol). Purification by column

chromatography (20 to 30% EtOAc/petroleum ether) gave a brown solid (47 mg, 68%) as a >95:5 ratio of diastereomers. $R_f = 0.17$ (20% EtOAc/petroleum ether); m.p. 163-166 °C (CH₂Cl₂); $[\alpha]_D^{20}$ +13.2 (c 0.44, CHCl₃); IR 2954, 2929, 1736 (C=O), 1706 (C=O), 1688 (C=O), 1599, 1500, 1449, 1268, 1092, 985 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.99-7.94 (2H, m, ArH), 7.65-7.57 (1H, m, Ar**H**), 7.54-7.46 (2H, m, Ar**H**), 7.39-7.28 (3H, m, Ar**H**), 7.14-7.08 (2H, m, Ar**H**), 3.15-2.98 (3H, m, C**H**₂C(O)Ph and C**H**C=O), 2.94-2.74 (3H, m, C**H**CH₂C(O)Ph, CH₂C**H**_AH_BC=O, and C**H**_AH_BCPh), 2.61 (1H, ddd, J = 14.5, 12.2, 8.9 Hz, CH₂CH_A**H**_BC=O), 2.32-2.17 (2H, m, CH_A**H**_BCPh and C**H**_ACH_BCH₂C=O), 2.04-1.85 (2H, m, CH_AC**H**_BCH₂C=O and C**H**_AH_BCH₂CPh), 1.64-1.46 (1H, m, CH_A**H**_BCH₂CPh); ¹³C NMR (100.6 MHz, CDCl₃) δ 210.6 (C), 210.2 (C), 197.6 (C), 136.6 (C), 136.2 (C), 133.5 (CH), 128.8 (2 x CH), 128.4 (2 x CH), 128.1 (2 x CH), 127.7 (CH), 127.6 (2 x CH), 70.0 (C), 48.6 (CH), 41.2 (CH₂), 41.1 (CH₂ and CH), 37.8 (CH₂), 24.8 (CH₂), 16.2 (CH₂); HRMS (ESI) Exact mass calculated for C₂₃H₂₂NaO₃ [M+Na]⁺: 369.1461, found: 369.1454; Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column (80:20 *iso*-hexane:*i*-PrOH, 1.5 mL/min, 210 nm, 25 °C); t_r (major) = 13.1 min, t_r (minor) = 19.3 min; 94% ee.

(1S,5R,6S)-6-[2-Oxo-2-(thiophen-2-yl)ethyl]-1-

phenylbicyclo[3.3.1]nonane-2,9-dione (6p). The title compound was

prepared according to a modification of the Representative Procedure from enone **5p** (70 mg, 0.20 mmol) in toluene (2 mL). Purification by column chromatography (40% EtOAc/petroleum ether) gave a yellow solid (35 mg, 50%) as a >95:5 ratio of diastereomers. $R_f =$ 0.18 (40% EtOAc/petroleum ether); m.p. 145-149 °C (CH₂Cl₂); [α]²⁰_p +29.9 (c 0.91, CHCl₃); IR 2934, 1736 (C=O), 1707 (C=O), 1661 (C=O), 1518, 1416, 1357, 1266, 1090, 840 cm⁻¹; ¹H NMR $(400 \text{ MHz}, \text{CDCl}_3) \delta 7.73 (1\text{H}, \text{dd}, J = 3.8, 1.1 \text{ Hz}, \text{ArH}), 7.68 (1\text{H}, \text{dd}, J = 5.0, 1.1 \text{ Hz}, \text{ArH}), 7.38$ -7.27 (3H, m, ArH), 7.16 (1H, dd, J = 5.0, 3.8 Hz, ArH), 7.13-7.09 (2H, m, ArH), 3.08 (1H, app dt, J = 10.3, 2.7 Hz, CHC=O), 3.01 (1H, dd, J = 15.5, 7.7 Hz, CH_AH_BC(O)Ar), 2.95 (1H, dd, J = 15.5, 7.7 Hz, A H_BC(O)Ar), 2.95 (1H, dd, J = 15.5, 7.7 Hz, A H_BC(O)Ar), 2.95 (1H, dd, J = 15.5, 7.7 Hz, A H_BC(O)Ar), 2.95 (1H, dd, J = 15.5, 7.7 Hz, A H_BC(O)Ar), 2.95 (1H, dd)Ar), 2.95 (1H, dd)Ar), 2.95 (1H, dd)Ar), 2.9 6.3 Hz, CH_AH_BC(O)Ar), 2.89-2.74 (3H, m, CHCH₂C(O)Ar, CH₂CH_AH_BC=O, and CH_AH_BCPh), 2.61 (1H, ddd, J = 14.5, 12.3, 9.0 Hz, CH₂CH_AH_BC=O), 2.30-2.17 (2H, m, CH_AH_BCPh and CH_ACH_BCH₂C=O), 2.02-1.84 (2H, m, CH_ACH_BCH₂C=O and CH_AH_BCH₂CPh), 1.61-1.48 (1H, m, CH_A**H**_BCH₂CPh); ¹³C NMR (100.6 MHz, CDCl₃) δ 210.5 (C), 210.0 (C), 190.5 (C), 144.0 (C), 136.1 (C), 134.3 (CH), 132.1 (CH), 128.4 (2 x CH), 128.3 (CH), 127.7 (CH), 127.6 (2 x CH), 69.9 (C), 48.5 (CH), 42.0 (CH₂), 41.5 (CH), 41.0 (CH₂), 37.6 (CH₂), 24.7 (CH₂), 16.1 (CH₂); HRMS (ESI) Exact mass calculated for $C_{21}H_{20}NaO_3$ [M+Na]⁺: 375.1025, found: 375.1011; Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column (75:25 iso-hexane:i-PrOH, 1.5 mL/min, 210 nm, 25 °C); t_r (major) = 12.2 min, t_r (minor) = 18.2 min; 97% ee.

