Electronic Supplementary Information (ESI) for Chemical Science

Mechanism of the cooperative Si-H bond activation at Ru-S bonds

Timo Stahl,^a Peter Hrobárik,^{*a} C. David F. Königs,^{ab} Yasuhiro Ohki,^b Kazuyuki Tatsumi,^b Sebastian Kemper,^a Martin Kaupp,^a Hendrik F. T. Klare^{*a} and Martin Oestreich^{*a}

^a Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 115, 10623 Berlin, Germany peter.hrobarik@tu-berlin.de hendrik.klare@tu-berlin.de martin.oestreich@tu-berlin.de

^b Department of Chemistry, Graduate School of Science and Research Center for Materials Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan

Electronic Supplementary Information

Table of Contents

1	General Information	S3
1.1	Experimental Details	S3
1.2	Computational Details	S4
2	Experimental Details and NMR Spectroscopic Data	S 6
2.1	Si–H Bond Activation of Hydrosilanes 2a–e with Ruthenium Thiolate Complexes	S6
	$[(R_3P)Ru(SDmp)]^+[BAr_4]^-$ (1a : R ₃ P = Et ₃ P; 1b : R ₃ P = (<i>p</i> -FC ₆ H ₄) ₃ P)	
2.2	Characterization of Side Products $[R_3POSiR'_3]^+[BAr^F_4]^-(8)$	S16
2.3	Independent Preparation of $[Et_3POSiMePh_2]^+[BAr_4^F]^-$ (10aa) by Addition of	S16
	Et ₃ PO (11a) to In-Situ Generated Adduct 3ba	
2.4	Control Experiment: Probing the Reactivity of $[Et_3POSiMePh_2]^+[BAr_4]^-$ (10aa)	S17
2.5	Preparation of Silyl Thioether Ph ₂ MeSiSDmp	S18
3	Mechanistic Control Experiment with a Silicon-Stereogenic Hydrosilane	S19
3.1	Racemization Experiment of Enantioenriched Hydrosilane (^{Si} S)-2e with Ruthenium	S19
	Thiolate Complex 1b	
4	Mechanistic Control Experiments with a Deuterium-Labeled Hydrosilane	S19
4.1	Si–H Bond Activation of Deuterium-Labeled Dimethylphenylsilane $(2b-d_1)$ with	S19
	Ruthenium(II) Thiolate Complex 1b	

4.2	² H-Scrambling Experiment of Deuterium-Labeled Dimethylphenylsilane (2b - d_1) and	S20
	Non-Deuterated Methyldiphenylsilane (2a) with Ruthenium(II) Thiolate Complex 1a	
4.3	² H-Scrambling Experiment of Deuterium-Labeled Dimethylphenylsilane (2b - d_1) and	S20
	Non-Deuterated Methyldiphenylsilane (2a) with Ruthenium(II) Thiolate Complex 1b	
5	DFT Calculations	S21
6	NMR Spectra	S29
6.1	NMR Spectra of Hydrosilane Adducts 3aa–3ad, 3ba–3bc, and 3be	S29
6.2	NMR Spectra of [Et ₃ POSiMePh ₂] ⁺ [BAr ^F ₄] ⁻ (10aa)	S85
7	Crystallographic Data	S89
7.1	Molecular Structure of 3ab	S90
7.2	Molecular Structure of 3ad	S91
7.3	Molecular Structure of 10ab	S92
8	Optimized Cartesian Coordinates of Selected Ruthenium(II)–Thiolate	S93
	Complexes	
9	References	S124

1 General Information

1.1 Experimental Details

All reactions were performed in flame-dried glassware using an *MBraun* glove box (O_2 < 0.5 ppm, $H_2O < 0.5$ ppm) or conventional Schlenk techniques under a static pressure of argon or nitrogen. Liquids and solutions were transferred with syringes. Solvents (THF, toluene, *n*-hexane, and CH_2CI_2) were purified and dried following standard procedures. C_6D_6 (purchased from Eurisotop, dried over CaH₂, distilled, and degassed prior to use), CD₂Cl₂ (purchased from *Eurisotop*, dried over CaCO₃, distilled, and degassed prior to use), and toluene-*d*₈ (purchased from Eurisotop in sealed glass ampoules and used as received) were stored under an inert atmosphere. Hydrosilanes MePh₂SiH (2a) Me₂PhSiH (2b), Et₃SiH (2c), and EtMe₂SiH (2d) were obtained from commercial sources, distilled, and degassed prior to use. Ruthenium(II) thiolate complexes $[(Et_3P)Ru(SDmp)]^{+}[BAr_{4}]^{-}$ (1a)^[S1] and $[\{(p-FC_6H_4)_3P\}Ru(SDmp)]^{+}[BAr_{4}]^{-}$ (2b)^[S2], as well as an enantioenriched sample of silicon-stereogenic hydrosilane *i*PrMePhSiH (2e)^[S3] were prepared according to reported procedures [SDmp = 2,6-bis(2,4,6-trimethylphenyl)phenylthiolate, $Ar^{F} = 3.5$ -bis(trifluoromethyl)phenyl]. ¹H, ¹¹B, ¹⁹F{¹H}, and ³¹P{¹H} spectra as well as 2D NMR data sets (1H,1H COSY, 1H,1H EXSY, 1H,13C HSQC, 1H,13C HMBC, 1H,19F HMQC, ¹H,²⁹Si HMQC, ¹H,³¹P HMQC) were recorded in C₆D₆ or CD₂Cl₂ on *Bruker* AV500 instruments. Chemical shifts are reported in parts per million (ppm) and are referenced to the residual solvent resonance in the ¹H NMR spectra as the internal standard (C_6D_5H : δ = 7.16 ppm for ¹H NMR; CDHCl₂: δ = 5.32 ppm for ¹H NMR). All other nuclei (¹¹B, ¹³C, ¹⁹F, ²⁹Si, and ³¹P) are referenced in compliance with the unified scale for NMR chemical shifts as recommended by the IUPAC.^[S4] Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = guartet, m = multiplet, m_c = centrosymmetric multiplet), coupling constants (Hz) and integration. In some NMR experiments, the resonance signals of the desired compound overlap with chemical shifts derived from other molecules (e.g., solvent or hydrosilane). In these cases, the expected integration is reported and marked with a star (*). The assignment of the resonance signals was verified by 2D NMR spectroscopy. Infrared (IR) spectra were recorded on an Agilent Technologies Cary 630 FT-IR spectrophotometer equipped with an ATR unit and are reported in wavenumbers (cm⁻¹). Enantiomeric excesses were determined by analytical high pressure liquid chromatography (HPLC) analysis on an Agilent Technologies 1290 Infinity instrument with a chiral stationary phase using a *Daicel Chiralcel* OJ-RH column (MeCN/H₂O mixtures as solvent). High-resolution mass spectrometry (HRMS) and elemental analysis were performed by the Analytical Facility of the Institut für Chemie, Technische Universität Berlin.

1.2 Computational Details

All structures (without adding counteranions) were fully optimized at the B3LYP level of theory,^[S5] including an atom-pairwise correction for dispersion forces via Grimme's D3 model^[S6] with Becke-Johnson (BJ) damping^[S7] in the Gaussian 09 program package.^[S8] A quasirelativistic energy-consistent small-core pseudopotential (effective-core potential, ECP)^[S9] in conjunction with a (8s7p6d)/[6s5p3d] GTO valence basis set was used for the ruthenium atom, whereas ligand atoms (C, H, O, F, Si, P) have been treated with an all-electron 6-31+G(d,p) basis set. To simulate solvent effects and to obtain the relative solvation free energies, the SMD solvation model (a reaction field calculation using the integral equation formalism for the polarizable continuum model, IEF-PCM, with radii and non-electrostatic terms from Truhlar and coworkers)^[S10] was used as implemented in Gaussian 09. Benzene (ϵ_r = 2.27) was considered as the solvent. Harmonic vibrational frequency calculations at the same level of theory were performed to verify all stationary points as minima (no imaginary frequency) or transition states (one imaginary frequency), as well as to provide free energies at 298.15 K. The final Gibbs free energies (G⁰) reported here are based on SCF energies with Gibbs free energy corrections (at 298.15 K), solvation corrections, and corrections for dispersion effects using Grimme's D3(BJ) method.

Natural population analysis (NPA) atomic charges^[S11] and Wiberg bond indices (WBI)^[S12] were evaluated using the built-in NBO subroutines of Gaussian.^[S13] The Kohn–Sham wave functions were also analyzed by means of the electron localizability indicator (ELI-D)^[S14] in the DGrid program^[S15], and the results were visualized by using the ParaView program.^[S16]

Fully relativistic density functional (DFT) calculations of NMR nuclear shieldings have been carried out at the matrix Dirac–Kohn–Sham (mDKS) level with the ReSpect-MAG code, including a new four-component module.^[S17] This method combines the concept of gauge including atomic orbitals (GIAOs) with restricted magnetically balanced (RMB) orbitals for the small component. Details of the mDKS-RMB-GIAO method are given in refs. [S18] and [S19]. The four-component mDKS calculations have been done at the generalized-gradient-approximation level (GGA) with the Perdew–Burke–Ernzerhof (PBE) exchange-correlation functional,^[S20] which was evaluated numerically on an adaptive molecular grid (program default). Dyall's all-electron valence double- ζ (VDZ) basis set of 21s14p10d2f quality was used for the metal center.^[S21] For ligand atoms we have employed fully uncontracted Huzinaga–Kutzelnigg-type IGLO-II basis sets.^[S22] In comparison to our previous study,^[S19] no fitting (resolution-of-identity) of the total electron density and of the components of the spin density was applied. All relativistic calculations were done

with a finite-size nucleus model employing a Gaussian charge distribution. The computed ¹H and ³¹P nuclear shieldings were converted to chemical shifts (δ , in ppm) relative to the shielding of tetramethylsilane (TMS) and 85% aq. H₃PO₄, respectively, using [H₂Ru(CO)₄] with δ (¹H)= -7.9 ppm^[S23] and [(Et₃P)Ru(SDmp)]⁺ (**1a**⁺) with δ (³¹P)= +23.0 ppm^[S24] as secondary standards. The computed ²⁹Si NMR shieldings were converted to chemical shifts relative to the shielding of TMS, obtained at the same computational level.

2 Experimental Details and NMR Spectroscopic Data

2.1 Si–H Bond Activation of Hydrosilanes 2a–e with Ruthenium Thiolate Complexes $[(R_3P)Ru(SDmp)]^{+}[BAr^{F_4}]^{-}$ (1a: R₃P = Et₃P; 1b: R₃P = (*p*-FC₆H₄)₃P)

In an NMR tube, MePh₂SiH (**2a**, 4.8 mg, 24 µmol, 2.0 equiv) was added to a solution of $[(Et_3P)Ru(SDmp)]^+[BAr^F_4]^-$ (**1a**, 17 mg, 12 µmol, 1.0 equiv) in CD₂Cl₂ (0.6 mL). The sample was shaken vigorously and directly subjected to NMR spectroscopic analysis indicating the formation of adduct **3aa** along with excess hydrosilane **2a** and small amounts of side product $[Et_3POSiMePh_2]^+[BAr^F_4]^-$ (**10aa**).

Selected NMR spectroscopic data for 3aa:

¹**H NMR** (500 MHz, CD₂Cl₂, 250 K): δ = -8.24 (d, J = 47.5 Hz, 1H), 0.64 (s, 3H), 0.70 (dt, J = 15.7 Hz, J = 7.5 Hz, 9H*), 1.09 (qd, J = 7.3 Hz, J = 7.3 Hz, 3H), 1.45 (qd, J = 7.3 Hz, J = 7.3 Hz, 3H), 1.84 (s, 3H), 1.87 (s, 3H), 1.92 (s, 3H), 2.04 (s, 3H), 2.09 (s, 3H), 2.46 (s, 3H), 5.58 (d, J = 2.5 Hz, 1H), 5.96 (s, 1H), 6.00 (s, 1H), 6.80 (s, 1H), 7.05 (d, J = 7.0 Hz, 2H), 7.15 (d, J = 7.0 Hz, 2H), 7.19 (d, J = 8.0 Hz, 1H), 7.21 (dd, J = 7.0 Hz, J = 7.0 Hz, 2H), 7.29 (dd, J = 7.3 Hz, J = 7.3 Hz, 2H), 7.60 (s, 4H*), 7.77 (s, 8H*) ppm. ¹¹**B NMR** (161 MHz, CD_2Cl_2 , 250 K): $\delta = -6.7$ ppm. ¹⁹F{¹H} NMR (471 MHz, CD₂Cl₂, 250 K): $\delta = -62.6$ ppm. ³¹P{¹H} NMR (203 MHz, CD₂Cl₂, 250 K): δ = 39.8 ppm. ¹H,¹³C HSQC NMR (500/126 MHz, CD₂Cl₂, 250 K): δ = 0.64/–2.8, 0.70/6.9, 1.09/18.9, 1.45/18.9, 1.84/19.2, 1.87/18.7, 1.92/21.1, 2.04/21.1, 2.09/20.7, 2.46/19.5, 5.58/97.8, 5.96/129.0, 6.00/88.0, 6.80/128.5, 7.05/132.5, 7.15/137.1, 7.19/133.5, 7.21/128.3, 7.29/127.8, 7.60/117.5, 7.77/134.7 ppm. ¹H,¹³C HMBC (500/126 MHz, CD₂Cl₂, 250 K): δ = 1.84/85.2, 1.84/88.0, 1.84/97.8, 1.87/97.8, 1.87/101.6, 1.87/111.5, 1.92/129.0, 1.92/134.5, 1.92/135.4, 2.04/128.5, 2.04/134.5, 2.04/134.8, 2.09/128.5, 2.09/129.0, 2.09/137.8, 2.46/88.0, 2.46/93.6, 2.46/111.5, 5.58/18.7, 5.58/88.0, 5.58/111.5, 5.96/21.1, 5.96/128.5, 5.96/134.5, 6.00/19.1, 6.00/97.8, 6.00/111.5, 6.80/21.1, 6.80/129.0, 6.80/134.5 ppm. ¹H,²⁹Si HMQC NMR $(500/99 \text{ MHz}, \text{CD}_2\text{Cl}_2, 250 \text{ K}, \text{ optimized for } J = 8 \text{ Hz}): \delta = 0.64/18.2, 7.05/18.2, 7.15/18.2 \text{ ppm}.$ ¹H,³¹P HMQC NMR (500/203 MHz, CD₂Cl₂, 250 K, optimized for J = 7 Hz): $\delta = -8.24/39.8$, 0.70/39.8, 1.09/39.8, 1.45/39.8, 2.46/39.8, 5.58/39.8 ppm.

In an NMR tube, Me₂PhSiH (**2b**, 3.3 mg, 24 µmol, 2.0 equiv) was added to a solution of $[(Et_3P)Ru(SDmp)]^+[BAr_4^F]^-$ (**1a**, 17 mg, 12 µmol, 1.0 equiv) in CD₂Cl₂ (0.6 mL). The sample was shaken vigorously and directly subjected to NMR spectroscopic analysis indicating the formation of adduct **3ab** along with excess hydrosilane **2b** and small amounts of side product $[Et_3POSiMe_2Ph]^+[BAr_4^F]^-$ (**10ab**). Single crystals of **3ab** suitable for X-ray diffraction were obtained by treatment of ruthenium thiolate complex **1a** with a large excess of hydrosilane **2b**, followed by slow crystallization at -30 °C.

Selected NMR spectroscopic data for **3ab**:

¹**H NMR** (500 MHz, CD₂Cl₂, 250 K): δ = -8.26 (d, J = 48.8 Hz, 1H), 0.07 (s, 3H), 0.60 (s, 3H), 0.79 (dt, J = 16.1 Hz, J = 7.8 Hz, 9H), 1.20 (qd, J = 7.5 Hz, J = 7.5 Hz, 3H), 1.43 (qd, J = 7.5 Hz, J = 7.5 Hz, 3H), 1.87 (s, 3H), 1.94 (s, 3H), 2.07 (s, 3H), 2.18 (d, J = 1.3 Hz, 3H), 2.21 (s, 3H), 2.32 (s, 3H), 5.42 (d, J = 3.5 Hz, 1H), 6.13 (s, 1H), 6.85 (s, 1H), 7.00 (s, 1H), 7.18 (d, J = 7.2 Hz, 2H), 7.28–7.34 (m, 2H*), 7.37–7.45 (m, 2H*), 7.57–7.59 (m, 2H*), 7.61 (s, 4H*), 7.77 (s, 8H*) ppm. ¹¹B NMR (161 MHz, CD₂Cl₂, 250 K): $\delta = -6.7$ ppm. ¹⁹F{¹H} NMR (471 MHz, CD₂Cl₂, 250 K): δ = -62.6 ppm. ³¹P{¹H} NMR (203 MHz, CD₂Cl₂, 250 K): δ = 40.4 ppm. ¹H,¹³C HSQC **NMR** (500/126 MHz, CD_2Cl_2 , 250 K): $\delta = 0.07/-0.7$, 0.60/3.2, 0.79/7.1, 1.20/19.1, 1.43/19.1, 1.87/19.0, 1.94/18.6, 2.07/21.0, 2.18/19.5, 2.21/21.6, 2.32/20.7, 5.42/94.2, 6.13/91.5, 6.85/129.5, 7.00/128.9, 7.18/134.4, {7.28-7.34}/127.8, {7.28-7.34}/133.4, {7.37-7.45}/129.2, {7.37-7.45}/130.6, {7.57-7.59}/128.5, {7.57-7.59}/129.2, 7.61/117.2, 7.77/134.6 ppm. ¹H,¹³C **HMBC NMR** (500/126 MHz, CD₂Cl₂, 250 K); $\delta = 1.87/84.5$, 1.87/91.4, 1.87/94.3, 1.94/94.3, 1.94/100.5, 1.94/113.0, 2.07/128.9, 2.07/134.9, 2.07/135.9, 2.18/91.4, 2.18/94.0, 2.18/113.0, 2.21/129.5, 2.21/134.9, 2.21/136.1, 2.32/128.9, 2.32/129.5, 2.32/138.2, 5.42/18.6, 5.42/91.5, 5.42/113.0, 6.13/19.5, 6.13/94.2, 6.13/113.0, 6.85/20.7, 6.85/21.6, 6.85/128.9, 6.85/134.9, 7.00/21.0, 7.00/129.5, 7.00/134.9, 7.18/130.6, {7.28-7.34}/141.5, {7.37-7.45}/134.2, {7.57-7.59}/113.0, {7.57-7.59}/139.9, {7.57-7.59}/141.5, {7.57-7.59}/144.5 ppm. ¹H,²⁹Si HMQC NMR $(500/99 \text{ MHz}, \text{CD}_2\text{Cl}_2, 250 \text{ K}, \text{ optimized for } J = 8 \text{ Hz}): \delta = 0.07/28.4, 0.60/28.4, 7.18/28.4 \text{ ppm}.$ ¹**H**,³¹**P HMQC NMR** (500/203 MHz, CD₂Cl₂, 250 K, optimized for J = 7 Hz): $\delta = -8.26/40.4$, 0.79/40.4,1.20/40.4,1.43/40.4, 2.18/40.4, 5.42/40.4 ppm. X-ray: for X-ray data, see section 7.1.

In an NMR tube, Et₃SiH (**2c**, 2.8 mg, 24 µmol, 2.0 equiv) was added to a solution of $[(Et_3P)Ru(SDmp)]^+[BAr^F_4]^-$ (**1a**, 17 mg, 12 µmol, 1.0 equiv) in CD₂Cl₂ (0.6 mL). The sample was shaken vigorously and directly subjected to NMR spectroscopic analysis indicating the formation of adduct **3ac** along with excess hydrosilane **2c** and small amounts of side product $[Et_3POSiEt_3]^+[BAr^F_4]^-$ (**10ac**).