(1*S*,5*R*,6*S*)-1-(4-Methoxyphenyl)-6-(2-oxo-2phenylethyl)bicyclo[3.3.1]nonane-2,9-dione (6q). The title compound was prepared according to the Representative Procedure from enone 5q

(75 mg, 0.20 mmol). Purification by column chromatography (20 to 40% EtOAc/petroleum ether)

gave a white solid (47 mg, 63%) as a >95:5 ratio of diastereomers. $R_f = 0.17$ (40% EtOAc/petroleum ether); m.p. 179-180 °C (CH₂Cl₂); $[\alpha]_D^{20}$ +14.6 (*c* 0.94, CHCl₃); IR 1735 (C=O), 1705 (C=O), 1685 (C=O), 1599, 1516, 1424, 1239, 929 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.99-7.93 (2H, m, ArH), 7.64-7.57 (1H, m, ArH), 7.53-7.47 (2H, m, ArH), 7.07-7.01 (2H, m, ArH), 6.92-6.87 (2H, m, ArH), 3.80 (3H, s, CH₃), 3.11-3.06 (1H, m, CHC=O), 3.09 (1H, dd, *J* = 16.3, 7.6 Hz, CH_AH_BC(O)Ph), 3.02 (1H, dd, *J* = 16.3, 6.0 Hz, CH_AH_BC(O)Ph), 2.91-2.86 (1H, m, CHCH₂C(O)Ph), 2.81-2.73 (2H, m, CH₂CH_AH_BC=O and CH_AH_BCAr), 2.59 (1H, ddd, *J* = 14.5, 12.2, 8.9 Hz, CH₂CH_AH_BC=O), 2.28-2.15 (2H, m, CH_AH_BCAr, CH_ACH_BCH₂CAr); ¹³C NMR (100.6 MHz, CDCl₃) δ 210.8 (C), 210.5 (C), 197.6 (C), 158.9 (C), 136.6 (C), 133.5 (CH), 128.8 (2 x CH), 128.7 (2 x CH), 128.2 (C), 128.1 (2 x CH), 113.9 (2 x CH), 69.4 (C), 55.2 (CH₃), 48.7 (CH), 41.2 (CH₂), 41.1 (CH), 41.0 (CH₂), 38.0 (CH₂), 24.8 (CH₂), 16.2 (CH₂); HRMS (ESI) Exact mass calculated for C₂₄H₂₄NaO₄ [M+Na]⁺: 399.1567, found: 399.1565. Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column (75:25 *iso*-hexane:*i*-PrOH, 1.5 mL/min, 210 nm, 25 °C); t_r (major) = 18.8 min, t_r (minor) = 32.6 min; 94% ee.

(1*S*,5*R*,6*S*)-1-(4-Methoxyphenyl)-6-[2-oxo-2-(thiophen-2-

yl)ethyl]bicyclo[3.3.1]nonane-2,9-dione (6r). The title compound was prepared according to the Representative Procedure from enone

5r (77 mg, 0.20 mmol). Purification by column chromatography (30% EtOAc/petroleum ether) gave a pale yellow solid (38 mg, 49%) as a >95:5 ratio of diastereomers. $R_f = 0.15$ (40% EtOAc/petroleum ether); m.p. 164-167 °C (CH₂Cl₂); $[\alpha]_D^{20}$ +14.2 (*c* 0.81, CHCl₃); IR 2939, 2839, 1730 (C=O), 1705 (C=O), 1661 (C=O), 1515, 1465, 1416, 1254, 1184 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.73 (1H, dd, *J* = 3.8, 1.1 Hz, Ar**H**), 7.68 (1H, dd, *J* = 5.0, 1.1 Hz, Ar**H**), 7.16 (1H, dd, *J* = 5.0, 3.8 Hz, Ar**H**), 7.05-7.01 (2H, m, Ar**H**), 6.91-6.86 (2H, m, Ar**H**), 3.79 (3H, s, C**H**₃), 3.08 (1H, app dt, *J* = 10.2, 2.6 Hz, C**H**C=O), 3.01 (1H, dd, *J* = 15.5, 7.7 Hz, C**H**_AH_BC(O)Ar), 2.94 (1H, dd, *J* = 15.5, 6.3 Hz, CH_AH_BC(O)Ar), 2.89-2.82 (1H, m, C**H**CH₂C(O)Ar), 2.81-2.73 (2H, m, CH₂C**H**_AH_BC=O and C**H**_AH_BCAr), 2.58 (1H, ddd, *J* = 14.5, 12.3, 8.9 Hz, CH₂CH_AH_BC=O), 2.28-2.14 (2H, m, CH_AH_BCAr and CH_ACH_BCH₂C=O), 2.01-1.84 (2H, m, CH_ACH_BCH₂C=O and C**H**_AH_BCH₂CAr), 1.60-1.47 (1H, m, CH_AH_BCH₂CAr); ¹³C NMR (100.6 MHz, CDCl₃) δ 210.7 (C), 210.4 (C), 190.5 (C), 158.9 (C), 144.0 (C), 134.3 (CH), 132.1 (CH), 128.7 (2 x CH), 128.3 (CH), 128.1 (C), 113.9 (2 x CH), 69.3 (C), 55.2 (CH₃), 48.5 (CH), 42.1 (CH₂), 41.5 (CH), 41.0 (CH₂), 37.8 (CH₂), 24.9 (CH₂), 16.2 (CH₂); HRMS (ESI) Exact mass calculated for C₂₄H₂₄NaO₄ [M+Na]⁺: 405.1131, found: 405.1119; Enantiomeric excess was determined by HPLC with a Chiralpak AD-H

column (75:25 *iso*-hexane:*i*-PrOH, 1.5 mL/min, 254 nm, 25 °C); t_r (major) = 21.9 min, t_r (minor) = 39.0 min; 92% ee.