Selected NMR spectroscopic data for **3ac**:

¹**H NMR** (500 MHz, CD₂Cl₂, 300 K): δ = -7.99 (d, J = 49.9 Hz, 1H), 0.31 (m_c, 3H), 0.53 (m_c, 3H), 0.83 (t, J = 7.3 Hz, 9H), 1.07 (dt, J = 15.7 Hz, J = 7.6 Hz, 9H^{*}), 1.67 (m_c, 6H), 1.98 (s, 3H), 2.00(s, 3H), 2.09 (s, 3H), 2.13 (s, 3H), 2.27 (s, 3H), 2.37 (s, 3H), 5.47 (s, 1H), 6.25 (s, 1H), 7.02 (s, 1H), 7.08 (s, 1H), 7.34 (dd, J = 7.2 Hz, J = 1.7 Hz, 1H), 7.56 (dd, J = 7.7 Hz, J = 1.7 Hz, 1H), 7.59 (dd, J = 7.7 Hz, J = 7.2 Hz, 1H), 7.61 (s, 4H), 7.78 (s, 8H*) ppm. ¹¹B NMR (161 MHz, CD_2Cl_2 , 300 K): $\delta = -6.6$ ppm. ¹⁹F{¹H} NMR (471 MHz, CD_2Cl_2 , 300 K): $\delta = -62.9$ ppm. ³¹P{¹H} NMR (203 MHz, CD₂Cl₂, 300 K): δ = 40.1 ppm. ¹H,¹³C HSQC NMR (500/126 MHz, CD_2Cl_2 , 300 K): $\delta = 0.31/7.22$, 0.53/7.22, 0.83/7.22, 1.07/7.15, 1.67/19.9, 1.98/19.0, 2.00/18.6, 2.09/18.8, 2.13/21.0, 2.27/20.8, 2.37/20.5, 5.47/93.6, 6.25/92.3, 7.02/129.3, 7.08/129.5, 7.34/ 133.2, 7.56/128.4, 7.59/134.8, 7.61/117.4, 7.78/134.7 ppm. ¹H,¹³C HMBC NMR (500/126 MHz, CD_2CI_2 , 300 K): $\delta = -7.99/100.7$, 1.98/84.4, 1.98/92.3, 1.98/93.6, 2.00/93.6, 2.00/100.7, 2.00/113.7, 2.09/92.3, 2.09/93.6, 2.09/113.7, 2.13/129.3, 2.13/135.0, 2.13/136.1, 2.27/129.5, 2.27/135.0, 2.27/135.7, 2.37/129.3, 2.37/129.5, 2.37/138.6, 5.47/18.6, 5.47/19.0, 5.47/92.3, 5.47/113.7, 6.25/18.8, 6.25/19.0, 6.35/93.6, 6.35/113.7, 7.02/20.5, 7.02/21.0, 7.02/129.5, 7.02/135.0, 7.07/20.5, 7.07/20.8, 7.07/129.3, 7.07/135.0, 7.34/128.4, 7.34/135.0, 7.34/142.3, 7.56/133.2, 7.56/142.3, 7.59/139.8, 7.59/144.1, 7.78/117.4, 7.78/161.5 ppm. ¹H,²⁹Si HMQC **NMR** (500/99 MHz, CD₂Cl₂, 300 K, optimized for J = 8 Hz): $\delta = 0.31/41.0$, 0.53/41.0, 0.83/41.0 ppm. ¹H,³¹P HMQC NMR (500/203 MHz, CD₂Cl₂, 300 K, optimized for J = 7 Hz): $\delta = -7.99/40.1$, 1.07/40.1, 1.67/40.1, 2.09/40.1, 5.47/40.1 ppm.

In an NMR tube, EtMe₂SiH (**2d**, 2.1 mg, 24 µmol, 2.0 equiv) was added to a solution of $[(Et_3P)Ru(SDmp)]^+[BAr^F_4]^-$ (**1a**, 17 mg, 12 µmol, 1.0 equiv) in CD₂Cl₂ (0.6 mL). The sample was shaken vigorously and directly subjected to NMR spectroscopic analysis indicating the formation of adduct **3ad** along with excess hydrosilane **2d** and small amounts of side product $[Et_3POSiEtMe_2]^+[BAr^F_4]^-$ (**10ad**). Single crystals of **3ad** suitable for X-ray diffraction were obtained by treatment of ruthenium thiolate complex **1a** with a large excess of hydrosilane **2d**, followed by slow crystallization at –30 °C.

Selected NMR spectroscopic data for 3ad:

¹**H NMR** (500 MHz, CD₂Cl₂, 300 K): δ = -8.08 (d, J = 49.9 Hz, 1H), 0.00 (s, 3H), 0.15–0.21 (m, 4H), 0.22–0.31 (m, 1H), 0.73 (dd, J = 7.8 Hz, J = 7.8 Hz, 3H), 1.07 (dt, J = 15.4 Hz, J = 7.7 Hz, 9H*), 1.65 (m_c, 6H), 1.97 (s, 3H), 2.00 (s, 3H), 2.09–2.13 (m, 6H), 2.27 (s, 3H), 2.36 (s, 3H), 5.52 (d, J = 3.3 Hz, 1H), 6.24 (s, 1H), 7.01 (s, 1H), 7.07 (s, 1H), 7.34 (dd, J = 7.3 Hz, J = 1.8 Hz, 1H), 7.57 (dd, J = 7.6 Hz, J = 1.7 Hz, 1H), 7.58–7.63 (s, 5H*), 7.78 (s, 8H*) ppm. ¹¹B NMR (161 MHz, CD_2CI_2 , 300 K): $\delta = -6.6$ ppm. ¹⁹F{¹H} NMR (471 MHz, CD_2CI_2 , 300 K): $\delta = -62.9$ ppm. ³¹P{¹H} NMR (203 MHz, CD_2Cl_2 , 300 K): δ = 40.2 ppm. ¹H,¹³C HSQC NMR (500/126 MHz, CD_2Cl_2 , 300 K): $\delta = 0.00/0.19$, {0.15–0.21}/1.6, {0.15–0.21}/10.5, {0.22–0.31}/10.5, 0.73/6.7, 1.07/7.2, 1.65/19.9, 1.97/18.9, 2.00/18.5, {2.09-2.13}/18.8, {2.09-2.13}/20.9, 2.27/21.2, 2.36/20.4, 5.52/94.0, 6.24/91.9, 7.01/129.1, 7.07/129.4, 7.34/133.3, 7.57/128.4, {7.58-7.63}/ 117.3, {7.58-7.63}/129.0, 7.78/134.7 ppm. ¹H,¹³C HMBC NMR (500/126 MHz, CD₂Cl₂, 300 K): $\delta = 1.97/84.9, 1.97/91.9, 1.97/94.0, 2.00/94.0, 2.00/100.4, 2.00/114.2, {2.09-2.13}/91.9,$ {2.09-2.13}/93.4, {2.09-2.13}/114.2, {2.09-2.13}/129.1, {2.09-2.13}/134.7, {2.09-2.13}/136.4, 2.27/129.4, 2.27/134.7, 2.27/135.8, 2.36/129.1, 2.36/129.4, 2.36/138.5, 5.52/18.5, 5.52/18.9, 5.52/91.9, 5.52/114.2, 6.24/18.8, 6.24/18.9, 6.24/94.0, 6.24/114.2, 7.01/20.4, 7.01/20.9, 7.01/129.4, 7.01/134.7, 7.07/20.4, 7.07/21.2, 7.07/129.1, 7.07/134.7, 7.34/128.4, 7.34/134.7, 7.34/142.3, 7.57/114.2, 7.57/133.3, 7.57/142.3, {7.58-7.63}/134.7, {7.58-7.63}/139.7, {7.58-7.63}/144.3, 7.78/117.3, 7.78/162 ppm. ¹H,²⁹Si HMQC NMR (500/99 MHz, CD₂Cl₂, 300 K, optimized for J = 8 Hz): $\delta = 0.00/39.0$, {0.15–0.21}/39.0, 0.73/39.0 ppm. ¹H,³¹P HMQC NMR $(500/203 \text{ MHz}, \text{CD}_2\text{Cl}_2, 300 \text{ K}, \text{ optimized for } J = 7 \text{ Hz}): \delta = -8.08/40.2, 1.07/40.2, 1.65/40.2,$ {2.09-2.13}/40.2, 5.52/40.2 ppm. X-ray: For X-ray data, see section 7.2.

In an NMR tube, MePh₂SiH (**2a**, 4.8 mg, 24 µmol, 2.0 equiv) was added to a solution of $[{(p-FC_6H_4)_3P}Ru(SDmp)]^+[BAr^{F_4}]^-$ (**1b**, 20 mg, 12 µmol, 1.0 equiv) in CD₂Cl₂ (0.6 mL). The sample was shaken vigorously and directly subjected to NMR spectroscopic analysis indicating the formation of adduct **3ba** along with excess hydrosilane **2a** and small amounts of side product $[(p-FC_6H_4)_3POSiMePh_2]^+[BAr^{F_4}]^-$ (**10ba**).

Selected NMR spectroscopic data for 3ba in CD₂Cl₂:

¹**H NMR** (500 MHz, CD₂Cl₂, 300 K): δ = -7.54 (d, J = 47.3 Hz, 1H), 0.58 (s, 3H), 1.47 (s, 3H), 1.82 (s, 3H), 1.88 (s, 3H), 2.16 (s, 3H), 2.18 (s, 3H), 2.52 (s, 3H), 4.45 (s, 1H), 6.06 (s, 1H), 6.25 (s, 1H), 6.43 (d, J = 7.3 Hz, 2H), 6.83 (s, 1H), 6.99 (d, J = 7.3 Hz, 2H), 7.07 (dd, J = 7.4 Hz, J = 7.3 Hz, 2H), 7.11 (dd, J = 8.2 Hz, J = 8.2 Hz, 6H), 7.23–7.32 (m, 9H), 7.36–7.47 (m, 2H*), 7.58– 7.63 (m, 5H^{*}), 7.66 (dd, J = 7.4 Hz, J = 7.3 Hz, 1H), 7.78 (s, 8H^{*}) ppm. ¹¹B NMR (161 MHz, CD_2Cl_2 , 300 K): $\delta = -6.6$ ppm. ¹⁹F{¹H} NMR (471 MHz, CD_2Cl_2 , 300 K): $\delta = -108.6$, -62.9 ppm. ³¹P{¹H} NMR (203 MHz, CD₂Cl₂, 300 K): δ = 48.5 ppm. ¹H,¹³C HSQC NMR (500/126 MHz, CD_2CI_2 , 300 K): $\delta = 0.58/-1.7$, 1.47/18.2, 1.82/17.5, 1.88/20.8, 2.16/21.3, 2.18/20.6, 2.52/19.4, 4.45/104.9, 6.06/129.4, 6.25/89.4, 6.43/133.3, 6.83/128.3, 6.99/136.9, 7.07/127.7, 7.11/115.7, {7.23-7.32}/127.4, {7.23-7.32}/133.7, {7.23-7.32}/135.6, {7.36-7.47}/129.3, {7.36-7.47}/131.4, {7.58-7.63}/117.4, {7.58-7.63}/128.3, 7.66/130.0, 7.78/134.7 ppm. ¹H,¹³C HMBC NMR (500/ 126 MHz, CD_2Cl_2 , 300 K): $\delta = -7.54/104.9$, 0.58/129.5, 0.58/134.1, 1.47/88.2, 1.47/89.4, 1.47/104.9, 1.82/104.7, 1.82/111.7, 1.88/129.4, 1.88/134.2, 1.88/135.3, 2.16/128.3, 2.16/134.2, 2.16/134.8, 2.18/128.3, 2.18/129.4, 2.18/138.2, 2.52/89.4, 2.52/95.0, 2.52/111.7, 4.45/17.5, 4.45/18.2, 6.06/20.6, 6.06/20.8, 6.06/128.3, 6.06/134.2, 6.25/18.2, 6.25/19.4, 6.25/104.9, 6.25/111.7, 6.43/129.4, 6.83/20.6, 6.83/21.3, 6.83/129.4, 6.83/134.2, 6.99/131.4, 7.07/129.5, {7.23-7.32}/128.3, {7.23-7.32}/143.2, {7.23-7.32}/140.8, {7.23-7.32}/163.8, {7.58-7.63}/133.8, {7.58–7.63}/134.7, {7.58–7.63}/140.8, 7.66/139.9, 7.66/145.2, 7.78/117.5 ppm. ¹H,¹⁹F HMQC **NMR** (500/471 MHz, CD_2Cl_2 , 300 K, optimized for J = 30 Hz): $\delta = 7.07/-108.6$, {7.23-7.32}/ -108.6, {7.58-7.63}/-62.9, 7.78/-62.9 ppm. ¹H,²⁹Si HMQC NMR (500/99 MHz, CD₂Cl₂, 300 K, optimized for J = 7 Hz): $\delta = 0.58/20.1$, 6.43/20.1, 6.99/20.1 ppm. ¹H,³¹P HMQC NMR (500/

S11

203 MHz, CD₂Cl₂, 300 K, optimized for J = 7 Hz): $\delta = -7.54/48.5$, 1.82/48.5, 2.52/48.5, 4.45/ 48.5, $\{7.23-7.32\}/48.5$ ppm.

This experiment was also carried out in C_6D_6 (0.6 mL) as solvent, leading to the same result. All remaining NMR experiments, however, were performed in CD_2Cl_2 due to a better signal resolution in the ¹H NMR spectrum (see NMR spectra in section 6).

Selected NMR spectroscopic data for **3ba** in C₆D₆:

¹**H NMR** (500 MHz, C₆D₆, 300 K): $\delta = -7.89$ (d, *J* = 47.5 Hz, 1H), 0.20 (s, 3H), 0.89 (s, 3H), 1.33 (s, 3H), 1.59 (s, 3H), 1.93 (s, 6H), 2.00 (s, 3H), 3.80 (s, 1H), 5.44 (s, 1H), 5.84 (s, 1H), 6.13 (d, *J* = 7.3 Hz, 2H), 6.49 (ddd, *J* = 10.7 Hz, *J* = 8.3 Hz, *J* = 2.8 Hz, 2H*), 6.65 (dd, *J* = 8.0 Hz, *J* = 8.0 Hz, *G* = 8.0 Hz, 6H*), 6.69–7.07 (m, 13H*) 7.67 (s, 4H*), 8.39 (s, 8H*) ppm. ¹¹**B NMR** (161 MHz, C₆D₆, 300 K): $\delta = -5.9$ ppm. ¹⁹**F**{¹**H**} **NMR** (471 MHz, C₆D₆, 300 K): $\delta = -107.5$, -62.0 ppm. ³¹**P**{¹**H**} **NMR** (203 MHz, C₆D₆, 300 K): $\delta = 48.6$ ppm.

In an NMR tube, Me₂PhSiH (**2b**, 3.3 mg, 24 µmol, 2.0 equiv) was added to a solution of $[{(p-FC_6H_4)_3P}Ru(SDmp)]^+[BAr^{F_4}]^-$ (**1b**, 20 mg, 12 µmol, 1.0 equiv) in CD₂Cl₂ (0.6 mL). The sample was shaken vigorously and directly subjected to NMR spectroscopic analysis indicating the formation of adduct **3bb** along with excess hydrosilane **2b** and small amounts of side product $[(p-FC_6H_4)_3POSiMe_2Ph]^+[BAr^{F_4}]^-$ (**10bb**).

Selected NMR spectroscopic data for 3bb:

¹**H NMR** (500 MHz, CD₂Cl₂, 300 K): δ = -7.67 (d, J = 48.5 Hz, 1H), 0.01 (s, 3H), 0.55 (s, 3H), 1.48 (s, 3H), 1.79 (s, 3H), 2.00 (d, 3H), 2.17 (s, 3H), 2.33 (s, 3H), 2.36 (s, 3H), 4.64 (s, 1H), 6.32 (s, 1H), 6.69 (d, J = 6.5 Hz, 2H), 6.76 (s, 1H), 6.89 (s, 1H), 7.08 (dd, J = 8.5 Hz, J = 8.5 Hz, 6H), 7.17 (dd, J = 6.7 Hz, J = 6.7 Hz, 2H), 7.31–7.38 (m, 8H), 7.57 (d, J = 8.0 Hz, 1H), 7.61 (s, 4H*), 7.66 (dd, J = 7.6 Hz, J = 7.6 Hz, 1H), 7.78 (s, 8H*) ppm. ¹¹B NMR (161 MHz, CD₂Cl₂, 300 K): $\delta = -6.6$ ppm. ¹⁹F{¹H} NMR (471 MHz, CD₂Cl₂, 300 K): $\delta = -108.7$, -62.8 ppm. ³¹P{¹H} NMR (203 MHz, CD₂Cl₂, 300 K): δ = 48.7 ppm. ¹H,¹³C HSQC NMR (500/126 MHz, CD₂Cl₂, 300 K): $\delta = 0.01/-0.19, 0.55/3.81, 1.48/18.3, 1.79/17.7, 2.00/21.1, 2.17/21.0, 2.33/20.5, 2.36/19.3,$ 4.64/101.8, 6.32/91.2, 6.69/133.7, 6.76/129.7, 6.89/128.7, 7.08/115.7, 7.17/127.7, {7.31-7.38}/ 133.5, {7.31-7.38}/135.4, 7.42/129.1, 7.57/128.4, 7.61/117.3, 7.66/129.9, 7.78/134.7 ppm. ¹**H**,¹³**C HMBC NMR** (500/126 MHz, CD_2Cl_2 , 300 K): $\delta = 0.01/133.6$, 0.55/133.6, 1.48/88.1, 1.48/91.2, 1.48/101.8, 1.79/101.8, 1.79/104.0, 1.79/113.5, 2.00/128.7, 2.00/134.2, 2.00/135.8, 2.17/129.8, 2.17/134.2, 2.17/135.7, 2.33/128.7, 2.33/129.7, 2.33/138.5, 2.36/91.2, 2.36/94.4, 2.36/113.5, 4.64/17.7, 4.64/18.3, 4.64/91.2, 4.64/113.5, 6.32/18.3, 6.32/19.3, 6.32/101.8, 6.32/113.5, 6.76/20.5, 6.76/128.7, 6.76/134.2, 6.89/20.5, 6.89/21.1, 6.89/129.7, 6.89/134.2, 7.07/129.7, 7.17/127.1, 7.17/133.7, 7.17/135.3, {7.31-7.38}/128.4, {7.31-7.38}/141.7, {7.31-7.38}/164.0, 7.57/113.5, 7.57/141.7, 7.57/133.5, 7.67/139.7, 7.67/144.5 ppm. ¹H,²⁹Si HMQC **NMR** (500/99 MHz, CD₂Cl₂, 300 K, optimized for J = 8 Hz): $\delta = 0.01/29.8$, 0.55/29.8, 6.69/29.8 ppm. ¹H,³¹P HMQC NMR (500/203 MHz, CD₂Cl₂, 300 K, optimized for J = 7 Hz): $\delta = -7.67/48.7$, 1.48/48.7, 1.79/48.7, 2.36/48.7, 4.64/48.7, 7.08/48.7, {7.31-7.38}/48.7 ppm.

In an NMR tube, Et₃SiH (**2c**, 2.8 mg, 24 µmol, 2.0 equiv) was added to a solution of $[{(p-FC_6H_4)_3P}Ru(SDmp)]^+[BAr^{F_4}]^-$ (**1b**, 20 mg, 12 µmol, 1.0 equiv) in CD₂Cl₂ (0.6 mL). The sample was shaken vigorously and directly subjected to NMR spectroscopic analysis indicating the formation of adduct **3bc** along with unreacted hydrosilane **2c** and small amounts of side product $[(p-FC_6H_4)_3POSiEt_3]^+[BAr^{F_4}]^-$ (**10bc**).

Selected NMR spectroscopic data for **3bc**:

¹**H NMR** (500 MHz, CD₂Cl₂, 300 K): δ = -7.61 (d, J = 49.9 Hz, 1H), 0.22 (m_c, 6H), 0.62-0.70 (m, 9H*), 1.45 (s, 3H), 1.83 (s, 3H), 2.05 (s, 3H), 2.17 (d, J = 2.4 Hz, 3H), 2.26 (s, 3H), 2.34 (s, 3H), 4.74 (d, J = 3.5 Hz, 1H), 6.38 (s, 1H), 6.89 (s, 1H), 7.04 (s, 1H), 7.19 (ddd, J = 8.5 Hz, J = 8.5 Hz, J = 1.3 Hz, 6H), 7.37 (dd, J = 7.6 Hz, J = 1.0 Hz, 1H), 7.51 (m_c, 6H), 7.54 (d, J = 7.3 Hz, 1H), 7.61 (s, 4H), 7.66 (dd, J = 7.8 Hz, J = 7.8 Hz, 1H), 7.77 (s, 8H) ppm. ¹¹B NMR (161 MHz, CD₂Cl₂, 300 K): δ = -6.6 ppm. ¹⁹F{¹H} NMR (471 MHz, CD₂Cl₂, 300 K): δ = -108.7, -62.8 ppm. ³¹P{¹H} NMR (203 MHz, CD₂Cl₂, 300 K): δ = 48.4 ppm. ¹H,¹³C HSQC NMR (500/126 MHz, CD_2Cl_2 , 300 K): $\delta = 0.22/7.5$, {0.62-0.70}/2.4, 1.45/18.1, 1.83/18.2, 2.05/21.3, 2.17/18.9, 2.26/20.8, 2.34/20.4, 4.74/99.4, 6.38/92.0, 6.89/128.9, 7.04/129.5, 7.19/115.9, 7.37/133.3, 7.51/135.5, 7.54/128.4, 7.61/117.3, 7.66/129.9, 7.77/134.7 ppm. ¹H,¹³C HMBC NMR (500/ 126 MHz, CD₂Cl₂, 300 K): δ = 1.45/88.3, 1.45/92.0, 1.45/99.4, 1.83/99.4, 1.83/103.6, 1.83/113.9, 2.05/128.9, 2.05/134.5, 2.05/136.0, 2.17/92.0, 2.17/94.1, 2.17/113.9, 2.26/129.4, 2.26/134.5, 2.26/135.6, 2.34/128.9, 2.34/129.5, 2.34/138.7, 4.75/18.1, 4.75/18.2, 4.75/92.0, 4.75/113.9, 6.38/18.1, 6.38/18.9, 6.38/99.4, 6.38/113.9, 6.89/20.4, 6.89/21.3, 6.89/129.5, 6.89/134.5, 7.04/20.4, 7.04/20.8, 7.04/128.9, 7.04/134.5, 7.19/129.7, 7.19/164.1, 7.37/128.4, 7.37/142.1, 7.51/164.1, 7.54/133.3, 7.54/142.1, 7.61/134.7, 7.66/139.5, 7.66/144.1, 7.77/117.3 ppm. ¹H,²⁹Si **HMQC NMR** (500/99 MHz, CD_2Cl_2 , 300 K, optimized for J = 8 Hz): $\delta = 0.22/41.6$, {0.62– 0.70/41.6 ppm. ¹H,³¹P HMQC NMR (500/203 MHz, CD₂Cl₂, 300 K, optimized for J = 7 Hz): $\delta =$ -7.61/48.8, 1.83/48.8, 2.17/48.8, 4.74/48.8, 7.19/48.8, 7.51/48.8 ppm.

In an NMR tube, *i*PrMePhSiH (**2e**, 3.9 mg, 24 µmol, 2.0 equiv) was added to a solution of $[{(p-FC_6H_4)_3P}Ru(SDmp)]^+[BAr^{F_4}]^-$ (**1b**, 20 mg, 12 µmol, 1.0 equiv) in CD₂Cl₂ (0.6 mL). The sample was shaken vigorously and directly subjected to NMR spectroscopic analysis indicating the formation of adduct **3be** (d.r. = 2.3:1) along with unreacted hydrosilane **2e** and small amounts of side product [(p-FC₆H₄)₃POSi*i*PrMePh]⁺[BAr^{F_4}]⁻ (**10be**).

Selected NMR spectroscopic data for the major diastereomer of 3be:

¹**H NMR** (500 MHz, CD_2Cl_2 , 300 K): $\delta = -7.74$ (d, J = 48.5 Hz, 1H), 0.16 (s, 3H), 0.28 (d, J =7.4 Hz, 3H*), 0.71 (d, J = 7.4 Hz, 3H), 1.46 (s, 3H), 1.83 (s, 3H), 1.94 (d, J = 2.5 Hz, 3H), 2.08 (s, 3H*), 2.18–2.21 (m, 6H), 4.65 (d, J = 3.2 Hz, 1H), 6.27 (s, 1H), 6.35 (s, 1H), 6.54 (d, J = 7.4 Hz, 2H), 6.83 (s, 1H), 7.03–7.11 (m, 1H*), 7.23 (ddd, J = 8.5 Hz, J = 8.5 Hz, J = 1.2 Hz, 6H*), 7.31– 7.35 (m, 2H^{*}), 7.53 (d, J = 7.8 Hz, 1H^{*}), 7.56–7.60 (m, 6H^{*}), 7.61 (s, 4H^{*}), 7.62–7.64 (m, 1H^{*}), 7.78 (s, 8H*) ppm. ¹¹B NMR (161 MHz, CD₂Cl₂, 300 K): $\delta = -6.6$ ppm. ¹⁹F{¹H} NMR (471 MHz, CD_2CI_2 , 300 K): $\delta = -108.4$, -62.8 ppm. ³¹P{¹H} NMR (203 MHz, CD_2CI_2 , 300 K): $\delta = 47.2$ ppm. ¹**H**,¹³**C HSQC NMR** (500/126 MHz, CD_2Cl_2 , 300 K): $\delta = 0.16/-4.8$, 0.28/17.5, 0.71/17.0, 1.46/ 18.1, 1.83/17.7, 1.94/18.1, 2.08/21.1, {2.18-2.21}/20.5, {2.18-2.21}/21.7, 4.65/103.6, 6.27/90.1, 6.35/129.5, 6.54/133.1, 6.83/128.4, {7.03-7.11}/129.7, 7.23/116.0, {7.31-7.35}/129.9, {7.31-7.35}/133.7, 7.53/128.3, {7.56-7.60}/135.6, 7.61/117.1, {7.62-7.64}/129.7, 7.78/134.7 ppm. ¹**H**,¹³**C HMBC NMR** (500/126 MHz, CD_2Cl_2 , 300 K): $\delta = -7.74/104.5$, 1.46/88.6, 1.46/90.1, 1.46/103.6, 1.83/103.6, 1.83/104.5, 1.83/112.3, 1.94/90.1, 1.94/95.5, 1.94/112.3, 2.08/129.5, 2.08/134.4, 2.08/135.4, {2.18-2.21}/128.4, {2.18-2.21}/129.5, {2.18-2.21}/134.3, {2.18-2.21}/ 134.8, {2.18-2.21}/138.3, 4.65/17.7, 4.65/18.1, 4.65/90.1, 4.65/112.3, 6.27/18.1, 6.27/103.6, 6.27/112.3, 6.35/21.1, 6.35/21.7, 6.35/128.4, 6.35/134.3, 6.54/129.9, 6.83/20.5, 6.83/21.7, $6.83/129.5, \ 6.83/134.3, \ 7.23/129.5, \ \{7.31-7.35\}/128.3, \ \{7.31-7.35\}/133.1, \ \{7.31-7.35\}/134.3, \ 7.31-7.35$ /134.3, \ 7.31-7.35/134.3, \ {7.31-7.35}/141.0, 7.53/133.7, 7.53/141.0, 7.53/112.3, {7.56-7.60}/164.3, 7.61/134.7, {7.62-7.64}/140.0, {7.62-7.64}/144.9, 7.78/117.1 ppm. ¹H,²⁹Si HMQC (500/99 MHz, CD₂Cl₂, 300 K, optimized for J = 8 Hz): $\delta = 0.16/32.1$, 0.28/32.1, 0.71/32.1, 6.54/32.1 ppm. ¹H,³¹P HMQC $(500/203 \text{ MHz}, \text{ CD}_2\text{Cl}_2, 300 \text{ K}, \text{ optimized for } J = 7 \text{ Hz}): \delta = -7.74/47.2, 1.94/47.2, 4.65/47.2,$ {7.56–7.60}/47.2 ppm.

Selected NMR spectroscopic data for the minor diastereomer of 3be:

¹**H** NMR (500 MHz, CD₂Cl₂, 300 K): $\delta = -7.58$ (d, J = 48.5 Hz, 1H), 0.28 (d, J = 7.4 Hz, 3H^{*}), 0.41 (d, J = 6.9 Hz, 3H), 0.49 (s, 3H), 1.41 (s, 3H), 1.77 (s, 3H), 1.90 (s, 3H^{*}), 2.26 (s, 3H), 2.28 (s, 3H), 2.35 (s, 3H), 4.49 (d, J = 3.1 Hz, 1H), 6.16 (s, 1H), 6.85 (s, 2H), 6.91 (s, 1H^{*}), 6.97 (s, 1H), 7.61 (s, 4H^{*}), 7.78 (s, 8H^{*}) ppm. ¹¹**B** NMR (161 MHz, CD₂Cl₂, 300 K): $\delta = -6.6$ ppm. ¹⁹F{¹H} NMR (471 MHz, CD₂Cl₂, 300 K): $\delta = -108.8$, -62.8 ppm. ³¹P{¹H} NMR (203 MHz, CD₂Cl₂, 300 K): $\delta = 47.6$ ppm. ¹¹H, ¹³C HSQC NMR (500/126 MHz, CD₂Cl₂, 300 K): $\delta = 0.28/-3.8$, 0.42/-8.3, 0.49/-5.5, 1.41/18.2, 1.77/17.7, 1.90/20.0, 2.26/19.5, 2.28/20.9, 2.35/20.5, 4.49/102.8, 6.18/90.8, 6.85/135.0, 6.91/127.8, 6.97/129.0, 7.61/117.1, 7.78/134.7 ppm. ¹H, ¹³C HMBC (500/126 MHz, CD₂Cl₂, 300 K): $\delta = 1.41/87.6$, 1.41/90.8, 1.41/102.8, 1.77/102.8, 1.77/104.1, 1.77/112.9, 1.90/127.8, 1.90/134.6, 1.90/135.3, 2.26/90.8, 2.26/94.8, 2.26/112.9, 2.28/129.9, 2.28/134.6, 2.28/135.7, 2.35/127.8, 2.35/129.9, 2.35/139.1, 4.49/18.2, 4.49/90.8, 4.49/112.9, 6.16/19.5, 6.16/102.8, 6.16/112.9, 6.91/20.5, 6.91/129.9, 6.91/134.6, 6.97/127.8, 6.97/134.6 ppm. ¹H, ³P HMQC (500/203 MHz, CD₂Cl₂, 300 K, optimized for J = 8 Hz): $\delta = 0.28/33.4$, 0.42/33.4, 0.49/33.4, 6.85/33.4 ppm. ¹H, ³P HMQC (500/203 MHz, CD₂Cl₂, 300 K, optimized for J = 7 Hz): $\delta = -7.58/47.6$, 2.26/47.6, 4.49/47.6 ppm.

2.2 Characterization of Side Products $[R_3POSiR'_3]^+[BAr^F_4]^-$ (10)

	$R_{3}P^{IRu]-SAr} \xrightarrow[R_{4}]{(2a-e)} R_{3}P^{IRu]-SAr}$	$\begin{array}{c} \mathbf{S}_{i} + \mathbf{H} \\ \mathbf{S}_{i} + \mathbf{B}_{i} \mathbf{F}_{4}^{-} \\ \mathbf{S}_{i} + \mathbf{S}_{i} \\ \mathbf{S}_{$		
	1a (R = Et) 1b (R = <i>p</i> -FC ₆ H₄)	3aa–3ad, 10aa–10ad, 3ba–3bc, 3be 10ba–10bc, 10be		
entry	reaction	side product	δ(²⁹ Si) [ppm] ^b	δ(³¹ Ρ) [ppm]
1	$\textbf{1a} + MePh_2SiH \ \textbf{(2a)} \rightarrow \textbf{3aa}$	[Et₃POSiMePh₂] ⁺ [BAr ^F ₄] [−] (10aa)	8.8 ^c	92.9 ^{c,d}
2	1a + Me ₂ PhSiH (2b) \rightarrow 3ab	[Et₃POSiMe₂Ph]⁺[BAr ^F ₄] [−] (10ab)	21.9 ^c	91.2 ^c
3	1a + Et ₃ SiH (2c) → 3ac	[Et₃POSiEt₃] ⁺ [BAr ^F ₄] [−] (10ac)	36.7 ^e	89.0 ^e
4	$\textbf{1a} + EtMe_2SiH \ \textbf{(2d)} \rightarrow \textbf{3ad}$	$[Et_3POSiEtMe_2]^+[BAr_4]^-$ (10ad)	35.4 ^e	89.9 ^e
5	1b + MePh ₂ SiH (2a) \rightarrow 3ba	$[(p-FC_6H_4)_3POSiMePh_2]^+[BAr_4]^- (10ba)^f$	11.5 ^e	52.8 ^e
6	$\textbf{1b} + Me_2PhSiH~(\textbf{2b}) \rightarrow \textbf{3bb}$	$[(p-FC_6H_4)_3POSiMe_2Ph]^+[BAr_4]^- (10bb)$	25.1 ^e	51.6 ^e
7	$\textbf{1b} + Et_3SiH \ \textbf{(2c)} \rightarrow \textbf{3bc}$	$[(\rho-FC_6H_4)_3POSiEt_3]^+[BAr_4]^-(10bc)$	_ ^g	51.3 ^e
8	1b + <i>i</i> PrMePhSiH (2e) \rightarrow 3be	$[(p-FC_6H_4)_3POSiiPrMePh]^+[BAr_4]^- (10be)$	24.6 ^e	52.0 ^e

Table S1. ²⁹Si and ³¹P NMR chemical shifts of $[R_3POSiR'_3]^+[BAr^F_4]^-$ (10).^{*a*}

^aAll reactions were performed in an NMR tube in CD₂Cl₂ (20 mM) using ruthenium thiolate complex **1a** or **1b** (1.0 equiv) and the corresponding hydrosilane **1a–1e** (2.0 equiv). The reaction mixture was directly subjected to NMR spectroscopic analysis. ^{b1}H,²⁹Si HMQC NMR spectroscopy optimized for J = 8 Hz. ^cIn CD₂Cl₂ at 250 K. ^d δ (³¹P) = 91.3 ppm in C₆D₆ at 300 K. ^eIn CD₂Cl₂ at 300 K. ^fHRMS (ESI) for C₃₁H₂₅F₃OPSi [M–BAr^F₄]⁺: calcd *m*/z 529.1359, found 529.1366. ^gNo resonance signal detected.

Single crystals of $[Et_3POSiMe_2Ph]^+[BAr_4]^-$ (**10ab**) suitable for X-ray diffraction were obtained from a solution of ruthenium(II) thiolate complex **1a** and excess hydrosilane **2b** in toluene layered by *n*-hexane at –30 °C. For the crystallographic data, see section 7.3.

Independent Preparation of [Et₃POSiMePh₂]⁺[BAr^F₄]⁻ (10aa) by Addition of Et₃PO (11a) to In-Situ Generated Adduct 3ba

In an NMR tube, MePh₂SiH (**2a**, 2.4 mg, 12 μ mol, 2.0 equiv) was added to a solution of [{(*p*-FC₆H₄)₃P}Ru(SDmp)]⁺[BAr^F₄]⁻ (**1b**, 10 mg, 6.2 μ mol, 1.0 equiv) in C₆D₆ (0.6 mL). The sample

was shaken vigorously, followed by addition of Et_3PO (0.83 mg, 6.2 µmol, 1.0 equiv). The sample was again shaken vigorously and directly subjected to NMR spectroscopic analysis indicating the formation of **10aa** along with ruthenium hydride complex **8b**.

Selected NMR spectroscopic data for 10aa:

¹**H NMR** (500 MHz, C₆D₆, 300 K): $\delta = 0.04-0.21$ (m, 9H), 0.23 (s, 3H), 0.63-0.77 (m, 6H), 7.08-7.12 (m, 4H*), 7.66 (s, 4H*), 8.32 (s, 8H*) ppm. ³¹P{¹H} NMR (203 MHz, C₆D₆, 300 K): $\delta = 91.3$ ppm. ¹H,²⁹Si HMQC (500/99 MHz, C₆D₆, 300 K, optimized for J = 8 Hz): $\delta = 0.23/7.9$, {7.08-7.12}/7.9 ppm. The NMR spectroscopic data are in accordance with those obtained for the side product in the reaction of [(Et₃P)Ru(SDmp)]⁺[BAr^F₄]⁻ (1a) and MePh₂SiH (2a) (cf. Table S1, entry 1).

Selected NMR spectroscopic data for 8b:

¹**H NMR** (500 MHz, C₆D₆, 300 K): δ = -8.42 (d, *J* = 53.4 Hz, 1H), 1.03 (s, 3H), 1.66 (s, 3H), 2.03 (s, 3H), 2.14 (s, 3H), 2.16 (s, 3H), 2.27 (s, 3H), 4.27 (d, *J* = 2.9 Hz, 1H), 5.36 (s, 1H), 6.61 (dd, *J* = 8.5 Hz, *J* = 8.5 Hz, 6H), 6.67 (s, 1H), 6.87 (s, 1H), 7.29–7.37 (m, 4H) ppm. ¹⁹F{¹H} NMR (471 MHz, C₆D₆, 300 K): δ = -109.9 ppm. ³¹P{¹H} NMR (203 MHz, C₆D₆, 300 K): δ = 53.4 ppm.

2.4 Control Experiment: Probing the Reactivity of [Et₃POSiMePh₂]⁺[BAr^F₄]⁻ (10aa)

In an NMR tube, MePh₂SiH (**2a**, 2.4 mg, 12 µmol, 2.0 equiv) was added to a solution of $[{(p-FC_6H_4)_3P}Ru(SDmp)]^+[BAr^F_4]^-$ (**1b**, 10 mg, 6.2 µmol, 1.0 equiv) in C₆D₆ (0.6 mL). The sample was shaken vigorously for 5 min, followed by addition of Et₃PO (**11a**, 0.83 mg, 6.2 µmol, 1.0 equiv). After shaking for additional 5 min, acetophenone (0.74 mg, 6.2 µmol, 1.0 equiv) was added, and the sample was maintained at room temperature for 7 d. No reaction was observed as indicated by NMR spectroscopic analysis.

2.5 Preparation of Silyl Thioether Ph₂MeSiSDmp

According to a reported procedure by Rosenberg and co-workers,^[S25] $B(C_6F_5)_3$ (3.7 mg, 7.2 µmol, 5.0 mol %) was added to a solution of 2,6-bis(2,4,6-trimethylphenyl)phenylthiol (50 mg, 0.14 mmol, 1.0 equiv) und MePh₂SiH (**2a**, 37 mg, 0.19 mmol, 1.3 equiv) in *n*-hexane (1 mL). The resulting mixture was stirred at room temperature for 4 d, followed by filtration and removal of the solvent under reduced pressure. The residue was dried under vacuum (0.5 mbar) at 80 °C, affording the title compound (64 mg, 82%) as a white solid. ¹⁹F{¹H} NMR spectroscopic analysis indicated no contamination of the product by $B(C_6F_5)_3$.

Analytical data for Ph₂MeSiSDmp:

M.p. = 175 °C (*n*-hexane). **IR** (ATR): $\tilde{\nu}$ = 3043, 2993, 2912, 2851, 1610, 1562, 1446, 1421, 1372, 1245, 1103, 1030, 848, 801, 727, 695 cm⁻¹. ¹**H NMR** (500 MHz, C₆D₆, 300 K): $\bar{\delta}$ = 0.50 (s, 3H), 2.14 (s, 12H), 2.24 (s, 6H), 6.74 (s, 4H), 6.97–7.03 (m, 6H), 7.04–7.11 (m, 7H) ppm. ¹³C{¹H} NMR (126 MHz, C₆D₆, 300 K): $\bar{\delta}$ = -1.6, 20.9, 21.0, 127.3, 128.0, 128.3, 129.0, 129.9, 131.4, 134.8, 135.5, 135.9, 136.0, 139.0, 147.7 ppm. ²⁹Si DEPT NMR (99 MHz, C₆D₆, 300 K, optimized for *J* = 8 Hz): $\bar{\delta}$ = 2.9 ppm. HRMS (APCI) for C₃₇H₃₉SSi [M+H]⁺: calcd *m/z* 543.2536, found 543.2531.