N,N-Dibenzyl-2-[(1R,2S,5R)-5-methyl-6,9-dioxobicyclo[3.3.1]nonan-2yl]acetamide (9). The title compound was prepared according to a modification of the Representative Procedure from α,β -unsaturated amide 8 (81 mg, 0.20 mmol) and phosphoric acid 4b (15 mg, 0.02 mmol) in toluene (2 mL) and by heating at 80 °C for 72 h. Purification by column chromatography (20 to 40% EtOAc/petroleum ether) gave a colorless film (42 mg, 52%) as a >95:5 ratio of diastereomers [along with recovered starting material (32 mg, 40%)]. Rf = 0.33 (40% EtOAc/petroleum ether); $[\alpha]_{p}^{20}$ -15.1 (c 2.10, CHCl₃); IR 3066, 2936, 1731 (C=O), 1703 (C=O), 1644 (C=O), 1496, 1467, 1453, 1361, 1240, 1079 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.43-7.27 (6H, m, Ar**H**), 7.25-7.18 (2H, m, Ar**H**), 7.13 (2H, d, J = 7.1Hz, Ar**H**), 4.66 (1H, d, J = 14.7 Hz, C**H**_AH_BPh), 4.60 (1H, d, J = 14.7 Hz, CH_A**H**_BPh), 4.48 (1H, d, J = 17.9 Hz, CH_A'H_B'Ph), 4.43 (1H, d, J = 17.9 Hz, CH_A'H_B'Ph), 2.88 (1H, dt, J = 8.6, 2.8 Hz, CHC=O), 2.77-2.67 (1H, m, CHCH₂C(O)NBn₂), 2.54-2.38 (3H, m, CH₂C(O)CCH₃ and $CH_AH_BC(O)NBn_2$, 2.32 (1H, dt, J = 16.2, 8.9 Hz, $CH_AH_BC(O)NBn_2$), 2.20 (1H, ddd, J = 13.3, 4.7, 10.51.6 Hz, $CH_AH_BCCH_3$), 1.88 (1H, dtd, J = 14.4, 8.8, 5.7 Hz, $CH_ACH_BCH_2C=O$), 1.81-1.69 (2H, m, $CH_ACH_BCH_2C=O$ and $CH_AH_BCH_2CCH_3$, 1.65 (1H, dd, J = 13.4, 4.8 Hz, $CH_AH_BCCH_3$), 1.41-1.31 (1H, m, CH_A**H**_BCH₂CCH₃), 1.15 (3H, s, C**H**₃); ¹³C NMR (100.6 MHz, CDCl₃) δ 212.0 (C), 211.7 (C), 170.9 (C), 137.1 (C), 136.3 (C), 129.1 (2 x CH), 128.7 (2 x CH), 128.3 (2 x CH), 127.8 (CH), 127.6 (CH), 126.1 (2 x CH), 62.6 (C), 50.1 (CH₂), 48.7 (CH₂), 48.4 (CH), 41.2 (CH), 41.0 (CH₂), 38.9 (CH₂), 36.3 (CH₂), 25.6 (CH₂), 16.7 (CH₂), 16.6 (CH₃); HRMS (ESI) Exact mass calculated for C₂₆H₃₀NO₃ [M+H]⁺: 404.2220, found: 404.2217; Enantiomeric excess was determined by HPLC with a Chiralpak IA-3 column (90:10 *iso*-hexane:*i*-PrOH, 1.5 mL/min, 210 nm, 25 °C); t_r (major) = 24.1 min, t_r (minor) = 27.6 min; 77% ee.

(1*R*,5*R*,6*S*)-6-[2-(Benzo[*d*]oxazol-2-yl)-2-oxoethyl]-1methylbicyclo[3.3.1]nonane-2,9-dione (11). The title compound was

prepared according to the Representative Procedure from alkenylbenzoxazole **10** (59 mg, 0.20 mmol). Purification by column chromatography (40% EtOAc/petroleum ether) gave a yellow solid (52 mg, 88%) as a >95:5 ratio of diastereomers. $R_f = 0.24$ (40% EtOAc/petroleum ether); m.p. 129-133 °C (CH₂Cl₂); $[\alpha]_D^{20}$ –18.9 (*c* 1.10, CHCl₃); IR 2937, 1732 (C=O), 1703 (C=O), 1614, 1572, 1455, 1344, 1242, 1106, 1003 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.69-7.64 (1H, m, ArH), 7.51-7.45 (1H, m, ArH), 7.35-7.28 (2H, m, ArH), 3.05

(1H, dd, J = 12.1, 4.7 Hz, CH_AH_BC=N), 3.00 (1H, dd, J = 12.1, 4.6 Hz, CH_AH_BC=N), 2.84 (1H, app dt, J = 7.6, 3.9 Hz, CHC=O), 2.81-2.70 (1H, m, CHCH₂C=N), 2.62 (1H, app dt, J = 16.3, 6.5 Hz, CH_AH_BC=O), 2.27-2.21 (1H, m, CH_AH_BCCH₃), 2.08-2.00 (2H, m, CH₂CH₂C=O), 1.78-1.53 (3H, m, CH₂CH_AH_BCCH₃), 1.15 (3H, s, CH₃); ¹³C NMR (100.6 MHz, CDCl₃) δ 211.6 (C), 211.5 (C), 164.1 (C), 150.8 (C), 141.1 (C), 124.9 (CH), 124.4 (CH), 119.7 (CH), 110.4 (CH), 62.6 (C), 47.9 (CH), 42.8 (CH), 40.7 (CH₂), 38.9 (CH₂), 32.0 (CH₂), 25.6 (CH₂), 16.5 (CH₃), 16.3 (CH₂); HRMS (ESI) Exact mass calculated for C₁₈H₂₀NO₃ [M+H]⁺: 298.1438, found: 298.1422; Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column (95:5 *iso*-hexane:*i*-PrOH, 0.8 mL/min, 254 nm, 25 °C); t_r (minor) = 29.1 min, t_r (major) = 31.4 min; 62% ee.

Supplementary Information

0

Tests for the Self-Disproportionation of Enantiomers (SDE) Phenomenon

Recently, the phenomenon termed "Self-Disproportionation of Enantiomers" (SDE) has been described, which provides the possibility for significant changes to the enantiomeric composition of samples of compounds to occur during achiral column chromatography.¹⁸ To check whether the SDE phenomenon was observed for the series of compounds described herein, two representative bicyclic products were passed through a normal silica gel column and the enantiomeric excesses of various fractions were measured, as described below. From these results, it was concluded that a small but measurable SDE was observed for these compounds. However, the effect of the SDE on the quoted enantiomeric excesses of the products is likely to be minimal, given the small magnitude of the SDE and the straightforward purification of the products, meaning that the significant majority of material was collected during column chromatography.

(1R,2S,5R)-5-Methyl-2-[2-oxo-2-(pyridin-2-yl)ethyl]bicyclo[3.2.1]octane-

^{Me} $_{2h}$ **6,8-dione (2h)**. Previously purified bicycle **2h** (87% ee) was passed through a silica gel column (40% EtOAc/petroleum ether) and collected over 12 fractions. The enantiomeric excesses for fractions 1, 7, and 12 were determined by HPLC with a Chiralpak IA-3 column (70:30 *iso*-hexane:*i*-PrOH, 1.5 mL/min, 230 nm, 25 °C). Fraction 1: t_r (major) = 8.0 min, t_r (minor) = 13.8 min; 90% ee.

Fraction 7: t_r (major) = 8.3 min, t_r (minor) = 14.4 min; 84% ee.

Fraction 12: t_r (major) = 8.5 min, t_r (minor) = 15.0 min; 86% ee.

These results show that **2h** exhibits a small but observable SDE (the original sample was 87% ee).

Racemate:

Original sample (87% ee):

(a) V. A. Soloshonok, *Angew. Chem., Int. Ed.* 2006, 45, 766-769. (b) V. A. Soloshonok, C. Roussel, O. Kitagawa, A. E. Sorochinsky, *Chem. Soc. Rev.* 2012, 41, 4180-4188. (c) Y. Suzuki, J. Han, O. Kitagawa, J. L. Acena, K. D. Klika, V. A. Soloshonok, *RSC Adv.* 2015, 5, 2988-2993.

Supplementary Information

Fraction 1 (90% ee)

Meas. R	Area %	Width	Symmetr.
8.092	94.940	0.569	0.554
13.840	5.060	1.069	0.573

Fraction 7 (84% ee):

Meas.	R Area	Width	Symmetr.
8.342	92.071	0.57	3 0.566
14.413	7.929	1.09	7 0.577

Fraction 12 (86% ee):

(1*S*,5*R*,6*S*)-1-(4-Methoxyphenyl)-6-[2-oxo-2-(thiophen-2yl)ethyl]bicyclo[3.3.1]nonane-2,9-dione (6r). Previously purified bicycle 6r (92% ee) was passed through a silica gel column (40%

EtOAc/petroleum ether) and collected over 9 fractions. The enantiomeric excesses for fractions 1, 5, and 9 were determined by HPLC with a Chiralpak AD-H column (75:25 *iso*-hexane:*i*-PrOH, 1.5 mL/min, 254 nm, 25 °C).

Fraction 1: t_r (major) = 22.9 min, t_r (minor) = 41.8 min; 92% ee.

Fraction 5: t_r (major) = 22.7 min, t_r (minor) = 41.4 min; 90% ee.

Fraction 9: t_r (major) = 22.5 min, t_r (minor) = 40.9 min; 89% ee.

These results show that **6r** may exhibit a small but observable SDE (the original sample was 92% ee), but the contribution of instrumental error to the deviation of $\pm 3\%$ ee cannot be excluded.

Racemate:

Fraction 1 (92% ee):

Original sample (92% ee):

Data file: Sample name:			C:\CHEM32\1\DATA\AMAEL\DEF_LC 2014-07-16 21-07-04\AM641-EE-1.D AM641-ee-1						
Instr	ument:		AGILENT 12	260	Acq. op	erator:	SYST	EM	
Injec	tion da	te:	7/16/2014 9	:14:35 PM					
Acq.	metho	d:	ADH75B25A ML.80UL.M	A.45MIN.1.5					
	220-	DAD1 A	Sig=254,4 Ref	=360,100					
	200-		1.85						
	180		<i>a</i> :+						
	160-								
	140-								
	120								
JAL	100		- 11						
-	80-		- 11						
	60-								
	40-								
	20-							062	
	0						_	č.	
	17	7 18 19	20 21 22 23	3 24 25 26 27 28	3 29 30 31 32 33 Time [min]	34 35 36	37 38	39 40 41	42 43
Sic	mal:		1 A Sig=254	4 Ref=360 100					
RT	[min]	Type	Width [min]	Area	Height	Area%			
21	854	BB	0.6371	8413 978	204 9108	95.82			