In contrast to cationic silvithioruthenium hydride intermediates **3aa** and **3ba**, neutral silvithioether Ph₂MeSiSDmp proved to be not a potent silvit transfer agent.

3 Mechanistic Control Experiment with a Silicon-Stereogenic Hydrosilane

3.1 Racemization Experiment of Enantioenriched Hydrosilane (^{Si}S)-2e with Ruthenium Thiolate Complex 1b

In a 2-mL vial, enantioenriched *i*PrMePhSiH ((^{Si}S)-**2e**, 3.6 mg, 22 µmol, 1.0 equiv, 90% *ee*) was added to a solution of $[{(p-FC_6H_4)_3P}Ru(SDmp)]^+[BAr^{F_4}]^-$ (**1b**, 3.6 mg, 2.2 µmol, 10 mol %) in toluene (0.4 mL), and the resulting reaction mixture was stirred at room temperature for 24 h. The reaction mixture was filtrated through a short pad of silica gel (cyclohexane/*tert* butyl methyl ether 10:1) and concentrated under reduced pressure. Hydrosilane (^{Si}S)-**2e** (89% *ee*) was reisolated as a colorless oil with >99% retention of configuration at the silicon atom. The enantiomeric excess was determined by HPLC analysis on a chiral stationary phase (Daicel OJ-RH, column temperature 20 °C, solvent MeCN:H₂O = 60:40, flow rate 0.40 mL/min, λ = 230 nm): t_R = 29.2 min for (^{Si}*R*)-**2e** (minor enantiomeri), t_R = 31.8 min for (^{Si}*S*)-**2e** (major enantiomer).

4 Mechanistic Control Experiments with a Deuterium-Labeled Hydrosilane

4.1 Si–H Bond Activation of Deuterium-Labeled Dimethylphenylsilane (2b-*d*₁) with Ruthenium(II) Thiolate Complex 1b

In an NMR tube, deuterium-labeled Me₂PhSiD (**2b**- d_1 , 3.3 mg, 24 µmol, 2.0 equiv) was added to a solution of [{(p-FC₆H₄)₃P}Ru(SDmp)]⁺[BAr^F₄]⁻ (**1b**, 20 mg, 12 µmol, 1.0 equiv) in CD₂Cl₂ (0.6 mL). The sample was shaken vigorously and directly subjected to NMR spectroscopic analysis indicating the formation of adduct **3bb**- d_1 along with unreacted hydrosilane **2b**- d_1 .

NMR spectroscopic data for **3bb**-d₁:

¹**H NMR** (500 MHz, CD₂Cl₂, 300 K): $\delta = 0.01$ (s, 3H), 0.55 (s, 3H), 1.48 (s, 3H), 1.79 (s, 3H), 2.00 (s, 3H), 2.17 (s, 3H), 2.33 (s, 3H), 2.33 (s, 3H), 4.64 (s, 1H), 6.32 (s, 1H), 6.69 (d, J = 6.5 Hz, 2H), 6.76 (s, 1H), 6.89 (s, 1H), 7.08 (dd, J = 8.5 Hz, J = 8.5 Hz, 6H), 7.17 (dd, J = 6.7 Hz, J = 6.7 Hz, 2H), 7.31–7.38 (m, 8H), 7.57 (d, J = 8.0 Hz, 1H), 7.61 (s, 4H*), 7.66 (dd, J = 7.6 Hz, J = 7.6 Hz, 1H), 7.78 (s, 8H*) ppm. ¹¹**B** NMR (161 MHz, CD₂Cl₂, 300 K): $\delta = -6.6$ ppm. ¹⁹F{¹H} NMR (471 MHz, CD₂Cl₂, 300 K): $\delta = -108.7$, -62.9 ppm. ³¹P{¹H} NMR (203 MHz, CD₂Cl₂, 300 K): $\delta = 48.7$ ppm. ¹H,²⁹Si HMQC NMR (500/99 MHz, CD₂Cl₂, 300 K, optimized for J = 8 Hz): $\delta = 0.01/29.8$ ppm.

4.2 ²H-Scrambling Experiment of Deuterium-Labeled Dimethylphenylsilane (2b-*d*₁) and Non-Deuterated Methyldiphenylsilane (2a) with Ruthenium(II) Thiolate Complex 1a

In a 2-mL vial, deuterium-labeled Me₂PhSiD (**2b**-*d*₁, 2.8 mg, 20 µmol, 1.0 equiv, >99% D) and non-deuterated MePh₂SiH (**2a**, 4.0 mg, 20 µmol, 1.0 equiv) were added to a solution of $[(Et_3P)Ru(SDmp)]^+[BAr^F_4]^-$ (**1a**, 1.7 mg, 1.2 µmol, 6.2 mol %) in C₆D₆ (0.6 mL). The resulting reaction mixture was stirred at room temperature for 3 h. NMR and GLC-MS analysis indicated a H/D ratio of 49:51 for Me₂PhSiH/D corresponding to complete scrambling of isotope labels at the silicon atom. Consistently, for MePh₂SiH/D an isotopic distribution of H/D = 51:49 was observed.

4.3 ²H-Scrambling Experiment of Deuterium-Labeled Dimethylphenylsilane (2b-*d*₁) and Non-Deuterated Methyldiphenylsilane (2a) with Ruthenium(II) Thiolate Complex 1b

In a 2-mL vial, deuterium-labeled Me₂PhSiD (**2b**-*d*₁, 2.8 mg, 20 µmol, 1.0 equiv, >99% D) and non-deuterated MePh₂SiH (**2a**, 4.0 mg, 20 µmol, 1.0 equiv) were added to a solution of $[{(p-FC_6H_4)_3P}Ru(SDmp)]^+[BAr_4]^-$ (**1b**, 2.0 mg, 1.2 µmol, 6.2 mol %) in C₆D₆ (0.6 mL). The resulting reaction mixture was stirred at room temperature for 3 h. NMR and GLC-MS analysis indicated a H/D ratio of <1:99 for Me₂PhSiH/D corresponding to no scrambling of isotope labels at the silicon atom. Consistently, for MePh₂SiH/D an isotopic distribution of H/D > 99:1 was observed.

5 DFT Calculations

Table S2. Computed NMR chemical shifts (in ppm; ¹H and ²⁹Si with respect to TMS, ³¹P with respect to 85% aq. H₃PO₄) in selected ruthenium(II) thiolate complexes.^{*a,b*}

Compound	R₃P	Si	³¹ P NMR		1	H NMR		29	²⁹ Si NMR			
			δ_{SR}	δ_{SO}	δ _{4c}	δ_{SR}	δ_{SO}	δ_{4c}	δ_{SR}	δ _{so}	δ _{4c}	
	Me ₃ P		-4.2	-17.7	-21.9							
R ₉ P ^{RU} S	Et ₃ P		38.4	-15.4	23.0							
1	Ar ^F ₃ P		45.1	-13.5	31.6							
	Me ₃ P		30.0	-33.0	-3.0	-6.3	-2.7	-9.0				
R ₃ P Ku S	Et₃P		61.7	-28.7	33.0	-6.3	-2.8	-9.0				
8	Ar ^F ₃P		70.9	-24.5	46.4	-6.4	-3.1	-9.5				
	Me ₃ P	Me ₂ PhSi	40.5	-34.8	5.7	-8.9	-2.2	-11.1	17.9	-9.3	8.6	
R ₃ P ^{Ru} S	Et ₃ P	Me₂PhSi	63.7	-31.5	32.3	-11.3	-1.7	-13.1	11.0	-7.6	3.3	
^s i 6	Et ₃ P	MePh ₂ Si	66.0	-31.9	34.1	-9.5	-2.0	-11.6	5.1	-9.0	-4.0	
	Et ₃ P	EtMe ₂ Si	63.5	-30.7	32.8	-13.1	-1.7	-14.8	29.0	-6.6	22.4	
^K ₃ ^P ∔ S <i>i</i> 6'	Ar ^F ₃ P	Me₂PhSi	58.2	-35.5	22.8	-12.7	-1.5	-14.2	17.2	-5.4	11.7	

Compound	R₃P	Si	:	³¹ P NMR			¹ H NMR		29	⁹ Si NMR	
			δ_{SR}	δ_{SO}	δ _{4c}	δ_{SR}	δ_{SO}	δ_{4c}	δ_{SR}	δ_{SO}	δ_{4c}
	Me ₃ P	Me ₂ PhSi	33.2	-32.0	1.2	-5.3	-2.9	-8.2	37.1	-1.5	35.7
	Et ₃ P	Me ₂ PhSi	64.4	-27.7	36.7	-5.0	-2.9	-7.9	34.9	-1.4	33.5
Ru	Et ₃ P	MePh ₂ Si	64.7	-27.4	37.2	-5.0	-2.8	-7.8	16.4	-1.6	14.8
$R_{3}P^{-}/H^{-}$	Et ₃ P	EtMe ₂ Si	64.7	-26.6	38.2	-5.0	-2.8	-7.8	45.9	-1.8	44.1
3	Ar ^F ₃ P	Me ₂ PhSi	66.5	-25.2	41.3	-4.4	-3.1	-7.5	35.0	-1.6	33.3
	Ar ^F ₃ P	MePh ₂ Si	65.3	-25.7	39.7	-4.6	-3.0	-7.6	29.3	-1.0	28.3
	Et ₃ P	Me ₂ PhSi	50.4	-30.1	20.3	4.7	-0.6	4.1	38.2	-17.8	20.3
R₃P´/ → Si H 4	Ar ^F ₃ P	Me ₂ PhSi	57.3	-30.1	27.2	5.0	-0.7	4.3	40.5	-17.2	23.4

^aChemical shifts δ_{4c} calculated at the four-component mDKS level using the PBE functional in conjunction with Dyall's VDZ basis set on Ru and fully uncontracted IGLO-II basis sets on the ligand atoms (cf. Computational Details). Scalar relativistic shifts δ_{SR} were obtained at the same level of theory by scaling spin-orbit integrals to zero. The spin-orbit (SO) contribution to the chemical shift, δ_{SO} , is evaluated as a difference between δ_{4c} and δ_{SR} .^bAr^F₃P = (*p*-FC₆H₄)₃P.

Table S3.	Optimized structural parameters in selected ruthenium(II) thiolate complexes and Gibbs free energies of formation, ΔG_r^0 ,
	relative to the sum of the free energies of [(R ₃ P)RuSDmp] ⁺ (1 ⁺) and the corresponding silane 2 . ^{<i>a,b</i>}

Compound	R₃P	Si	d(Ru S)	d(Ru–P)	d(Ru H)	d(Si […] H)	d(Ru Si)	d(S Si)	α(Ru H Si)	ΔG_r^0
			[Å]	[Å]	[Å]	[Å]	[Å]	[Å]	[°]	[kJ/mol]
	Me ₃ P		2.239	2.389						
-	Et₃P		2.240	2.389						
Compound R_3P Sid(Ru-S)d(Ru-P)[A][A][A] Me_3P 2.2392.389 $\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$ Et_3P 2.2402.389 R_3P 2.2422.383 Ph_3P 2.2422.383 Ph_3P 2.2422.386 Me_3P Me_2PhSi 2.3972.324 $I = I = I = I = I = I = I = I = I = I =$										
1	Ph₃P		2.243	2.387						
	Ar ⁰ ₃ P		2.242	2.386						
	Me ₃ P	Me ₂ PhSi	2.397	2.324	1.618	1.794	2.589	3.259	98.6	-23.0
	Et₃P	Me ₂ PhSi	2.394	2.333	1.674	1.627	2.851	3.458	119.5	-25.2
Ru	Et₃P	MePh ₂ Si	2.400	2.338	1.630	1.747	2.641	3.328	102.8	-17.9
R ₃ P ['] H Si 6	Et₃P	EtMe ₂ Si	2.398	2.339	1.711	1.594	2.966	3.619	127.6	-2.7
	Et₃P	<i>t</i> BuMe₂Si	2.399	2.340	1.769	1.593	3.078	3.742	132.5	13.2
	Ar ^F ₃ P	Me ₂ PhSi	2.391	2.335	1.719	1.570	3.111	3.753	142.1	-15.3
	Ph₃P	Me ₂ PhSi	2.392	2.338	1.718	1.568	3.105	3.749	141.7	-14.8
6'	Ar ⁰ ₃ P	Me ₂ PhSi	2.389	2.342	1.723	1.567	3.110	3.743	141.8	-17.2
	Ar ^F ₃P	<i>t</i> BuMe₂Si	2.396	2.337	1.721	1.610	2.994	3.416	127.9	2.8

Compound	R₃P	Si	d(Ru S)	d(Ru–P)	d(Ru […] H)	d(Si […] H)	d(Ru Si)	d(S […] Si)	α(Ru H Si)	ΔG_r^0
			[Å]	[Å]	[Å]	[Å]	[Å]	[Å]	[°]	[kJ/mol]
	Me ₃ P	Me ₂ PhSi	2.373	2.306	1.601	2.249	2.874	2.416	95.1	14.0
	Et₃P	Me ₂ PhSi	2.374	2.318	1.597	2.201	2.872	2.416	97.0	13.4
	Et₃P	MePh ₂ Si	2.371	2.320	1.603	2.166	2.896	2.428	99.3	6.4
	Et₃P	EtMe ₂ Si	2.385	2.316	1.599	2.219	2.895	2.423	97.3	34.0
	Et₃P	<i>t</i> BuMe₂Si	2.370	2.323	1.607	2.175	2.876	2.481	97.9	56.2
	Ar ^F ₃P	Me ₂ PhSi	2.376	2.322	1.585	2.171	2.914	2.446	100.6	27.9
0_10	Ph_3P	Me ₂ PhSi	2.374	2.326	1.587	2.168	2.906	2.430	100.3	33.6
	Ar ⁰ ₃P	Me₂PhSi	2.373	2.331	1.584	2.156	2.921	2.434	101.6	24.1
	Ar ^F ₃P	<i>t</i> BuMe₂Si	2.368	2.333	1.605	2.095	2.891	2.545	102.0	74.8
	Me_3P	Me ₂ PhSi	2.380	2.300	1.605	3.280	3.763	2.253	94.5	-37.3
	Et₃P	Me ₂ PhSi	2.394	2.307	1.600	3.188	3.729	2.255	96.7	-36.1
+	Et₃P	MePh ₂ Si	2.391	2.300	1.593	3.242	3.764	2.261	96.2	-43.6
	Et₃P	EtMe ₂ Si	2.403	2.306	1.592	3.486	3.919	2.255	93.5	-33.0
R ₃ P	Et₃P	<i>t</i> BuMe₂Si	2.408	2.303	1.597	3.441	3.844	2.271	92.0	-17.3
	Ar ^F ₃P	Me ₂ PhSi	2.389	2.313	1.582	3.257	3.809	2.266	97.8	-35.6
3	Ph_3P	Me ₂ PhSi	2.396	2.314	1.582	3.255	3.801	2.263	97.6	-26.4
	Ar ⁰ ₃P	Me ₂ PhSi	2.389	2.319	1.584	3.269	3.788	2.261	96.4	-34.4
	Ar ^F ₃P	<i>t</i> BuMe₂Si	2.389	2.320	1.585	3.356	3.836	2.282	95.1	-4.7

Compound	R₃P	Si	d(Ru […] S) [Å]	d(Ru–P) [Å]	d(Ru H) [Å]	d(Si […] H) [Å]	d(Ru […] Si) [Å]	d(S […] Si) [Å]	α(Ru H Si) [°]	∆G _r ⁰ [kJ/mol]
	Et₃P	Me ₂ PhSi	2.503	2.359	1.982	2.440	2.474	3.594	67.1	48.5
R ₃ P Si H	Et₃P	MePh₂Si	2.490	2.340	2.048	2.511	2.474	3.625	64.8	43.9
4_TS	Ar ^F ₃ P	Me ₂ PhSi	2.498	2.343	1.961	2.487	2.474	3.615	66.4	65.1
	Et₃P	Me₂PhSi	2.346	2.346	3.052	3.110	2.452	3.341	46.9	14.8
	Et₃P	MePh₂Si	2.333	2.348	3.049	3.148	2.445	3.349	46.4	8.9
4	$Ar_{3}^{F}P$	Me₂PhSi	2.330	2.328	3.050	3.197	2.455	3.342	46.2	22.1

^aResults obtained at the B3LYP-D3(BJ)/ECP/6-31+G^{**} level of theory using an SMD solvation model (cf. Computational Details and Figure 7 for a reaction profile of $1a^{+}$ with Me₂PhSiH). ^bAr^F₃P = (*p*-FC₆H₄)₃P; Ar^O₃P = (*p*-MeOC₆H₄)₃P.

Compound	R₃P	Si	1	NPA atomic	charges		١	Niberg bor	d indices	
			q(Ru)	q(S)	q(Si)	q(H)	Ru S	Ru Si	S Si	Si H
	Me ₃ P		0.055	0.099			0.957			
	Et ₃ P		0.065	0.096			0.940			
R ₃ P ^{Ru} S	Ar ^F ₃ P		0.070	0.123			0.944			
1	$Ph_{3}P$		0.078	0.120			0.938			
	Ar ⁰ ₃ P		0.073	0.122			0.933			
	Me ₃ P	Me₂PhSi	-0.317	-0.003	1.608	0.028	0.594	0.308	0.096	0.338
	Et₃P	Me ₂ PhSi	-0.192	-0.027	1.675	-0.098	0.607	0.165	0.046	0.469
Ru	Et₃P	MePh ₂ Si	-0.281	-0.002	1.652	-0.001	0.596	0.273	0.085	0.373
R ₃ P ⁺ H Si 6	Et₃P	EtMe ₂ Si	-0.141	-0.037	1.683	-0.147	0.615	0.131	0.024	0.510
.	Et₃P	<i>t</i> BuMe₂Si	-0.087	-0.037	1.741	-0.182	0.623	0.107	0.017	0.551
	Ar ^F ₃ P	Me ₂ PhSi	-0.085	-0.043	1.705	-0.181	0.615	0.101	0.015	0.570
	Ph₃P	Me ₂ PhSi	-0.083	-0.042	1.704	-0.180	0.615	0.102	0.015	0.525
6'	Ar ⁰ ₃ P	Me ₂ PhSi	-0.082	-0.041	1.701	-0.181	0.615	0.102	0.015	0.530
	Ar ^F ₃ P	<i>t</i> BuMe₂Si	-0.120	-0.021	1.746	-0.153	0.616	0.122	0.045	0.509

Table S4. NPA atomic charges and Wiberg bond indices (WBI) in selected structures and transition states.^{*a,b*}

Compound	R ₃ P	Si	Ν	NPA atomic	c charges			Wiberg bond indices			
			q(Ru)	q(S)	q(Si)	q(H)	Ru S	Ru Si	S Si	Si […] H	
	Me₃P	Me ₂ PhSi	-0.316	0.087	1.638	0.031	0.533	0.166	0.552	0.122	
	Et ₃ P	Me ₂ PhSi	-0.308	0.091	1.635	0.034	0.535	0.165	0.554	0.129	
.	Et ₃ P	MePh ₂ Si	-0.291	0.087	1.658	0.015	0.537	0.158	0.547	0.146	
	Et ₃ P	EtMe ₂ Si	-0.301	0.085	1.636	0.031	0.531	0.160	0.559	0.128	
Ru SH	Et ₃ P	<i>t</i> BuMe₂Si	-0.293	0.087	1.689	0.030	0.548	0.173	0.511	0.157	
	Ar ^F ₃ P	Me ₂ PhSi	-0.291	0.092	1.642	0.051	0.538	0.151	0.536	0.132	
5_15	Ph₃P	Me ₂ PhSi	-0.286	0.093	1.637	0.052	0.538	0.152	0.545	0.133	
	Ar ⁰ ₃P	Me ₂ PhSi	-0.287	0.092	1.641	0.049	0.536	0.149	0.543	0.136	
	Ar ^F ₃ P	<i>t</i> BuMe₂Si	-0.262	0.086	1.692	0.037	0.562	0.169	0.468	0.178	
	Me ₃ P	Me ₂ PhSi	-0.261	0.055	1.675	-0.014	0.502	0.020	0.727	0.004	
	Et ₃ P	Me ₂ PhSi	-0.254	0.055	1.672	-0.003	0.495	0.021	0.733	0.005	
+	Et ₃ P	MePh ₂ Si	-0.258	0.052	1.696	-0.002	0.492	0.022	0.727	0.005	
	Et ₃ P	EtMe ₂ Si	-0.252	0.035	1.668	0.007	0.485	0.016	0.721	0.002	
	Et ₃ P	<i>t</i> BuMe₂Si	-0.243	0.027	1.743	0.000	0.483	0.017	0.723	0.003	
	Ar ^F ₃ P	Me ₂ PhSi	-0.247	0.065	1.673	0.026	0.504	0.017	0.716	0.002	
3	$Ph_{3}P$	Me ₂ PhSi	-0.244	0.062	1.672	0.028	0.500	0.017	0.725	0.002	
	Ar ⁰ ₃ P	Me ₂ PhSi	-0.247	0.065	1.668	0.024	0.499	0.018	0.729	0.002	
	Ar ^F ₃P	<i>t</i> BuMe₂Si	-0.239	0.058	1.747	0.025	0.502	0.017	0.711	0.003	

Compound	R ₃ P	Si	Ν	NPA atomic	c charges	rges Wiberg bond indices					
			q(Ru)	q(S)	q(Si)	q(H)	Ru S	Ru Si	S Si	Si H	
	Et₃P	Me ₂ PhSi	-0.328	0.205	1.437	0.271	0.426	0.585	0.022	0.043	
R ₃ P Si H	Et₃P	MePh₂Si	-0.327	0.213	1.453	0.272	0.441	0.581	0.024	0.038	
4_TS	Ar ^F ₃ P	Me₂PhSi	-0.333	0.195	1.453	0.197	0.429	0.577	0.022	0.040	
	Et₃P	Me ₂ PhSi	-0.366	0.312	1.446	0.269	0.530	0.603	0.065	0.003	
	Et₃P	MePh ₂ Si	-0.362	0.317	1.471	0.272	0.540	0.599	0.067	0.003	
4	$Ar^{F_{3}}P$	Me₂PhSi	-0.371	0.299	1.458	0.184	0.540	0.591	0.067	0.003	
MePh ₂ SiH					1.469	-0.197				0.915	
Me ₂ PhSiH					1.487	-0.206				0.911	
EtMe ₂ SiH					1.466	-0.212				0.909	
Me ₂ <i>t</i> BuSiH					1.513	-0.211				0.907	

^aResults obtained at the B3LYP-D3(BJ)/ECP/6-31+G^{**} level of theory using an SMD solvation model (cf. Computational Details). ^bAr^F₃P = (p-FC₆H₄)₃P; Ar^O₃P = (p-MeOC₆H₄)P.

NMR Spectra 6

NMR Spectra of Hydrosilane Adducts 3aa-3ad, 3ba-3bc, and 3be 6.1

 $[(Et_3P)Ru(SDmp) \cdot MePh_2SiH]^+[BAr_4]^-$ (**3aa**)

¹H NMR (500 MHz, CD₂Cl₂, 250 K): * = MePh₂SiH

BAr^F4⁻

¹¹B NMR (161 MHz, CD₂Cl₂, 250 K):

 $^{19}\text{F}\{^{1}\text{H}\}$ NMR (471 MHz, CD_2Cl_2, 250 K):

³¹P{¹H} NMR (203 MHz, CD₂Cl₂, 250 K): # = [Et₃POSiMePh₂]⁺[BAr^F₄]⁻

¹H,²⁹Si HMQC NMR (500/99 MHz, CD₂Cl₂, 250 K, optimized for J = 8 Hz): * = MePh₂SiH, # = [Et₃POSiMePh₂]⁺[BAr^F₄]⁻

¹H,³¹P HMQC NMR (500/203 MHz, CD₂Cl₂, 300 K, optimized for J = 7 Hz): # = [Et₃POSiMePh₂]⁺[BAr^F₄]⁻

¹¹B NMR (161 MHz, CD₂Cl₂, 250 K):

$^{19}\text{F}\{^{1}\text{H}\}$ NMR (471 MHz, CD_2Cl_2, 250 K):

³¹P{¹H} NMR (203 MHz, CD₂Cl₂, 250 K): # = $[Et_3POSiMe_2Ph]^+[BAr_4^F]^-$

¹H,²⁹Si HMQC NMR (500/99 MHz, CD₂Cl₂, 250 K, optimized for J = 8 Hz): * = Me₂PhSiH, # = [Et₃POSiMe₂Ph]⁺[BAr^F₄]⁻

¹H,³¹P HMQC NMR (500/203 MHz, CD₂Cl₂, 250 K, optimized for J = 7 Hz): # = [Et₃POSiMe₂Ph]⁺[BAr^F₄]⁻

¹¹B NMR (161 MHz, CD₂Cl₂, 300 K):

6.6

 $^{19}\text{F}\{^{1}\text{H}\}$ NMR (471 MHz, CD_2Cl_2, 300 K):

¹H,²⁹Si HMQC NMR (500/99 MHz, CD₂Cl₂, 300 K, optimized for J = 8 Hz): * = Et₃SiH, # = [Et₃POSiEt₃]⁺[BAr^F₄]⁻

¹H,³¹P HMQC NMR (500/203 MHz, CD₂Cl₂, 300 K, optimized for J = 7 Hz): # = [Et₃POSiEt₃]⁺[BAr^F₄]⁻

¹¹B NMR (161 MHz, CD₂Cl₂, 300 K):

 $^{19}\text{F}\{^{1}\text{H}\}$ NMR (471 MHz, CD_2Cl_2, 300 K):

¹H,²⁹Si HMQC NMR (500/99 MHz, CD₂Cl₂, 300 K, optimized for J = 8 Hz): * = EtMe₂SiH, # = [Et₃POSiEtMe₂]⁺[BAr^F₄]⁻

¹H,³¹P HMQC NMR (500/203 MHz, CD₂Cl₂, 300 K, optimized for J = 7 Hz): # = [Et₃POSiEtMe₂]⁺[BAr^F₄]⁻

 $[\{(p\text{-}\mathsf{FC}_6\mathsf{H}_4)_3\mathsf{P}\}\mathsf{Ru}(\mathsf{SDmp})\cdot\mathsf{MePh}_2\mathsf{SHi}]^+[\mathsf{BAr}^\mathsf{F}_4]^-\,(\textbf{3ba})$ ¹H NMR (500 MHz, CD₂Cl₂, 300 K): * = MePh₂SiH

Solvent comparison

¹H NMR (500 MHz, 300 K):

¹¹B NMR (161 MHz, CD₂Cl₂, 300 K):

 $^{19}\text{F}\{^{1}\text{H}\}$ NMR (471 MHz, CD_2Cl_2, 300 K):

Solvent comparison

¹⁹F{¹H} NMR (471 MHz, 300 K):

³¹P{¹H} NMR (203 MHz, CD₂Cl₂, 300 K): # = $[(p-FC_6H_4)_3POSiMePh_2]^+[BAr_4]^-$

Solvent Comparison

³¹P{¹H} NMR (203 MHz, 300 K):

 C_6D_6

 CD_2Cl_2

¹H,¹H EXSY NMR (500/500 MHz, CD₂Cl₂, 300 K, *T*_m = 200 ms):

blue = normal phase, black = negative phase

¹H,²⁹Si HMQC NMR (500/99 MHz, CD₂Cl₂, 300 K, optimized for J = 8 Hz): * = MePh₂SiH, # = [(p-FC₆H₄)₃POSiMePh₂]⁺[BAr^F₄]⁻

¹H,³¹P HMQC NMR (500/203 MHz, CD₂Cl₂, 300 K, optimized for J = 7 Hz): # = [(p-FC₆H₄)₃POSiMePh₂]⁺[BAr^F₄]⁻

¹H DOSY NMR (500 MHz, CD₂Cl₂, 300 K):

¹¹B NMR (161 MHz, CD₂Cl₂, 300 K):

 $^{19}\text{F}\{^{1}\text{H}\}$ NMR (471 MHz, CD_2Cl_2, 300 K):

¹H,²⁹Si HMQC NMR (500/99 MHz, CD₂Cl₂, 300 K, optimized for J = 8 Hz): * = Me₂PhSiH, # = [(p-FC₆H₄)₃POSiMe₂Ph]⁺[BAr^F₄]⁻

¹H,³¹P HMQC NMR (500/203 MHz, CD₂Cl₂, 300 K, optimized for J = 7 Hz): # = [(p-FC₆H₄)₃POSiMe₂Ph]⁺[BAr^F₄]⁻

¹¹B NMR (161 MHz, CD₂Cl₂, 300 K):

6.6

 $^{19}\text{F}\{^{1}\text{H}\}$ NMR (471 MHz, CD_2Cl_2, 300 K):

³¹P{¹H} NMR (203 MHz, CD₂Cl₂, 300 K): $\# = [(p-FC_6H_4)_3POSiEt_3]^+[BAr_4^F_4]^-$

-6.6

0

-10

-20

-30

-40

10

20

80

70

60

50

40

30

ppm

.....

-70

-60

-50

¹H,²⁹Si HMQC NMR (500/99 MHz, CD₂Cl₂, 300 K, optimized for J = 8 Hz): * = *i*PrMePhSiH, # = [(*p*-FC₆H₄)₃POS*i*PrMePh]⁺[BAr^F₄]⁻

¹H,³¹P HMQC NMR (500/203 MHz, CD₂Cl₂, 300 K, optimized for J = 7 Hz): # = [(p-FC₆H₄)₃POS*i*PrMePh]⁺[BAr^F₄]⁻

6.2 NMR Spectra of $[Et_3POSiMePh_2]^+[BAr_4]^-$ (10aa)

¹H NMR (500 MHz, C₆D₆, 300 K): * = MePh₂SiH, # = [{(p-FC₆H₄)₃P}RuH(SDmp)]

¹H,³¹P HMQC NMR (500/203 MHz, C_6D_6 , 300 K, optimized for J = 7 Hz):

7 Crystallographic Data

Diffraction Data for the single-crystal structure analyses were collected on a Rigaku Saturn724 diffractometer at 173 K using multi-layer mirror monochromated Mo- K_{α} radiation ($\lambda = 0.71075$ Å). The crystallographic data were collected and processed using the CrystalClear software package.^[S26] All calculations were performed using the CrystalStructure program package^[S27] except for structure refinement, which was performed using SHELXL-97.^[S28] Ortep-3 was used for the structure visualization.^[S29]

7.1 Molecular Structure of $[(Et_3P)Ru(SDmp) \cdot Me_2PhSiH]^+[BAr_4]^- (3ab)$

Table S5. Crystal data and structure refinement for 3ab.

Empirical Formula	C ₇₈ H ₇₆ BF ₂₄ PRuSSi ₂ (3ab ·Me ₂ PhSiH)
Formula weight	1700.50 g mol ⁻¹
Description and size of the crystal	yellow block, 0.240 × 0.170 × 0.070 mm
Crystal system	triclinic
Space group	P-1 (No.2)
Lattice parameters	a = 13.183(2) Å
	b = 16.891(2) Å
	c = 20.072(3) Å
	$\alpha = 67.256(7)^{\circ}$
	$\beta = 76.552(8)^{\circ}$
	$\gamma = 73.916(8)^{\circ}$
	$V = 3920.8(9) Å^3$
Ζ	2
Density (calculated)	1.440 g cm ^{-3}
Absorption coefficient μ (Mo- K_{α})	3.768 cm^{-1}
$2\theta_{max}$	55.0°
No. of collected reflections	48815
No. of independent reflections	17887 (<i>R</i> _{int} = 0.0393)
No. of observed reflections	17887
No. of refined parameters	972
$R1 [I > 2\sigma(I)]$	0.0607
wR2 (all reflections)	0.1722
Goodness of fit (GOF)	1.077

7.2 Molecular Structure of $[(Et_3P)Ru(SDmp) \cdot EtMe_2SiH]^+[BAr_4]^- (3ad)$

Table S6. Crystal data and structure refinement for 3ad.

Empirical Formula	$C_{66}H_{64}BF_{24}PRuSSi$
Formula weight	1516.19 g mol ⁻¹
Description and size of the crystal	yellow block, 0.070 × 0.070 × 0.020 mm
Crystal system	monoclinic
Space group	P2 ₁ /n (No.14)
Lattice parameters	<i>a</i> = 13.560(3) Å
	<i>b</i> = 27.705(4) Å
	c = 18.609(4) Å
	$\beta = 102.006(3)^{\circ}$
	$V = 6838(3) \text{ Å}^3$
Ζ	4
Density (calculated)	$1.473 \mathrm{g} \mathrm{cm}^{-3}$
Absorption coefficient μ (Mo- K_{α})	4.055 cm ⁻¹
$2\theta_{\max}$	55.0°
No. of collected reflections	56447
No. of independent reflections	15660 (<i>R</i> _{int} = 0.0715)
No. of observed reflections	15660
No. of refined parameters	860
$R1 [l > 2\sigma(l)]$	0.0835
wR2 (all reflections)	0.2803
Goodness of fit (GOF)	1.045

7.3 Molecular Structure of $[Et_3POSiMe_2Ph]^+[BAr_4]^-$ (10ab)

Table S7. Crystal data and structure refinement for 10ab.

Empirical Formula	C ₄₆ H ₃₈ BF ₂₄ OPSi
Formula weight	1132.64 g mol ⁻¹
Description and size of the crystal	colorless block, 0.100 × 0.100 × 0.070 mm
Crystal system	monoclinic
Space group	P2 ₁ /c (No.14)
Lattice parameters	<i>a</i> = 16.929(3) Å
	<i>b</i> = 18.161(3) Å
	<i>c</i> = 16.113(3) Å
	$\beta = 97.045(4)^{\circ}$
	$V = 4916(2) \text{ Å}^3$
Ζ	4
Density (calculated)	1.530 g cm^{-3}
Absorption coefficient μ (Mo- K_{α})	2.070 cm ⁻¹
20 _{max}	55.0°
No. of collected reflections	40288
No. of independent reflections	10995 (<i>R</i> _{int} = 0.0473)
No. of observed reflections	10995
No. of refined parameters	667
$R1 [l > 2\sigma(l)]$	0.0949
wR2 (all reflections)	0.3038
Goodness of fit (GOF)	1.096

8 Optimized Cartesian Coordinates of Selected Ruthenium(II)–Thiolate Complexes

$[(Et_3P)RuSDmp]^+$ (**1a**⁺)

Ru	1.52015	-0.36860	0.10624
S	-0.62639	0.27110	0.15502
Р	2.25196	1.90542	0.08158
С	-1.46036	-1.31123	-0.06965
С	-2.86545	-1.34558	-0.11298
С	-3.49646	-2.58716	-0.28354
С	-2.75875	-3.76335	-0.41206
С	-1.36071	-3.71980	-0.37922
С	-0.70821	-2.50040	-0.21423
С	0.78385	-2.38500	-0.18588
С	1.46519	-2.36699	1.06943
С	0.77078	-2.73524	2.34906
С	2.82508	-1.90600	1.12117
С	3.55246	-1.54954	-0.03945
С	4.99958	-1.15833	0.04128
С	2.84852	-1.53802	-1.26958
С	1.47936	-1.95420	-1.37513
С	0.80128	-1.92759	-2.71398
С	-3.66359	-0.08855	0.00910
С	-3.96188	0.66262	-1.14454
С	-3.47510	0.22109	-2.50351
С	-4.69252	1.84841	-1.00886
С	-5.13316	2.30416	0.23855
С	-5.94706	3.56910	0.35880
С	-4.81775	1.54311	1.37063
С	-4.09047	0.35181	1.27749
С	-3.74242	-0.42627	2.52343
С	2.14587	2.68939	1.75285
С	2.93863	1.93876	2.82528
С	1.23732	3.02804	-0.97518
С	1.22202	2.62434	-2.45091
С	3.99684	2.16523	-0.46918
С	4.45641	3.62063	-0.59697
Н	-4.58144	-2.61953	-0.31644
Н	-3.26843	-4.71252	-0.54396
Н	-0.77917	-4.63054	-0.48769
Н	1.23477	-2.23380	3.20169
н	0.85373	-3.81772	2.50740

Н	-0.29156	-2.48920	2.32371
Н	3.30203	-1.82185	2.09153
Н	5.29002	-0.51071	-0.78812
Н	5.62055	-2.06094	-0.00817
Н	5.22662	-0.65440	0.98416
Н	3.34369	-1.17135	-2.16196
Н	-0.25176	-1.65503	-2.63496
Н	0.84981	-2.92834	-3.16133
Н	1.30126	-1.23045	-3.39007
Н	-2.37901	0.22884	-2.55089
Н	-3.84745	0.88667	-3.28679
Н	-3.79902	-0.79791	-2.74129
Н	-4.92215	2.42882	-1.89956
Н	-5.71531	4.10917	1.28260
Н	-7.02141	3.34606	0.37431
Н	-5.76525	4.24287	-0.48412
Н	-5.14432	1.88418	2.35049
Н	-4.08208	-1.46589	2.46340
Н	-4.19911	0.02840	3.40657
Н	-2.65739	-0.45274	2.68294
Н	2.48126	3.72957	1.67377
Н	1.08137	2.71505	2.01016
Н	2.57805	0.91027	2.93177
Н	2.83201	2.43548	3.79472
Н	4.00763	1.90221	2.58868
Н	0.22238	3.00865	-0.56471
Н	1.61294	4.04934	-0.84969
Н	2.22473	2.64829	-2.89068
Н	0.59288	3.31169	-3.02501
Н	0.81771	1.61544	-2.57789
Н	4.62595	1.62998	0.24782
Н	4.10231	1.64324	-1.42587
Н	3.89372	4.16230	-1.36246
Н	5.51306	3.65044	-0.88297
Н	4.35683	4.16499	0.34701

$[(Ar_{3}^{F}P)RuSDmp]^{+}(\mathbf{1b}^{+})$

Ru	-0.57580	-1.39918	0.35732
S	1.36329	-0.27307	0.33962
Р	-1.80094	0.61401	0.00322
С	2.54652	-1.62121	0.19834
С	3.91548	-1.32042	0.08370

С	4.82474	-2.38515	-0.00897
С	4.39148	-3.71042	0.00123
С	3.02512	-4.00082	0.08708
С	2.10110	-2.96243	0.17658
С	0.62339	-3.19688	0.21032
С	-0.13099	-3.02108	-1.01077
С	0.55198	-2.93091	-2.34390
С	-1.55998	-2.94333	-0.93856
С	-2.26576	-3.05036	0.28687
С	-3.76344	-3.00934	0.32615
С	-1.49815	-3.14052	1.47122
С	-0.06620	-3.25885	1.45773
С	0.67248	-3.35232	2.76153
С	4.38783	0.09542	0.03796
С	4.90073	0.70248	1.20135
С	4.96627	-0.05483	2.50618
С	5.33304	2.03148	1.13578
С	5.27249	2.76876	-0.05244
С	5.78573	4.18610	-0.11065
С	4.75067	2.14647	-1.19180
С	4.30675	0.81995	-1.16837
С	3.72660	0.19872	-2.41618
н	5.88301	-2.15869	-0.09773
н	5.11311	-4.51795	-0.07184
Н	2.67950	-5.03017	0.07222
н	-0.10120	-2.46871	-3.08711
н	0.79475	-3.94310	-2.69062
н	1.48631	-2.37080	-2.28954
н	-2.11343	-2.76777	-1.85501
н	-4.12698	-2.61254	1.27571
н	-4.15402	-4.02849	0.21688
н	-4.17065	-2.40513	-0.48639
н	-2.00160	-3.11405	2.43159
н	1.62894	-2.82869	2.72476
Н	0.88170	-4.40546	2.98655
н	0.07169	-2.94433	3.57806
н	3.99010	-0.47458	2.77540
н	5.28861	0.59963	3.32047
н	5.66915	-0.89415	2.45425
Н	5.72583	2.50221	2.03411
Н	5.64925	4.70159	0.84533
Н	5.27679	4.76467	-0.88782
Н	6.85893	4.20347	-0.34011
Н	4.68982	2.70435	-2.12351