4 4 9 9 1

4 18

Fraction 5 (90% ee):

MM 1.3600

367 122

39 062

Fraction 9 (89% ee):

[min]	Туре	Width [min]	Area	Height	Area%
.526	BB	0.6971	1813.603	40.4484	94.29
.944	MM	1.5052	109.922	1.2171	5.71

Preliminary Kinetic Experiments

Representative procedure for experiment conducted at 1 mol% catalyst loading:

A solution of enone **5d** (30 mg, 0.10 mmol), fluorobenzene (internal reference, *ca.* 10 μ L), and (*R*)-TRIP (**4b**, 0.0547 M in toluene-d₈, 18 μ L, 0.001 mmol) in toluene-d₈ (1 mL) was stirred at room temperature for 5 min until the solution became homogeneous. A 0.5 mL aliquot was removed and transferred to an NMR tube. ¹⁹F NMR analysis of the sample at 50 °C was performed (with a d1 relaxation time of 5 s to increase the accuracy of integration), with spectra taken every 137 s until the reaction reached approximately 20% conversion. From a plot of [**5d**] against time, the initial rate for the reaction was calculated.

This process was repeated for catalyst loadings of 3, 5, 7.5, 10, and 15 mol%, and initial rates for each experiment were calculated. A plot of ln[initial rate] against ln[**4b**] gives a straight line, the gradient of which corresponds to the reaction order with respect to catalyst.

Supplementary Information

Conc. of catalyst (M)	In[catalyst]	Initial rate (molL ⁻¹ s ⁻¹)	In[initial rate]
0.001	-6.907755279	2.05565E-06	-13.0949
0.003	-5.80914299	4.85715E-06	-12.2351
0.005	-5.298317367	6.10843E-06	-12.0058
0.0075	-4.892852258	8.89897E-06	-11.6296
0.01	-4.605170186	1.01684E-05	-11.4962
0.015	-4.199705078	1.20027E-05	-11.3304

Therefore, the order with respect to catalyst 4b is 0.66.

Measurement of the Enantioselectivity of 2j with Increasing Conversion

A solution of enone **1j** (138.0 mg, 0.50 mmol) and (*R*)-TRIP (**4b**, 11.3 mg, 0.015 mmol) in toluene (5 mL) was stirred at 50 °C for 24 h (toluene was selected as the solvent rather than cyclohexane to ensure complete homogeneity of the reaction mixture). In order to measure the enantiomeric excess of **2j** over the course of the reaction, 400 μ L aliquots were removed at various time intervals. The aliquots were concentrated *in vacuo* and analyzed by ¹H NMR spectroscopy to determine the conversion. A small quantity of the aliquot was then purified by preparative thin-layer chromatography to obtain a pure sample of **2j** for measuring the enantiomeric excess. (The

enantiomeric excess of several aliquots were checked before and after concentration *in vacuo*; no changes in enantiomeric excess were observed.) The following results were obtained:

Time (h)	Conversion (%)	ee (%)
1	15	70
2	18	74
3	21	80
4	25	81
5	28	81
7	35	86
9.5	46	88
24	75	90

HPLC conditions: Chiralpak IA-3 column (70:30 iso-hexane:i-PrOH, 1.5 mL/min, 230 nm, 25 °C).

data acquired by: data acquired by: HWL 4/1/2015 AM Ana 5/22/2014 Vial 53 vgth=230 nm (AMDEF_LC 2014-05-22 13-25-53\AM589-RAC-5.D on: location: on: location: Vial 31 ath=230 nm (AM\DEF_LC 2015-04-01 20-36-29\AM-1H-POST-CONC-1.D mAU mAU 40 15 3.936 12.5 -30 10 7.5 20 5 10 2.5 0 -2.5 Meas. R Area % Width Symmetr. Width Meas. R Area 🗧 Symmetr. 10.856 85.061 0.442 0.499 0.565 49.780 50.220 0.475 0.723 0.509 0.524 10.625 13.936 14.673 14.939 0.674

2 h, 18% conversion, 74% ee

3 h, 21% conversion, 80% ee

1 h, 15% conversion, 70% ee

Meas.	R	Area	8	Width	Symmetr.
11.006	86	.853		0.535	0.463
14.909	13	.147		0.616	0.522

Meas. R	Area %	Width	Symmetr.
10.955 14.963	89.788 10.212	0.570	0.436

4 h, 25% conversion, 81% ee

5 h, 28% conversion, 81% ee

7 h, 35% conversion, 86% ee

9.5 h, 46% conversion, 88% ee

Meas.	R	Area	8	Width	Symmetr.
10.609	93	3.181		0.714	0.412
14.733	6.	819		0.824	0.471

10.913 94.174 0.627 0.461	Meas. 1	R Area %	Width	Symmetr.
	10.913	94.174	0.627	0.461
15.078 5.826 0.753 0.462	15.078	5.826	0.753	0.462

24 h, 75% conversion, 90% ee

Meas.	R	Area	6	Width	Symmetr.
10.357	95	.061		0.546	0.413
14.013	4.	939		0.684	0.416

NMR Spectra

HPLC Traces

Meas. R	Area %	Width	Symmetr.	
5.713	50.459	0.261	0.514	
8.576	49.541	0.510	0.588	