Н	4.15309	-0.78976	-2.61586
Н	3.91372	0.83210	-3.28735
Н	2.64033	0.07542	-2.32557
С	-3.57902	0.40669	-0.39106
С	-4.03727	0.34058	-1.71437
С	-4.49501	0.23960	0.66093
С	-5.38582	0.10533	-1.99055
С	-5.84562	0.01444	0.40210
С	-6.26007	-0.05413	-0.92314
Н	-3.35176	0.48712	-2.54137
Н	-4.15980	0.29330	1.69174
Н	-5.75717	0.06008	-3.00857
Н	-6.56608	-0.10654	1.20372
С	-1.81867	1.80233	1.39502
С	-2.72063	2.88200	1.40214
С	-0.92265	1.65254	2.46307
С	-2.72560	3.79755	2.45180
С	-0.91393	2.56212	3.52170
С	-1.81678	3.61627	3.48957
Н	-3.42834	3.00992	0.59011
Н	-0.22260	0.82506	2.47555
Н	-3.41500	4.63466	2.47279
Н	-0.22521	2.46033	4.35313
С	-1.07594	1.52170	-1.41702
С	-0.72671	0.78677	-2.56262
С	-0.78311	2.89104	-1.37037
С	-0.12349	1.40352	-3.65524
С	-0.16351	3.52304	-2.45093
С	0.14878	2.76486	-3.57031
Н	-0.90293	-0.28327	-2.59228
Н	-1.01379	3.47459	-0.48732
Н	0.15203	0.84817	-4.54522
Н	0.08234	4.57890	-2.42365
F	-7.57214	-0.27968	-1.18339
F	0.75935	3.36959	-4.62027
F	-1.82041	4.50243	4.51521

$[(Et_{3}P)Ru(\eta^{2}\text{-}HSiMePh_{2})SDmp]^{+} (\textbf{6'aa}^{+})$

Ru	-0.97944	-0.97165	0.21031
S	1.18841	-0.02840	-0.20287
Р	-0.66591	-0.25241	2.41320
Si	-1.78008	1.16369	-1.12128

С	2.14703	-1.48738	-0.57002
С	3.53731	-1.35571	-0.79805
С	4.29264	-2.51126	-1.02715
С	3.70797	-3.78086	-1.04117
С	2.33281	-3.90602	-0.84248
С	1.55377	-2.76765	-0.61787
С	4.18720	-0.00912	-0.77827
С	4.94803	0.39403	0.33856
С	5.50087	1.68054	0.35836
С	5.33535	2.57199	-0.70591
С	4.60534	2.13984	-1.81888
С	4.03503	0.86405	-1.87740
С	5.20946	-0.53780	1.49857
С	5.96306	3.94407	-0.67506
С	3.27402	0.44515	-3.11108
С	0.06833	-2.83067	-0.51439
С	-0.69814	-2.37285	-1.65645
С	-2.07903	-2.15703	-1.49926
С	-2.76111	-2.42876	-0.27397
С	-1.99999	-2.95088	0.79365
С	-0.59833	-3.23125	0.67128
С	-0.01572	-2.15544	-2.97408
С	-4.24689	-2.24964	-0.16393
С	0.12106	-3.95944	1.76914
С	-0.94096	1.06741	-2.79941
С	-3.64495	1.07060	-1.39168
С	-1.26038	2.81400	-0.38124
С	-2.16009	3.66861	0.28187
С	-1.73279	4.87456	0.84317
С	-0.39052	5.25296	0.75209
С	0.51471	4.42980	0.07691
С	0.08173	3.22865	-0.48791
С	-0.27592	1.54110	2.56794
С	0.04297	2.05232	3.97540
С	0.57963	-1.09621	3.48447
С	2.03225	-1.05898	3.02056
С	-2.16862	-0.50346	3.46345
С	-3.43042	0.20591	2.97937
Н	-1.90965	0.35090	0.41925
Н	5.36072	-2.40594	-1.19464
Н	4.31653	-4.66146	-1.21975
Н	1.85902	-4.88285	-0.88004
Н	6.07628	1.99036	1.22813
Н	4.48127	2.81005	-2.66658

Н	6.08214	-1.17308	1.30072
Н	4.36866	-1.20525	1.69082
Н	5.42005	0.02636	2.41206
Н	6.99252	3.91408	-1.05433
Н	6.00428	4.34310	0.34359
Н	5.40757	4.65267	-1.29745
н	3.58713	-0.54252	-3.46484
Н	3.42657	1.16120	-3.92335
н	2.19911	0.39277	-2.90994
Н	-2.64903	-1.76615	-2.33505
Н	-2.49574	-3.18227	1.73054
Н	0.70857	-1.33984	-2.92515
Н	-0.74050	-1.93719	-3.75997
Н	0.53658	-3.05833	-3.25371
Н	-4.59581	-1.41523	-0.77203
Н	-4.55373	-2.08462	0.87154
Н	-4.74796	-3.15824	-0.52022
н	-0.42636	-3.90479	2.71138
Н	1.13778	-3.59421	1.91218
Н	0.19017	-5.01924	1.49594
Н	0.14351	1.05443	-2.68916
Н	-1.21770	1.98035	-3.34123
Н	-1.23670	0.21027	-3.40391
Н	-3.20960	3.40505	0.35500
Н	-2.44802	5.51997	1.34532
Н	-0.05602	6.18855	1.19088
Н	1.55760	4.72018	-0.01229
Н	0.80679	2.60696	-1.00175
Н	0.55590	1.73972	1.88918
Н	-1.13326	2.07742	2.15522
Н	-0.76000	1.84179	4.68925
Н	0.17023	3.13897	3.93760
Н	0.97159	1.62911	4.36868
Н	0.47607	-0.61550	4.46371
Н	0.23988	-2.12465	3.62185
Н	2.16244	-1.58537	2.07489
Н	2.67157	-1.53498	3.77176
Н	2.38690	-0.03607	2.87385
Н	-2.33581	-1.58465	3.52022
н	-1.90637	-0.17480	4.47520
н	-3.26918	1.28306	2.86914
н	-4.24464	0.06690	3.69806
н	-3.76208	-0.18915	2.01695
С	-4.15793	0.77895	-2.66929

С	-5.53362	0.67871	-2.89690
С	-6.43297	0.87742	-1.84679
С	-5.94730	1.17932	-0.57122
С	-4.57180	1.26838	-0.35124
Н	-3.48234	0.62793	-3.50518
Н	-5.90077	0.45060	-3.89344
Н	-7.50211	0.80243	-2.02156
Н	-6.63851	1.34048	0.25107
н	-4.22342	1.48468	0.65191

$[(Et_{3}P)Ru(\eta^{1}\text{-}HSiMe_{2}Ph)SDmp]^{+}(\textbf{6ab}^{+})$

Ru	-1.57173	-0.66608	-0.16141
S	0.77109	-0.17215	-0.14502
Р	-1.67506	0.36552	1.92907
Si	-1.63320	1.61194	-1.87490
С	1.45915	-1.81431	-0.16433
С	2.86171	-1.97314	-0.08445
С	3.39018	-3.26655	-0.01845
С	2.56597	-4.39610	-0.04501
С	1.18475	-4.23784	-0.16816
С	0.63260	-2.95586	-0.23892
С	3.75011	-0.77093	-0.08204
С	4.28022	-0.27728	1.12705
С	5.06299	0.88295	1.10405
С	5.34262	1.56141	-0.08714
С	4.82052	1.04439	-1.27796
С	4.03002	-0.10985	-1.29661
С	4.03228	-0.98708	2.43612
С	6.22023	2.78898	-0.09212
С	3.48862	-0.62502	-2.60783
С	-0.82299	-2.72371	-0.47367
С	-1.23731	-2.30422	-1.79982
С	-2.53727	-1.79338	-1.95931
С	-3.48827	-1.75309	-0.88825
С	-3.08960	-2.28688	0.35504
С	-1.78058	-2.83382	0.57205
С	-0.27413	-2.39567	-2.94566
С	-4.88602	-1.24630	-1.10730
С	-1.45933	-3.54405	1.85465
С	-0.58159	0.93581	-3.26014
С	-3.36785	1.97863	-2.49565
С	-0.82962	3.12982	-1.14311

С	-1.60552	4.21264	-0.68822
С	-1.00716	5.32886	-0.09965
С	0.38268	5.37876	0.04649
С	1.17024	4.31986	-0.41433
С	0.56931	3.20943	-1.01007
С	-0.79502	1.97974	2.05313
С	-0.85389	2.67133	3.41753
С	-1.07829	-0.57184	3.40003
С	0.42020	-0.87655	3.39530
С	-3.41682	0.74843	2.41893
С	-4.14146	1.70596	1.47113
н	-2.10467	0.88444	-0.49849
Н	4.46773	-3.38425	0.05275
Н	2.99880	-5.38961	0.01169
н	0.53529	-5.10716	-0.22284
Н	5.46336	1.26530	2.04060
Н	5.03463	1.55034	-2.21675
н	4.68392	-1.86317	2.54258
Н	3.00443	-1.34669	2.51468
Н	4.23248	-0.32473	3.28339
н	7.28186	2.51219	-0.12030
н	6.06708	3.39425	0.80731
н	6.02319	3.41831	-0.96562
Н	3.67208	-1.69746	-2.72926
н	3.94871	-0.10229	-3.45100
н	2.40525	-0.47291	-2.67080
н	-2.82942	-1.39980	-2.92824
Н	-3.79403	-2.28830	1.18069
Н	0.60139	-1.76297	-2.78353
Н	-0.74978	-2.10768	-3.88441
Н	0.08677	-3.42505	-3.04015
Н	-4.90494	-0.37723	-1.76778
Н	-5.36218	-0.97513	-0.16209
Н	-5.49536	-2.02951	-1.57467
Н	-2.19209	-3.31752	2.63027
Н	-0.45764	-3.31682	2.21808
Н	-1.50129	-4.62444	1.67300
Н	0.37995	0.57217	-2.89704
Н	-0.39941	1.76446	-3.95675
Н	-1.08196	0.13701	-3.81003
Н	-3.32311	2.79694	-3.22480
Н	-4.06138	2.27109	-1.70205
Н	-3.78642	1.10966	-3.01339
Н	-2.68723	4.18911	-0.78945

Н	-1.62161	6.15641	0.24317
Н	0.84955	6.24329	0.50945
Н	2.25069	4.35536	-0.30981
Н	1.19732	2.39470	-1.35495
Н	0.23990	1.79543	1.75459
Н	-1.22103	2.62740	1.28678
Н	-1.88090	2.87837	3.73502
Н	-0.33258	3.63190	3.35393
Н	-0.36695	2.08535	4.20231
Н	-1.34643	0.02973	4.27579
Н	-1.66569	-1.48944	3.46870
Н	0.71071	-1.44731	2.51229
Н	0.69067	-1.45319	4.28608
Н	1.01532	0.04058	3.39589
Н	-3.94577	-0.20897	2.47957
Н	-3.39229	1.15949	3.43423
Н	-3.61769	2.66398	1.39276
Н	-5.15247	1.91094	1.83749
Н	-4.22770	1.28414	0.46625

$[(Ar^{F}_{3}P)Ru(\eta^{1}\text{-}HSiMePh_{2})SDmp]^{+} (\textbf{6ba}^{+})$

Ru	-0.63020	-0.50039	-1.24265
S	1.59092	0.13650	-0.65893
Р	-1.04608	-1.02037	0.98544
С	2.51028	-1.16205	-1.45337
С	3.91181	-1.20387	-1.28454
С	4.61820	-2.28163	-1.82846
С	3.96964	-3.29374	-2.54517
С	2.59274	-3.21550	-2.76209
С	1.86106	-2.14938	-2.22983
С	0.41809	-1.92162	-2.54361
С	0.10958	-0.81916	-3.44667
С	1.20213	-0.14466	-4.22037
С	-1.21417	-0.37050	-3.52249
С	-2.29195	-1.00643	-2.82528
С	-3.69771	-0.49764	-2.96810
С	-1.98584	-2.15969	-2.08390
С	-0.64999	-2.67191	-1.96780
С	-0.46425	-3.99819	-1.28725
С	4.60737	-0.07802	-0.58365
С	4.76815	-0.08218	0.81510
С	4.26933	-1.23353	1.64797

С	5.36083	1.02317	1.43789
С	5.80125	2.13178	0.70943
С	6.45073	3.30888	1.39459
С	5.64541	2.11029	-0.68181
С	5.05848	1.02541	-1.34062
С	4.89435	1.05961	-2.84044
Н	5.69486	-2.32129	-1.68965
Н	4.53880	-4.12306	-2.95268
Н	2.08649	-3.96926	-3.35897
Н	0.79419	0.58019	-4.92623
Н	1.78472	-0.88712	-4.77428
Н	1.89613	0.37039	-3.55153
Н	-1.43791	0.49856	-4.13157
Н	-4.36536	-0.97899	-2.25204
Н	-4.06935	-0.71590	-3.97641
Н	-3.74779	0.58426	-2.82486
Н	-2.77936	-2.67854	-1.55901
Н	0.57938	-4.22317	-1.07978
Н	-0.84805	-4.77518	-1.95983
Н	-1.03662	-4.05829	-0.35871
Н	3.17551	-1.25146	1.66168
Н	4.61726	-1.15257	2.68154
Н	4.60202	-2.19775	1.25177
Н	5.47786	1.01545	2.51915
Н	6.09081	4.25914	0.98501
Н	7.53954	3.29326	1.26006
н	6.25203	3.30446	2.47059
н	5.98847	2.95968	-1.26863
н	5.31387	0.16881	-3.31894
н	5.38657	1.93839	-3.26606
н	3.83600	1.10097	-3.12147
н	-1.20542	0.96750	-0.60296
Si	-1.01301	2.42710	-1.21861
С	-2.71125	-1.78361	1.11173
С	-3.80111	-1.08695	0.56102
С	-2.92718	-3.05117	1.66851
С	-5.08511	-1.62407	0.58765
С	-4.20654	-3.61460	1.68708
С	-5.25840	-2.88472	1.15169
Н	-3.64787	-0.12227	0.09180
н	-2.10394	-3.61495	2.08995
н	-5.93412	-1.09077	0.17371
Н	-4.38577	-4.59707	2.11018
С	-1.08279	0.38211	2.16704

С	0.14566	0.98154	2.49701
С	-2.25123	0.81091	2.80853
С	0.21061	1.98328	3.45931
С	-2.20302	1.83063	3.76304
С	-0.97052	2.38958	4.06774
Н	1.05743	0.65895	2.00649
Н	-3.20441	0.34195	2.59657
Н	1.14912	2.45758	3.71868
Н	-3.09760	2.17515	4.27035
С	0.05604	-2.17196	1.89036
С	-0.15031	-2.37613	3.26790
С	1.09687	-2.84951	1.25187
С	0.64443	-3.26901	3.98194
С	1.89841	-3.75540	1.94838
С	1.64997	-3.94763	3.29882
н	-0.93220	-1.83511	3.79059
н	1.31131	-2.65532	0.21339
н	0.49874	-3.43714	5.04341
н	2.71322	-4.27947	1.46192
F	-6.50346	-3.42231	1.16891
F	-0.91690	3.37891	4.99670
F	2.42857	-4.81895	3.98850
С	-2.83869	2.77422	-1.42056
С	-3.74199	2.48045	-0.38135
С	-3.35129	3.30847	-2.61529
С	-5.11119	2.70171	-0.53261
С	-4.72258	3.53293	-2.77156
С	-5.60433	3.22486	-1.73281
Н	-3.37133	2.08246	0.55958
Н	-2.68119	3.55458	-3.43473
Н	-5.79163	2.47210	0.28249
Н	-5.10101	3.94749	-3.70117
Н	-6.66947	3.39821	-1.85377
С	-0.23827	3.38704	0.18215
С	-0.03616	2.74399	-2.77612
Н	0.04806	3.83147	-2.89167
Н	-0.49940	2.33888	-3.67594
Н	0.97302	2.33884	-2.68342
С	1.16490	3.46507	0.29395
С	1.76223	4.28265	1.25313
С	0.96858	5.04918	2.11157
С	-0.42302	4.99019	2.00971
С	-1.02029	4.16435	1.05537
Н	1.79961	2.88380	-0.36590

Н	2.84514	4.32278	1.32521
Н	1.43184	5.68964	2.85651
Н	-1.04320	5.58183	2.67629
Н	-2.10289	4.14132	0.98635

$\left[(Et_{3}P)Ru(H)SDmp(SiMePh_{2})\right]^{**}(\textbf{3aa}^{*}_\textbf{TS})$

Ru	1.50255	-0.71795	-0.37947
S	-0.83240	-0.30741	-0.37107
Р	1.70755	0.39326	-2.40550
Si	0.08275	1.05247	1.41971
С	-1.46438	-1.88782	0.23122
С	-2.85838	-2.06774	0.36728
С	-3.32660	-3.34012	0.72645
С	-2.45390	-4.40224	0.96070
С	-1.07693	-4.20803	0.84193
С	-0.57884	-2.95705	0.47324
С	-3.82219	-0.93952	0.18355
С	-4.07156	-0.38999	-1.08953
С	-4.92486	0.71754	-1.20024
С	-5.54607	1.28714	-0.08823
С	-5.32297	0.69552	1.16228
С	-4.48890	-0.41369	1.31805
С	-3.47846	-0.96200	-2.35517
С	-6.45399	2.48448	-0.21889
С	-4.34562	-1.02925	2.69131
С	0.89125	-2.71838	0.33613
С	1.61371	-2.17174	1.45330
С	2.90053	-1.63107	1.20670
С	3.54912	-1.74893	-0.05132
С	2.84270	-2.42371	-1.08832
С	1.54186	-2.97037	-0.91627
С	1.05118	-2.20241	2.84539
С	4.95859	-1.26287	-0.24107
С	0.87291	-3.75489	-2.01032
С	-1.34747	0.64967	2.57976
С	1.59113	1.28352	2.57142
С	-0.31249	2.67905	0.55930
С	0.60065	3.74769	0.52480
С	0.28460	4.94837	-0.11714
С	-0.96026	5.10713	-0.73146
С	-1.89236	4.06590	-0.68345
С	-1.57100	2.86803	-0.04407

С	0.64988	1.88427	-2.62951
С	0.79533	2.61560	-3.96582
С	1.34989	-0.66032	-3.88252
С	-0.12667	-1.02545	-4.04138
С	3.42289	0.97284	-2.77287
С	3.97736	1.98390	-1.76987
Н	1.72108	0.81873	0.02250
Н	-4.39743	-3.48920	0.82246
Н	-2.84439	-5.37662	1.23666
Н	-0.38662	-5.02512	1.03003
Н	-5.10996	1.13698	-2.18679
Н	-5.81472	1.10844	2.04027
Н	-4.26186	-1.10601	-3.10733
Н	-2.99488	-1.92638	-2.19073
Н	-2.73614	-0.28306	-2.78537
Н	-7.47959	2.23711	0.07968
Н	-6.48538	2.85230	-1.24853
Н	-6.12046	3.30674	0.42476
Н	-5.06490	-1.84567	2.83054
Н	-4.54348	-0.28713	3.46980
Н	-3.35204	-1.44639	2.86191
Н	3.40615	-1.10686	2.01069
Н	3.31599	-2.51902	-2.06095
Н	-0.03048	-2.07240	2.86262
Н	1.51458	-1.44367	3.47548
Н	1.26337	-3.18343	3.28905
Н	5.14282	-0.34665	0.32486
Н	5.18533	-1.07634	-1.29322
Н	5.66411	-2.02174	0.11889
Н	1.35800	-3.58432	-2.97351
Н	-0.18581	-3.50882	-2.10138
Н	0.93943	-4.82738	-1.79106
Н	-2.28424	0.74533	2.02968
Н	-1.36808	1.37482	3.40086
Н	-1.30774	-0.35298	3.00972
Н	1.56895	3.65001	1.00318
Н	1.00848	5.75836	-0.13347
Н	-1.20670	6.03818	-1.23375
Н	-2.86932	4.18506	-1.14342
Н	-2.30704	2.07060	-0.02959
Н	-0.38313	1.56151	-2.47672
Н	0.87542	2.55549	-1.79874
Н	1.80308	3.01924	-4.10316
Н	0.09895	3.45989	-3.99430