Meas. R	Area %	Width	Symmetr.
5.543	95.449	0.370	0.442
8.653	4.551	0.498	0.575

Meas. R	Area %	Width	Symmetr.
3.232	50.355	0.144	0.518
3.768	49.645	0.163	0.499

Meas. R	Area %	Width	Symmetr.
3.215	93.448	0.162	0.479
3.750	6.552	0.169	0.509

Meas. R	Area %	Width	Symmetr.	Meas. R	Area %	Width	Symmetr.
11.536 28.743	50.600 49.400	0.530	0.531 0.583	10.925	95.824 4.176	0.633	0.569

Meas. R	Area %	Width	Symmetr.
7.924	50.273	0.392	0.547
16.992	49.727	1.105	0.605

Meas. R	Area %	Width	Symmetr.
7.747	95.322	0.499	0.548
17.136	4.678	1.015	0.722

Meas. R	Area %	Width S	ymmetr.
7.141	50.185	0.336	0.500
9.514	49.815	0.535	0.572

Meas. R	Area %	Width	Symmetr.
7.517	96.844	0.534	0.582
10.537	3.156	0.594	0.613

Meas. R	Area 🖁	Width	Symmetr.
4.600	50.329	0.205	0.486
5.495	49.671	0.246	0.485

Meas. R	Area %	Width	Symmetr.
4.606	92.333	0.228	0.542

Signal:	DAD1 B, Sig=210,4 Ref=360,100				
RT [min]	Туре	Width [min]	Area	Height	Area%
11.680	BB	0.2881	609.433	32.5929	50.46
16.516	BB	0.4201	598.380	22.2259	49.54

C1CHEM32(11)DATA\AMAEL\DEF_LC 2014-12-02 11-07-35\AM824-BS-EE-MINOR-1.D AM824-bs-ee-minor-1 Data file: Sample name: SYSTEM Instrument: AGILENT 1260 Acq. operator:

Area%

7.24

92.76

Signal:	DAD	1 B, Sig=210	4 Ref=360,100		
RT [min]	Туре	Width [min]	Area	Height	Area%
12.024	BB	0.2987	461.988	23.7714	82.89
17.434	MM	0.4989	95.334	3.1848	17.11

Gram-scale experiment:

Supplementary Information

Data file: Sample name

Meas. R	Area %	Width	Symmetr.
7.422	49.869	0.334	0.456
11.417	50.131	0.739	0.525

Meas. R	Area %	Width	Symmetr.
7.404	93.350	0.430	0.532
11.923	6.650	0.737	0.585

Supplementary Information

Meas. R	Area 🖁	Width	Symmetr.
7.315	50.239	0.363	0.526
10.946	49.761	0.610	0.566

Meas. R	Area %	Width	Symmetr.
6.943	93.898	0.486	0.596
10.721	6.102	0.632	0.604

Meas. R	Area %	Width	Symmetr.
10.305 12.105	50.785 49.215	0.485 0.566	0.570

Meas. R	Area %	Width	Symmetr.
10.478	94.780	0.485	0.532
12.323	5.220	0.593	0.481

Meas. R	Area %	Width	Symmetr.
10.625	49.780	0.475	0.509
13.936	50.220	0.723	0.524

Meas. R	Area %	Width	Symmetr.
10.534	96.097	0.566	0.518
14.265	3.903	0.705	0.579

Meas. R	Area %	Width	Symmetr.
4.826	49.898	0.183	0.457
6.411	50.102	0.295	0.482

Meas. R	Area %	Width	Symmetr.
4.491 6.124	96.300 3.700	0.228	0.482

Meas. R	Area %	Width	Symmetr.
4.309	49.818	0.210	0.512
5.195	50.182	0.267	0.492

Meas. R	Area %	Width	Symmetr.
4.798	90.709	0.194	0.483
5.880	9.291	0.257	0.530

Meas. R	Area 🕏	Width	Symmetr.
7.176	50.300	0.278	0.458
9.000	49.700	0.344	0.469

7.072 96.83			
	37	0.317	0.469
8.865 3.163	3	0.405	0.501

Meas. R	Area %	Width	Symmetr.
7.537	50.050	0.288	0.611
10.635	49.950	0.465	0.676

Meas. R	Area %	Width	Symmetr.
7.721	93.242	0.366	0.567
10.984	6.758	0.546	0.640

Meas. R	Area 🖁	Width	Symmetr.
6.785	49.464	0.295	0.542
11.270	50.536	0.821	0.610

Meas. R	Area %	Width	Symmetr.
6.420	93.398	0.316	0.509
11.356	6.602	0.616	0.649

Meas. F	Area %	Width	Symmetr.
7.613	49.738	0.325	0.467
9.254	50.262	0.549	0.594

Meas. R	Area 😚	Width	Symmetr.
7.036	93.221	0.326	0.558
8.590	6.//9	0.385	0.597

Meas. R	Area 🕏	Width	Symmetr.
7.380	50.254	0.269	0.520
9.683	49.746	0.370	0.541

Meas. R	Area %	Width	Symmetr.
7.502	93.222	0.280	0.543
9.865	6.778	0.348	0.529

data acquired by: ARB on: 2/4/2014 location: Vial 6 WD1A Wavelength=254 nm (BC/DEF_LC 2014-02-04 14-25-08/ARB-6-48-1.D) mAU 40 5.137 35 -30 -25 -20 -15 -53 10 -5. 0-

Meas. R	Area %	Width	Symmetr.
5.137	51.169	0.240	0.427
6.422	48.831	0.361	0.517

Meas. R	Area %	Width	Symmetr.
5.472	93.389	0.251	0.000
6.738	6.611	0.330	0.622

	10/22/2011		
location:	Vial 25		
VWD1 A, V	Wavelength=254 nm (ARB2014\DEF_LC 20	4-10-22 16-56-30\ARB-6-85-2-MINORDS-EE1.D)	
mAU -	4 60		
35	4		
30			
25			
20			
15			
10			
5		888	
0		÷	
	12 14	16 18	m