Н	0.56816	1.97235	-4.82167
Н	1.71639	-0.13555	-4.77194
Н	1.96216	-1.55995	-3.77253
Н	-0.53519	-1.45074	-3.12338
Н	-0.25463	-1.75782	-4.84504
Н	-0.72639	-0.14769	-4.29810
Н	4.05156	0.07702	-2.79964
Н	3.42385	1.38715	-3.78703
Н	3.34625	2.87567	-1.70326
Н	4.97944	2.30709	-2.06994
Н	4.04914	1.54558	-0.77201
С	2.85858	1.70436	2.12770
С	3.90980	1.93921	3.01409
С	3.72728	1.73916	4.38634
С	2.48254	1.31719	4.85458
С	1.43039	1.10145	3.95784
Н	3.03583	1.84214	1.06713
Н	4.87129	2.27487	2.63504
Н	4.54499	1.91223	5.07969
Н	2.32406	1.15743	5.91732
Н	0.47669	0.77883	4.35849

$[(Et_3P)Ru(H)SDmp(SiMe_2Ph)]^{**} (3ab^{+}TS)$

Ru	-1.81144	-0.37313	-0.19044
S	0.52368	-0.21642	0.21003
Р	-2.19154	1.35148	1.31086
Si	0.16478	0.58292	-2.04179
С	0.99721	-1.95602	0.22198
С	2.34996	-2.29278	0.44792
С	2.68607	-3.65153	0.52781
С	1.72357	-4.65121	0.38351
С	0.39030	-4.30585	0.15637
С	0.02127	-2.96141	0.07944
С	3.40246	-1.23754	0.56954
С	3.44770	-0.38864	1.69427
С	4.38461	0.65355	1.72723
С	5.28744	0.86821	0.68508
С	5.26280	-0.01970	-0.39831
С	4.35279	-1.07771	-0.46878
С	2.52840	-0.56007	2.88053
С	6.26853	2.01325	0.71624
С	4.44066	-2.03537	-1.63505

С	-1.39854	-2.55464	-0.16027
С	-1.84046	-2.32786	-1.51089
С	-3.05189	-1.61754	-1.69869
С	-3.90747	-1.27645	-0.61731
С	-3.49651	-1.66295	0.68878
С	-2.27825	-2.34266	0.95154
С	-1.07809	-2.87762	-2.68331
С	-5.23904	-0.62191	-0.86001
С	-1.92992	-2.79694	2.34104
С	1.60937	-0.39705	-2.74991
С	-1.06064	0.70511	-3.48969
С	0.70415	2.33153	-1.60964
С	-0.05384	3.44225	-2.02030
С	0.33407	4.74412	-1.69090
С	1.49606	4.95786	-0.94466
С	2.27387	3.86659	-0.54427
С	1.88049	2.56906	-0.87470
С	-0.89588	2.65806	1.39300
С	-1.13314	3.77950	2.40691
С	-2.39034	0.80977	3.06842
С	-1.08048	0.33815	3.70524
С	-3.75983	2.27573	0.99663
С	-3.78928	3.02497	-0.33690
Н	-1.76403	0.96966	-1.05369
Н	3.72240	-3.92045	0.70655
Н	2.01062	-5.69588	0.44972
Н	-0.36579	-5.07680	0.04039
Н	4.40753	1.30793	2.59615
Н	5.97690	0.11268	-1.20821
Н	2.04893	-1.54087	2.89519
Н	1.73968	0.19854	2.88083
Н	3.08911	-0.44764	3.81431
Н	7.30084	1.65547	0.62851
Н	6.18838	2.58245	1.64674
Н	6.09554	2.70302	-0.11849
Н	5.05803	-2.90465	-1.37665
Н	4.90822	-1.55180	-2.49730
Н	3.46630	-2.41561	-1.94449
Н	-3.34577	-1.34286	-2.70658
Н	-4.14089	-1.41315	1.52602
н	-0.00241	-2.87713	-2.51710
н	-1.29790	-2.33519	-3.60400
Н	-1.37982	-3.92145	-2.83736
Н	-5.17339	0.14740	-1.63371

Н	-5.63231	-0.16836	0.05241
Н	-5.96707	-1.36995	-1.19655
Н	-2.50080	-2.24451	3.09009
Н	-0.86716	-2.68263	2.55611
Н	-2.17140	-3.86075	2.45550
н	2.53098	-0.12180	-2.23293
Н	1.72189	-0.15741	-3.81433
н	1.48753	-1.47841	-2.66481
н	-0.52042	1.15338	-4.33465
н	-1.94085	1.31566	-3.27642
н	-1.40402	-0.28055	-3.81167
н	-0.96373	3.29678	-2.59465
н	-0.26929	5.58784	-2.01405
н	1.79741	5.96819	-0.68330
н	3.18379	4.02540	0.02747
н	2.48966	1.73486	-0.54061
н	0.05132	2.15183	1.59517
н	-0.80519	3.06858	0.38624
Н	-2.04878	4.34028	2.19561
Н	-0.30033	4.48891	2.36125
Н	-1.19376	3.40756	3.43408
Н	-2.81481	1.64750	3.63375
Н	-3.13922	0.01230	3.07927
Н	-0.58258	-0.41132	3.08781
Н	-1.26847	-0.10040	4.69061
Н	-0.38613	1.17175	3.84262
н	-4.57278	1.54415	1.04386
н	-3.91061	2.96927	1.83113
н	-3.00348	3.78501	-0.38723
н	-4.75101	3.53215	-0.46486
н	-3.64925	2.34284	-1.17984

$[(Ar^{F}_{3}P)Ru(H)SDmp(SiMePh_{2})]^{++}$ (**3ba⁺_TS**)

Ru	0.77029	-0.69774	-1.08597
S	-1.43118	-0.04150	-0.39786
Р	1.90657	1.08537	0.04486
С	-2.39611	-0.35792	-1.90486
С	-3.76525	0.00485	-1.96679
С	-4.45339	-0.22667	-3.17007
С	-3.83322	-0.79780	-4.28039
С	-2.48108	-1.13380	-4.21638
С	-1.75916	-0.90553	-3.04064
С	-0.29046	-1.20287	-2.97953
С	0.16413	-2.47881	-2.50394
----	----------	----------	----------
С	-0.73920	-3.68127	-2.44304
С	1.54368	-2.61859	-2.18919
С	2.49231	-1.60994	-2.46400
С	3.96498	-1.86542	-2.29855
С	2.00604	-0.39738	-3.04110
С	0.65050	-0.19510	-3.39506
С	0.24037	0.99745	-4.21859
С	-4.51869	0.63875	-0.83182
С	-4.31119	2.00664	-0.51687
С	-3.35919	2.86962	-1.31403
С	-5.04416	2.58745	0.52173
С	-5.99495	1.86491	1.25697
С	-6.76700	2.52024	2.37763
С	-6.21654	0.53341	0.90192
С	-5.51178	-0.09066	-0.14072
С	-5.89753	-1.50891	-0.50802
Н	-5.50052	0.05620	-3.22649
Н	-4.39629	-0.96791	-5.19312
Н	-1.98101	-1.56557	-5.07907
Н	-0.45851	-4.36190	-1.63755
Н	-0.63586	-4.23178	-3.38777
Н	-1.78979	-3.41257	-2.34200
Н	1.88165	-3.55234	-1.74957
Н	4.52327	-0.94502	-2.12241
Н	4.35547	-2.31765	-3.21959
Н	4.16287	-2.56350	-1.48185
Н	2.71938	0.39154	-3.26307
Н	-0.71205	1.42622	-3.90203
Н	0.11935	0.68715	-5.26445
Н	1.00660	1.77551	-4.19548
Н	-2.32137	2.53601	-1.21379
Н	-3.40631	3.90842	-0.97519
Н	-3.60481	2.85529	-2.38268
Н	-4.88014	3.63804	0.75357
Н	-7.31192	3.40279	2.02206
Н	-6.09951	2.85869	3.17959
Н	-7.49506	1.83198	2.81689
Н	-6.96939	-0.04082	1.43816
Н	-6.75927	-1.51041	-1.18825
Н	-6.19502	-2.07351	0.38147
Н	-5.09647	-2.05632	-1.00660
Н	0.86953	-1.28208	0.42090
Si	-0.93101	-2.16803	0.94384

С	3.73368	0.79384	0.00564
С	4.26427	-0.26802	0.76200
С	4.60819	1.54737	-0.79355
С	5.62953	-0.55106	0.75517
С	5.97864	1.26924	-0.82473
С	6.46006	0.22892	-0.04230
Н	3.61025	-0.88228	1.37300
Н	4.23601	2.36338	-1.40228
Н	6.04609	-1.35894	1.34764
Н	6.65949	1.84942	-1.43883
С	1.56507	1.49275	1.82345
С	0.25731	1.88522	2.16057
С	2.56974	1.59526	2.79825
С	-0.04441	2.36790	3.43223
С	2.28144	2.06574	4.08253
С	0.97868	2.44594	4.36880
Н	-0.53948	1.83534	1.42638
Н	3.59499	1.32907	2.57306
Н	-1.05041	2.67380	3.69636
Н	3.05328	2.14627	4.84104
С	1.69048	2.78962	-0.64832
С	2.45663	3.86299	-0.15269
С	0.68174	3.05583	-1.58010
С	2.24843	5.16229	-0.60948
С	0.45064	4.35463	-2.04478
С	1.24783	5.37774	-1.55353
н	3.21746	3.69103	0.60230
н	0.05614	2.24637	-1.93173
н	2.83535	5.99634	-0.23914
н	-0.33261	4.57149	-2.76347
F	7.78935	-0.04422	-0.06093
F	0.69159	2.91519	5.61146
F	1.03717	6.64240	-1.99929
С	-1.01712	-1.38192	2.65951
С	-2.19574	-0.72252	3.06468
С	-0.02958	-1.61423	3.63616
С	-2.38642	-0.32753	4.39033
С	-0.21212	-1.21095	4.96180
С	-1.39358	-0.57068	5.34412
Н	-2.98352	-0.52062	2.34605
Н	0.88419	-2.13849	3.37576
Н	-3.31004	0.16798	4.67701
Н	0.56448	-1.40656	5.69614
Н	-1.54004	-0.26569	6.37660

С	-2.65223	-2.86226	0.57298
Н	-2.91066	-3.56923	1.37088
Н	-3.38912	-2.05970	0.59759
Н	-2.74410	-3.38461	-0.38130
С	0.22036	-3.70388	1.05337
С	-0.36194	-4.98879	1.04022
С	1.60785	-3.63920	1.28838
С	0.39813	-6.14368	1.25899
С	2.37252	-4.78559	1.51806
С	1.76891	-6.04699	1.50278
Н	-1.42476	-5.11076	0.86293
Н	2.10870	-2.67580	1.29146
Н	-0.08674	-7.11596	1.24131
Н	3.43871	-4.69502	1.70958
Н	2.36002	-6.94115	1.67955

$[(Et_3P)Ru(H)SDmp(SiMePh_2)]^+$ (3aa⁺)

Ru	1.86996	-0.39111	-0.42286
S	-0.49685	-0.10701	-0.24077
Р	2.20674	1.57722	-1.56356
Si	-0.98052	0.35238	1.91963
С	-1.11210	-1.72644	-0.82193
С	-2.47225	-1.92237	-1.14716
С	-2.84030	-3.16519	-1.69303
С	-1.91336	-4.17864	-1.91576
С	-0.56831	-3.95831	-1.62108
С	-0.16045	-2.73300	-1.09301
С	-3.54183	-0.89298	-0.97416
С	-3.52603	0.30914	-1.71281
С	-4.54869	1.24765	-1.51301
С	-5.60447	1.01864	-0.62991
С	-5.63291	-0.20554	0.04981
С	-4.63150	-1.16544	-0.10984
С	-2.48084	0.62198	-2.75630
С	-6.69359	2.04077	-0.42168
С	-4.74564	-2.45508	0.67176
С	1.28978	-2.46113	-0.85909
С	1.79818	-2.52948	0.49576
С	3.06419	-1.97497	0.75596
С	3.88088	-1.43317	-0.28103
С	3.39424	-1.52245	-1.61724
С	2.13449	-2.10056	-1.95440

С	0.98653	-3.16558	1.58679
С	5.25321	-0.89848	0.01939
С	1.72213	-2.25801	-3.39162
С	-2.75754	-0.07707	2.27591
С	0.12472	-0.43058	3.21462
С	-0.80250	2.21282	1.78643
С	0.14648	2.96142	2.50215
С	0.21405	4.35151	2.36671
С	-0.67296	5.01670	1.51705
С	-1.63491	4.28905	0.80877
С	-1.69631	2.90227	0.94254
С	0.97389	2.91126	-1.24839
С	1.19226	4.22659	-1.99934
С	2.25043	1.42560	-3.40829
С	0.88243	1.11994	-4.02173
С	3.83716	2.38401	-1.22238
С	4.03537	2.82534	0.22857
н	2.01451	0.69987	0.72830
н	-3.88036	-3.31892	-1.96029
н	-2.23276	-5.12582	-2.33874
Н	0.17403	-4.72609	-1.81614
Н	-4.52385	2.17435	-2.08248
Н	-6.45220	-0.41396	0.73418
Н	-2.96122	0.97009	-3.67698
Н	-1.86920	-0.24469	-3.00866
Н	-1.80860	1.41623	-2.41834
Н	-7.67500	1.63527	-0.69366
Н	-6.52123	2.93655	-1.02501
Н	-6.75295	2.34879	0.62879
Н	-5.25014	-3.23354	0.08694
Н	-5.33728	-2.29936	1.57837
Н	-3.77308	-2.85974	0.96182
Н	3.41337	-1.93269	1.78245
Н	4.01223	-1.13184	-2.41980
Н	-0.04758	-2.81925	1.59059
Н	1.42025	-2.96510	2.56656
Н	0.96081	-4.25148	1.43442
Н	5.27975	-0.39136	0.98706
Н	5.58753	-0.19628	-0.74767
Н	5.97918	-1.72053	0.05345
Н	2.24749	-1.54529	-4.03117
Н	0.64869	-2.12161	-3.52912
Н	1.97210	-3.26627	-3.74462
Н	-3.42988	0.43399	1.58741

Н	-2.98673	0.27140	3.29036
Н	-2.96274	-1.14760	2.22797
Н	0.83579	2.46635	3.17775
Н	0.95620	4.91282	2.92706
Н	-0.61992	6.09636	1.41164
Н	-2.33270	4.80132	0.15248
Н	-2.44322	2.35166	0.37591
Н	-0.00655	2.49074	-1.48529
Н	0.97335	3.07724	-0.16898
Н	2.13552	4.70621	-1.72076
Н	0.38697	4.92708	-1.75554
Н	1.19158	4.08941	-3.08522
Н	2.66091	2.35310	-3.82358
Н	2.96770	0.63183	-3.64155
Н	0.41255	0.25786	-3.54342
Н	0.97707	0.90510	-5.09123
Н	0.20230	1.96954	-3.91533
Н	4.61074	1.66547	-1.51370
Н	3.93449	3.24015	-1.89938
Н	3.27570	3.55129	0.53523
Н	5.01549	3.29831	0.35105
Н	3.97799	1.97664	0.91522
С	1.49038	-0.13197	3.37393
С	2.24360	-0.71017	4.39667
С	1.64662	-1.60595	5.28849
С	0.29005	-1.91148	5.15459
С	-0.45947	-1.32671	4.13165
Н	1.97836	0.54154	2.68063
Н	3.29577	-0.45908	4.49935
н	2.23192	-2.05686	6.08449
н	-0.18477	-2.60174	5.84561
н	-1.51144	-1.58199	4.05199

$[(Et_3P)Ru(H)SDmp(SiMe_2Ph)]^+$ (**3ab**⁺)

Ru	-1.95540	-0.47889	-0.26235
S	0.41783	-0.18832	-0.15195
Р	-2.38787	1.21689	1.24128
Si	1.04600	0.74962	-2.10383
С	0.99768	-1.90260	0.08205
С	2.33196	-2.17855	0.44988
С	2.67181	-3.51696	0.71448
С	1.73866	-4.54612	0.63205

С	0.41498	-4.25249	0.30550
С	0.03636	-2.93466	0.04533
С	3.39221	-1.13781	0.61548
С	3.30448	-0.17081	1.64007
С	4.32378	0.78330	1.76739
С	5.44229	0.79040	0.93232
С	5.53563	-0.20885	-0.04434
С	4.54128	-1.17545	-0.21178
С	2.17602	-0.13536	2.64236
С	6.53445	1.81847	1.08968
С	4.73493	-2.22761	-1.28007
С	-1.39392	-2.59923	-0.22721
С	-1.80297	-2.37555	-1.59766
С	-3.05507	-1.77389	-1.82598
С	-3.94745	-1.45703	-0.75837
С	-3.55482	-1.83068	0.55911
С	-2.31692	-2.47111	0.85691
С	-0.90463	-2.77675	-2.73285
С	-5.29899	-0.85657	-1.02979
С	-2.00264	-2.92369	2.25534
С	2.81043	0.33780	-2.54148
С	-0.06401	0.37215	-3.56189
С	0.88312	2.53377	-1.56485
С	-0.11070	3.37768	-2.08888
С	-0.21266	4.70933	-1.67585
С	0.67941	5.21588	-0.72699
С	1.67485	4.38937	-0.19516
С	1.77323	3.06125	-0.61084
С	-1.12437	2.55415	1.33644
С	-1.39312	3.67022	2.34781
С	-2.60240	0.67750	3.00061
С	-1.29350	0.23136	3.65710
С	-3.97296	2.11896	0.92858
С	-3.99979	2.91114	-0.37973
Н	-2.00839	0.81999	-1.19488
Н	3.69203	-3.73854	1.00948
Н	2.03464	-5.56813	0.84666
Н	-0.33227	-5.03931	0.26812
Н	4.24595	1.52678	2.55798
Н	6.40465	-0.23285	-0.69847
Н	2.57069	0.03036	3.65009
Н	1.60444	-1.06457	2.65809
Н	1.48014	0.67992	2.42437
Н	7.48194	1.34627	1.37495

Н	6.28229	2.55366	1.85907
Н	6.71304	2.35729	0.15204
Н	5.23014	-3.11795	-0.87382
Н	5.36942	-1.84417	-2.08406
Н	3.79190	-2.56152	-1.71792
Н	-3.34095	-1.52202	-2.84257
Н	-4.22946	-1.60934	1.38025
Н	0.12198	-2.43517	-2.58723
Н	-1.27503	-2.38801	-3.68261
Н	-0.86869	-3.87033	-2.80381
Н	-5.25144	-0.10866	-1.82562
Н	-5.70844	-0.38351	-0.13414
Н	-6.00349	-1.63619	-1.34479
Н	-2.60071	-2.37426	2.98551
Н	-0.94791	-2.79668	2.50233
Н	-2.23865	-3.98898	2.36801
Н	3.52485	0.63366	-1.77296
Н	3.04469	0.89599	-3.45772
Н	2.94604	-0.72415	-2.76012
Н	0.07026	1.17739	-4.29563
н	-1.12070	0.31976	-3.29640
н	0.23422	-0.55886	-4.04929
н	-0.82048	2.99590	-2.81686
н	-0.98728	5.34790	-2.09066
н	0.60143	6.24996	-0.40418
Н	2.37108	4.77989	0.54154
Н	2.54313	2.42734	-0.17859
Н	-0.16800	2.06750	1.54282
Н	-1.04042	2.96260	0.32787
Н	-2.31687	4.21315	2.12484
Н	-0.57436	4.39647	2.31888
Н	-1.46362	3.29355	3.37282
Н	-3.05385	1.50293	3.56302
Н	-3.33356	-0.13750	2.99742
Н	-0.77161	-0.50656	3.04470
Н	-1.48506	-0.21575	4.63809
Н	-0.61719	1.07759	3.80733
Н	-4.76795	1.36573	0.93513
н	-4.15647	2.78094	1.78231
н	-3.24099	3.69974	-0.38617
н	-4.97643	3.38777	-0.51452
Н	-3.81236	2.26317	-1.24034

$[(Ar^{F}_{3}P)Ru(H)SDmp(SiMePh_{2})]^{*} (\textbf{3ba}^{*})$

Ru	-1.20042	-1.29282	-0.61088
S	1.07977	-0.59772	-0.30073
Р	-2.06113	0.32512	0.81212
С	1.97089	-2.18586	-0.44304
С	3.30868	-2.32613	-0.01834
С	3.92905	-3.57182	-0.22519
С	3.25888	-4.64277	-0.80934
С	1.90798	-4.51493	-1.13406
С	1.25486	-3.29931	-0.92682
С	-0.23394	-3.22257	-1.01989
С	-0.89840	-2.86191	-2.23338
С	-0.18110	-2.82510	-3.55156
С	-2.28557	-2.54897	-2.14910
С	-3.02106	-2.68911	-0.94712
С	-4.50686	-2.47721	-0.90893
С	-2.33117	-3.16889	0.21009
С	-0.96808	-3.51397	0.19175
С	-0.30535	-4.14780	1.38502
С	4.07084	-1.27564	0.72149
С	3.63395	-0.88408	2.01441
С	2.42696	-1.50237	2.67895
С	4.37120	0.06696	2.72381
С	5.54651	0.62958	2.21132
С	6.33246	1.64185	3.00604
С	5.98521	0.19506	0.96150
С	5.28423	-0.76137	0.21440
С	5.90338	-1.20636	-1.09145
Н	4.95592	-3.69329	0.10396
Н	3.77157	-5.58697	-0.96336
Н	1.34682	-5.36397	-1.51247
Н	-0.72523	-2.21284	-4.27165
Н	-0.10630	-3.84177	-3.95720
Н	0.83371	-2.43913	-3.45757
Н	-2.79465	-2.18757	-3.03643
Н	-4.83023	-2.05463	0.04409
Н	-5.01342	-3.44245	-1.03505
Н	-4.83849	-1.81761	-1.71190
н	-2.89239	-3.28863	1.13217
Н	0.59985	-3.62000	1.69098
Н	-0.01239	-5.17686	1.14793
Н	-0.99470	-4.18748	2.23187
Н	1.48895	-1.09795	2.28743

Н	2.44260	-1.30604	3.75418
Н	2.40577	-2.58693	2.53614
Н	4.02980	0.36324	3.71299
Н	6.93204	2.28382	2.35385
Н	7.02311	1.14413	3.69852
Н	5.67606	2.27766	3.60879
Н	6.90254	0.60744	0.54772
н	6.80975	-1.79331	-0.89869
Н	6.20942	-0.34119	-1.68910
Н	5.24199	-1.82570	-1.69599
н	-1.37207	-0.04178	-1.55322
Si	1.79667	0.65219	-2.06351
С	-3.87643	0.49883	0.60921
С	-4.37381	0.79009	-0.67313
С	-4.77726	0.32363	1.66757
С	-5.74145	0.93591	-0.89265
С	-6.15439	0.44173	1.45900
С	-6.60386	0.75305	0.18342
н	-3.68743	0.89514	-1.50740
н	-4.41636	0.08933	2.66259
н	-6.13939	1.16995	-1.87424
н	-6.86470	0.30254	2.26667
С	-1.46279	2.06187	0.64882
С	-0.12620	2.34314	0.97781
С	-2.29357	3.11459	0.24005
С	0.37925	3.63778	0.88120
С	-1.80311	4.41856	0.13713
С	-0.47240	4.64887	0.45606
Н	0.53513	1.55402	1.31749
Н	-3.33370	2.93570	0.00144
Н	1.41418	3.85801	1.11108
Н	-2.43862	5.23879	-0.17904
С	-1.81849	0.07598	2.61683
С	-2.07430	1.11386	3.53051
С	-1.34471	-1.14901	3.09676
С	-1.87210	0.92605	4.89621
С	-1.13345	-1.35778	4.46111
С	-1.40365	-0.31035	5.33059
Н	-2.42643	2.07737	3.17764
Н	-1.12262	-1.93990	2.39502
н	-2.06282	1.71685	5.61347
Н	-0.75642	-2.30025	4.84317
F	-7.94002	0.87742	-0.02630
F	0.01584	5.91278	0.35427

F	-1.19263	-0.49405	6.65892
С	2.59039	2.17170	-1.31030
С	3.29598	2.13635	-0.09642
С	2.53621	3.39232	-2.01175
С	3.92562	3.27793	0.40299
С	3.15874	4.53776	-1.51138
С	3.85569	4.48268	-0.30140
Н	3.34770	1.21841	0.47405
Н	1.99485	3.45878	-2.95071
Н	4.46541	3.22468	1.34275
Н	3.09409	5.47163	-2.06186
Н	4.33615	5.37396	0.09158
С	3.00397	-0.38906	-3.03914
Н	3.96555	-0.41550	-2.52812
Н	2.67323	-1.41806	-3.19996
Н	3.16476	0.08291	-4.01560
С	0.33101	1.16706	-3.10235
С	0.04607	0.52283	-4.31752
С	-0.52275	2.20394	-2.68459
С	-1.07302	0.87611	-5.07529
С	-1.64131	2.56194	-3.43642
С	-1.92479	1.89079	-4.63023
Н	0.69938	-0.26303	-4.68177
Н	-0.31319	2.73539	-1.76508
Н	-1.27554	0.36673	-6.01333
Н	-2.28743	3.36454	-3.09321
Н	-2.79469	2.16813	-5.21885

$[(Et_3P)Ru(SiMe_2Ph)S(H)Dmp]^{**} (\textbf{4ab}^{+}_{-}\textbf{TS})$

Ru	-1.30895	-0.90102	-0.11224
S	1.01010	0.03787	-0.05716
Р	-1.82003	0.40458	1.78445
Si	-2.07056	0.79105	-1.74776
С	1.94044	-1.50368	-0.23894
С	3.34261	-1.40921	-0.23587
С	4.08378	-2.59568	-0.32549
С	3.45228	-3.83558	-0.42148
С	2.05822	-3.91141	-0.42655
С	1.29188	-2.74742	-0.32823
С	4.02331	-0.08365	-0.12903
С	4.48709	0.36342	1.12518
С	5.10453	1.61633	1.20958

С	5.27852	2.42959	0.08370
С	4.81323	1.96096	-1.15009
С	4.18751	0.71613	-1.27794
С	4.32577	-0.48597	2.36347
С	5.97869	3.76126	0.19125
С	3.68105	0.26080	-2.62484
С	-0.20148	-2.79987	-0.33719
С	-0.88943	-2.62332	-1.58980
С	-2.28462	-2.39061	-1.54259
С	-3.01434	-2.40034	-0.31797
С	-2.30036	-2.74114	0.87026
С	-0.91779	-3.03464	0.88317
С	-0.13827	-2.67574	-2.89235
С	-4.50710	-2.22858	-0.29118
С	-0.23034	-3.54594	2.11732
С	-1.05521	0.61342	-3.35701
С	-3.86143	0.64059	-2.37095
С	-1.81624	2.61386	-1.30213
С	-2.89566	3.47252	-1.02635
С	-2.69296	4.80992	-0.67265
С	-1.39527	5.32306	-0.59377
С	-0.30745	4.49632	-0.89145
С	-0.52084	3.16241	-1.24414
С	-1.28644	2.17006	1.88096
С	-1.37921	2.83345	3.25777
С	-1.04479	-0.33247	3.30375
С	0.48317	-0.29427	3.34422
С	-3.59040	0.41915	2.32082
С	-4.52467	1.19986	1.40016
Н	5.16760	-2.53268	-0.32440
Н	4.04364	-4.74280	-0.49443
Н	1.56207	-4.87403	-0.50469
Н	5.46085	1.96249	2.17710
Н	4.94276	2.57727	-2.03659
Н	4.65872	0.05672	3.25210
Н	4.91066	-1.41038	2.29716
Н	3.28322	-0.78305	2.52167
Н	7.05974	3.64650	0.04156
Н	5.83291	4.21343	1.17737
Н	5.61781	4.46556	-0.56472
Н	3.97889	-0.76900	-2.84625
Н	4.06097	0.90404	-3.42292
Н	2.58548	0.29723	-2.66804
Н	-2.81423	-2.19570	-2.46810

Н	-2.85261	-2.78742	1.80423
Н	0.67399	-1.94725	-2.93619
Н	-0.80852	-2.49891	-3.73437
Н	0.31202	-3.66649	-3.01764
Н	-4.86258	-1.68586	-1.16763
Н	-4.83205	-1.69142	0.60235
Н	-4.99393	-3.21163	-0.28317
Н	-0.87810	-3.46215	2.99211
Н	0.70775	-3.02769	2.32068
Н	0.01188	-4.60719	1.98669
Н	0.02939	0.69058	-3.21860
Н	-1.34489	1.42601	-4.03498
н	-1.25726	-0.33174	-3.86850
н	-4.03310	1.44693	-3.09530
н	-4.63730	0.71804	-1.60601
Н	-4.01505	-0.30128	-2.90733
Н	-3.91295	3.09608	-1.08022
н	-3.54534	5.44957	-0.46025
н	-1.23360	6.36067	-0.31625
Н	0.70419	4.89043	-0.84849
н	0.34419	2.54446	-1.47096
н	-0.26214	2.21418	1.50065
н	-1.89327	2.71992	1.16307
н	-2.39526	2.80082	3.66427
н	-1.10107	3.88842	3.16425
н	-0.70489	2.37983	3.98930
н	-1.45751	0.21197	4.16018
н	-1.40898	-1.35977	3.38771
Н	0.92113	-0.86830	2.52718
Н	0.84671	-0.71775	4.28642
Н	0.86440	0.72818	3.26923
Н	-3.89970	-0.62992	2.39074
Н	-3.62444	0.82264	3.33878
Н	-4.27034	2.26313	1.38194
Н	-5.56165	1.11016	1.73999
Н	-4.46900	0.82568	0.37736
н	0.14265	-0.05446	-1.16481

$\left[(Et_{3}P)Ru(SiMe_{2}Ph)S(H)Dmp\right]^{**}(\textbf{4ab}^{*})$

Ru	-1.31804	-0.86530	-0.15062
S	0.88730	-0.07764	-0.01530
Р	-1.90500	0.43038	1.71528

Si	-1.76808	0.90276	-1.78940
С	1.85339	-1.61996	-0.11448
С	3.25367	-1.54660	-0.06993
С	3.96997	-2.75110	-0.09508
С	3.30857	-3.97905	-0.15741
С	1.91409	-4.02810	-0.21565
С	1.17323	-2.84311	-0.20064
С	3.93816	-0.22121	-0.00750
С	4.26195	0.33892	1.24434
С	4.84754	1.60855	1.28469
С	5.12168	2.33113	0.11728
С	4.79987	1.74869	-1.11381
С	4.21165	0.48137	-1.19822
С	3.97516	-0.40980	2.52262
С	5.78169	3.68556	0.18422
С	3.88630	-0.11294	-2.54821
С	-0.31531	-2.82446	-0.33248
С	-0.87471	-2.56920	-1.63842
С	-2.25588	-2.28270	-1.71964
С	-3.09591	-2.26842	-0.56949
С	-2.51094	-2.65620	0.67171
С	-1.15267	-3.04016	0.80612
С	-0.00432	-2.61752	-2.86429
С	-4.57346	-2.01023	-0.67320
С	-0.62386	-3.63283	2.08152
С	-0.64443	0.70558	-3.32243
С	-3.51157	0.88743	-2.55495
С	-1.45281	2.70760	-1.28809
С	-2.51173	3.60417	-1.05433
С	-2.28095	4.92226	-0.64937
С	-0.97261	5.38056	-0.47206
С	0.09822	4.51873	-0.72748
С	-0.14495	3.20579	-1.13570
С	-1.26230	2.15077	1.91138
С	-1.41880	2.78218	3.29702
С	-1.31873	-0.39438	3.27152
С	0.19944	-0.50853	3.39869
С	-3.71156	0.55850	2.11014
С	-4.51872	1.47392	1.19234
н	5.05447	-2.71472	-0.06137
н	3.88114	-4.90113	-0.17038
н	1.39974	-4.98152	-0.28654
н	5.09277	2.04358	2.25085
н	5.01244	2.29264	-2.03103

Н	4.22416	0.19942	3.39527
Н	4.55497	-1.33792	2.58350
Н	2.91991	-0.69124	2.59701
Н	6.87408	3.58583	0.21623
Н	5.47870	4.23448	1.08145
Н	5.53505	4.29528	-0.69040
Н	4.41962	-1.05588	-2.71155
Н	4.16005	0.57372	-3.35330
Н	2.81779	-0.33732	-2.65723
Н	-2.68422	-2.05130	-2.68842
Н	-3.14741	-2.68608	1.55126
Н	0.83424	-1.92039	-2.79813
Н	-0.58004	-2.38094	-3.76011
Н	0.41732	-3.62141	-2.98442
Н	-4.80699	-1.35849	-1.51607
Н	-4.95951	-1.54863	0.23925
Н	-5.10984	-2.95605	-0.81920
Н	-1.28086	-3.41871	2.92634
Н	0.38163	-3.28375	2.31912
Н	-0.57110	-4.72365	1.97835
Н	0.43200	0.69492	-3.11779
Н	-0.82756	1.56323	-3.98189
Н	-0.87867	-0.19966	-3.88878
Н	-3.59425	1.72562	-3.25826
Н	-4.32935	0.97919	-1.83657
Н	-3.68043	-0.02771	-3.13177
Н	-3.53782	3.27115	-1.17934
Н	-3.12006	5.58962	-0.47209
Н	-0.78881	6.40238	-0.15293
Н	1.12003	4.86967	-0.61143
Н	0.71203	2.56838	-1.33687
Н	-0.21138	2.13305	1.61027
Н	-1.77020	2.76065	1.16577
Н	-2.46419	2.80950	3.62134
Н	-1.06203	3.81685	3.26192
Н	-0.83980	2.26037	4.06431
Н	-1.72721	0.16906	4.11684
Н	-1.78522	-1.38223	3.30185
Н	0.62631	-1.09447	2.58267
Н	0.46985	-1.00488	4.33665
Н	0.68066	0.47361	3.39293
Н	-4.10441	-0.46393	2.07960
Н	-3.79375	0.89401	3.15020
Н	-4.16148	2.50610	1.24124

н	-5.57319	1.47179	1.48785
Н	-4.46175	1.14782	0.15283
н	1.24766	0.37976	-1.23887

9 References

- [S1] Y. Ohki, Y. Takikawa, H. Sadohara, C. Kesenheimer, B. Engendahl, E. Kapatina and K. Tatsumi, *Chem. Asian J.*, 2008, **3**, 1625–1635.
- [S2] T. Stahl, H. F. T. Klare and M. Oestreich, J. Am. Chem. Soc., 2013, 135, 1248–1251.
- [S3] H. F. T. Klare, M. Oestreich, J.-i. Ito, H. Nishiyama, Y. Ohki and K. Tatsumi, J. Am. Chem. Soc., 2011, 133, 3312–3315.
- [S4] R. K. Harris, E. D. Becker, S. M. Cabral de Menezes, R. Goodfellow and P. Granger, Pure Appl. Chem., 2001, 73, 1795–1818.
- [S5] (a) C. Lee, W. Yang and R. G. Parr, *Phys. Rev. B*, 1988, **37**, 785–789; (b) A. D. Becke, *J. Chem. Phys.*, 1993, **98**, 5648–5652; (c) P. J. Stephens, F. J. Devlin, C. F. Chabalowski and M. J. Frisch, *J. Phys. Chem.*, 1994, **98**, 11623–11627 and references cited therein.
- [S6] S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys., 2010, 132, 154104.
- [S7] S. Grimme, S. Ehrlich and L. Goerigk, *J. Comp. Chem.*, 2011, **32**, 1456–1465.
- [S8] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, GAUSSIAN 09 (Revision D.01), Gaussian Inc., Wallingford CT, 2009.
- [S9] D. Andrae, U. Häussermann, M. Dolg, H. Stoll and H. Preuss, *Theor. Chim. Acta*, 1990, 77, 123–141.
- [S10] A. V. Marenich, C. J. Cramer and D. G. Truhlar, J. Phys. Chem. B, 2009, 113, 6378– 6396.
- [S11] A. E. Reed, L. A. Curtiss and F. Weinhold, Chem. Rev., 1988, 88, 899–926.
- [S12] K. A. Wiberg, *Tetrahedron*, 1968, **24**, 1083–1096.
- [S13] E. D. Glendening, A. E. Reed, J. E. Carpenter and F. Weinhold, NBO version 3.1.

- [S14] (a) M. Kohout, Int. J. Quantum Chem., 2004, 97, 651–658; (b) M. Kohout, K. Pernal, F.
 R. Wagner and Y. Grin, Theor. Chem. Acc., 2004, 112, 453–459.
- [S15] M. Kohout, DGrid, version 4.6, Radebeul, 2011.
- [S16] Paraview, version 4.2, Kitware Inc., Clifton Park, New York, USA, 2014 (available from http://www.paraview.org).
- [S17] ReSpect, version 3.3.0, 2014; Relativistic Spectroscopy DFT program written by M. Repiský, S. Komorovský, V. G. Malkin, O. L. Malkina, M. Kaupp and K. Ruud with contributions from R. Bast, U. Ekstrom, S. Knecht, I. Malkin Ondik and E. Malkin (see http://rel-qchem.sav.sk).
- [S18] S. Komorovský, M. Repiský, O. L. Malkina and V. G. Malkin, J. Chem. Phys., 2010, 132, 154101.
- [S19] P. Hrobárik, V. Hrobáriková, F. Meier, M. Repiský, S. Komorovský and M. Kaupp, J. Phys. Chem. A, 2011, 115, 5654–5659.
- [S20] (a) J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.*, 1996, **77**, 3865–3868;
 (b) J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.*, 1997, **78**, 1396.
- [S21] K. G. Dyall, Theor. Chem. Acc., 2007, 117, 483–489.
- [S22] W. Kutzelnigg, U. Fleischer and M. Schindler in *NMR Basic Principles and Progress*, ed.
 P. Diehl, E. Fluck, H. Günther, R. Kosfeld and J. Seelig, Springer-Verlag, Berlin Heidelberg, 1991, vol. 23, pp. 165–262.
- [S23] E. J. Moore, J. M. Sullivan and J. R. Norton, J. Am. Chem. Soc., 1986, 108, 2257–2263.
- [S24] This work.
- [S25] D. J. Harrison, D. R. Edwards, R. McDonald and L. Rosenberg, *Dalton Trans.*, 2008, 3401–3411.
- [S26] CrystalClear, Rigaku Corporation, Tokyo, Japan, 1999.
- [S27] CrystalStructure 4.0, Crystal Structure Analysis Package, Rigaku Corporation, Tokyo, Japan, 2000–2010.
- [S28] G. M. Sheldrick, Acta Crystallogr., Sect. A, 2008, 64, 112–122.
- [S29] L. J. Farrugia, J. Appl. Crystallogr., 1997, 30, 565.