Meas. R	Area %	Width	Symmetr.
12.807	49.848	0.490	0.497
17.346	50.152	0.644	0.504

Meas. R	Area %	Width	Symmetr.
12.794	98.146	0.512	0.479
17.388	1.854	0.679	0.628

data acquired by: ARB on: 7/24/2014 location: Vial 29 $MAU = \frac{1}{10}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{13}$ $\frac{1}{14}$ mtd data acquired by: ARB on: 4/10/2014 location: Vial 7 $MU = \frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{1$

data acquired by:	ARB
on:	4/10/2014
location:	Vial 7
VWD1 A, Waveler	gth=254 nm (ARB2014\DEF_LC 2014-04-10 10-41-48\ARB-6-86.D)
mAU	62
80	¥ ∖
70 -	
60 -	
50	
40 -	
30 -	
20	8814
10 -	Ÿ
0	
10 1	1 12 13 14 15 min

Meas. R	Area %	Width	Symmetr.
10.709	49.666	0.466	0.546
12.206	50.334	0.567	0.565

Meas. R	Area %	Width	Symmetr.
11.791	86.037	0.608	0.000
13.814	13.963	0.835	0.583

Meas.	R Area	% Width	Symmetr.
6.740	50.587	0.30	0 0.478
8.887	49.413	0.43	1 0.533

Meas. R	Area %	Width	Symmetr.
6.823	93.851	0.306	0.483
9.032	6.149	0.424	0.560

Meas. R	Area %	Width	Symmetr.
14.562	50.073	0.465	0.421
16.636	49.927	0.699	0.357

data acquired by:	ARB
on:	4/28/2014
location:	Vial 43
VWD1 A, Wavele	ngth=230 nm (ARB2014\DEF_LC 2014-04-28 11-05-19\ARB-6-93-2C.D)
mAU -	2 A
50	Ť \
40 -	
30	
20-	
1	m
10	20
0	F
14	15 16 17 18 19 min

Meas. R	Area %	Width	Symmetr.
14.952	92.927	0.710	0.000
17.503	7.073	0.941	0.543

Meas. R	Area %	Width	Symmetr.
8.667	50.143	0.368	0.498
13.102	49.857	0.555	0.549

Meas. R	Area %	Width	Symmetr.
8.590	97.108	0.345	0.465
13.002	2.892	0.569	0.536

Meas. R	Area %	Width	Symmetr.
11.584 13.332	49.464 50.536	0.485	0.437

Meas. R	Area %	Width	Symmetr.
11.782	91.349	0.483	0.445
13.650	8.651	0.528	0.462

Meas. R	Area %	Width	Symmetr.
8.497	48.716	0.334	0.451
9.550	51.284	0.388	0.442

Meas. R	Area %	Width	Symmetr.
8.610 9.703	96.626 3.374	0.382	0.476

Meas.	R Area %	Width	Symmetr.
9.508	49.728	0.311	0.404
10.967	50.272	0.439	0.393

Meas. R	Area %	Width	Symmetr.
9.919	95.755	0.416	0.449
11.590	4.245	0.423	0.580

Meas.	R Area	% Width	Symmetr.
10.659	50.163	0.	402 0.464
11.972	49.837	0.	450 0.486

Meas. R	Area %	Width	Symmetr.
10.770	92.735	0.419	0.470
12.071	7.265	0.469	0.534

Meas. R	Area 🖁	Width	Symmetr.
9.879	50.558	0.391	0.580
11.878	49.442	0.508	0.541

Meas. R	Area %	Width	Symmetr.
9.519	93.289	0.394	0.506
11.373	6.711	0.497	0.604

Meas. R	Area %	Width	Symmetr.
7.139	49.956	0.311	0.394
9.007	50.044	0.435	0.414

0.388 0.6	07
0.557 0.6	46
c	0.557 0.6

Data file:

C:\CHEM3211\DATA\AMAEL\DEF_LC 2014-11-24 08-45-52\AM583-RAC-MINOR-9.D AM583-rac-minor-9 Data file: Sample name: Instrument: Injection date: Acq. method: AGILENT 1260 11/24/2014 9:24:36 AM ADH90B10A.25MIN.1.0 ML.M Acq. operator: SYSTEM 83 MAU -4 12.5 13 13.5 14 14.5 15 Time [min] 16 16.5 17 15.5

> Area% 49.78 50.22

Signal:	DAD1 D, Sig=230,4 Ref=360,100				
RT [min]	Туре	Width [min]	Area	Height	
13.499	BB	0.3171	489.488	23.8868	
15.182	BB	0.3540	493.734	21.4921	

C:\CHEM3211\DATA\AMAEL\DEF_LC 2014-11-24 08-45-52\AM583-EE-MINOR-1.D AM583-ee-minor-1

17.5

Signal:	DAD1 D, Sig=230,4 Ref=360,100				
RT [min]	Туре	Width [min]	Area	Height	Area%
13.798	MM	0.3477	2104.664	100.8995	72.83
15.532	MM	0.3867	785.140	33.8405	27.17

C:\CHEM32\1\DATA\ARB2014\DEF_LC 2014-09-29 14-25-14\ARB-7-29-3-II-B-RACAB D arb-7-29-3-II-b-racAB Data file: Sample name Instrument: Injection date: AGILENT 1260 9/29/2014 5:45:56 PM SYSTEM Acq. operator: Acq. method: ARB.ADH90B10A.20MI N.1.5ML.20UL.M DAD1 B, Sig=210,4 Ref=360,100 MAU

45			384						
40-			Ň		9.651				
35-			N I		Å				
30			Π		/				
25			Π						
20-			\prod		1				
15			$ \rangle$						
10			$ \rangle$			1			
5						1			
0								_	
-5-	7.5	8	8.5	ģ	9.5	10	10.5	11	11.5
		-	2.0	Tim	ne [min]	10			

Signal:	DAD	1 B, Sig=210,	4 Ref=360,100		
RT [min]	Туре	Width [min]	Area	Height	Area%
8.384	BB	0.2104	601.285	44.2806	49.18
9.651	BB	0.2477	621.287	38.6175	50.82

Meas. R	Area %	Width	Symmetr.
4.526	49.894	0.186	0.370
5.649	50.106	0.309	0.471

Meas. R	Area %	Width	Symmetr.
4.423	93.143	0.214	0.000
5.416	6.857	0.257	0.570

Meas.	R Area %	Width	Symmetr.
6.380	49.152	0.283	0.000
7.718	50.848	0.351	0.459

data acquired by:	HWL
on:	10/21/2014
location:	Vial 14
VWD1 A, Wavele	ngth=254 nm (ARB2014\DEF_LC 2014-10-21 17-51-46\ARB-6-88-1-MINORDS-EE1.D)
mAU 25 - 20 -	987 9
15 -	
5-	4.00
×+	6.5 7 7.5 8 8.5 min

Meas.	R	Area	÷	Width	Symmetr.
6.296		97.044		0.277	0.000
7.609		2.956		0.340	0.506

SYSTEM

15

16

15.5

Data file: Sample name: Instrument: Injection date: Acq. method:

C:\CHEM32\1\DATA\AMAEL\DEF_LC 2014-07-10 20-04-44\AM614-8.D AM614-8 AGILENT 1260 7/10/2014 8:48:48 PM ADH80B20A.30MIN.1.5 ML.50UL.M Acq. operator: SYSTEM

Signal:	DAD	1 B, SIG=210,			
RT [min]	Туре	Width [min]	Area	Height	Area%
13.062	BB	0.3520	7165.322	314.2134	49.96
18.884	BB	0.5852	7177.208	183.9321	50.04

6.5368

3.06

207.225

C:\CHEM32\1\DATA\AMAEL\DEF_LC 2014-07-10 20-04-44\AM626-1.D

AM626-1

19.321

MM 0.5284

Data file: Sample name: Instrument: Injection date: C:\CHEM32\1\DATA\AMAEL\DEF_LC 2014-07-24 10-56-47\AM644-RAC-2.D Data file: Sample name AM644-rac-2 AGILENT 1260 7/24/2014 11:51:29 AM Acq. operator: SYSTEM Instrument: Injection date: Acq. method ADH75B25A.45MIN.1.5 ML.80UL.M DAD1 B, Sig=210,4 Ref=360,100 375 375 350 325 300 275 250 22 ШAU

50-	
25	
00-	8
75-	
50	ž i i i i i i i i i i i i i i i i i i i
25-	
00-	
75	
50 -	
25 -	
0 -	
15	6 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
	Time [min]
d:	DAD1 B. Sig=210.4 Ref=360.100

		DAD1 B	, Sig=21	0,4 Ref	=360,1	00														
	1200-			808																
	1100			μ.																
	1000			1																
	900			11																
	800			11																
	700			11																
AU	600			11																
Ε	500			11																
	400																			
	300																			
	200																2			
	100-																<u>ñ</u>			
	0-															_	ŧ.	_		_
	1	5 16	17 18	19 2	0 21	22	23	24	25 Time	26 e [min	27]	28	29	30	31	32	33	34	35	36
		DAD			4.0-4		0.400													
319	nal:	DAL	ч в, S	ig-210	,4 Kei	-36	J, 100	J												
RT	[min]	туре	Width	i [min]	Area	1			Hei	ght			4	rea	6					
18.	808	BB	0.568	0	4043	1.08	6		111	2.363	4		9	7.05						

18.4748

2.95

1230.076

C1CHEM3211/DATAVAMAEL/DEF_LC 2014-07-24 10-56-47/AM651-EE-1.D AM651-ee-1 AGILENT 1260 Acq. operator: SYSTEM

7/24/2014 11:04:41 AM ADH75B25A.45MIN.1.5 ML.80UL.M

cq. method:

32.587

MM 1.1097

Signal:	DAD	1 B, Sig=210,	4 Ref=360,100		
RT [min]	Туре	Width [min]	Area	Height	Area%
18.520	VB	0.5486	12373.861	351.6024	50.01
30.827	BB	1.2109	12367.503	145.9034	49.99

54.3501

24.6101

50.09

49.91

BB 0.6455

BB 1.3229 2270.964

2263.209

22.040

39,398

data acquired by:	ARB
on:	9/8/2014
location:	Vial 6
VWD1 A, Wavele	ngth=210 nm (ARB2014\DEF_LC 2014-09-08 13-46-30\ARB-7-32-2E.D)
mAU 1 120 - 100 - 80 - 60 -	19 19
	89 92 7 7 24 26 28 28 92 7 7 28 92 7 9 9 7 7 9 9 7 7 9 9 7 7 9 9 7 7 9 9 7 7 9 7 7 9 7 7 9 9 7 7 9 9 7 9 7 9 9 7 9 9 7 9 9 7 9 9 7 9

Meas. R	Area 🕏	Width	Symmetr.
24.291	50.071	0.888	0.610
27.812	49.929	1.010	0.775

Meas. R	Area 💡	Width	Symmetr.
24.061	88.447	0.940	0.598
27.556	11.553	1.023	0.623

