ELECTRONIC SUPPLEMENTARY INFORMATION

for the paper entitled

Hydrophilic Sulfonated Bis-1,2,4-Triazine Ligands Are Highly Effective Reagents for Separating Actinides(III) from Lanthanides(III) via Selective Formation of Aqueous Actinide Complexes

Frank W. Lewis, ${ }^{*, a, b}$ Laurence M. Harwood, ${ }^{*, a}$ Michael J. Hudson, ${ }^{a}$ Andreas Geist, ${ }^{c}$ Valery N. Kozhevnikov, ${ }^{b}$ Petr Distler ${ }^{d}$ and Jan John ${ }^{d}$
${ }^{a}$ Department of Chemistry, The University of Reading, Whiteknights, Reading RG6 6AD, UK. Email: frank.lewis@northumbria.ac.uk, l.m.harwood@reading.ac.uk
${ }^{b}$ Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK. E-mail: valery.kozhevnikov@northumbria.ac.uk
${ }^{c}$ Karlsruher Institut für Technologie (KIT-INE), Institut für Nukleare Entsorgung, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany. E-mail: andreas.geist@kit.edu
${ }^{d}$ Department of Nuclear Chemistry, Czech Technical University in Prague, Břehová 7, 11519 Prague 1, Czech Republic. E-mail: jan.john@fjifi.cvut.cz
CONTENTS PAGE

1. Experimental Procedures S3
2. Solvent Extraction Studies S31
2.1 Extraction of $\mathrm{Am}(\mathrm{III})$ and $\mathrm{Eu}(\mathrm{III})$ by TODGA in the
absence and presence of sulfonated ligands S33
3. References S43

1: Experimental Procedures

General procedures

Melting points were obtained on a Stuart SMP10 instrument. IR spectra were recorded as Nujol® mulls (N) on a Perkin Elmer RX1 FT-IR instrument. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded using either a Bruker AMX400 or an Avance DFX400 instrument. Chemical shifts are reported in parts per million downfield from tetramethylsilane. Assignments were verified with ${ }^{1} \mathrm{H}-$ ${ }^{1} \mathrm{H}$ and ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ COSY experiments as appropriate. Mass spectra were obtained under electrospray conditions on a Thermo Scientific LTQ Orbitrap XL instrument. Elemental microanalyses were carried out by Medac Ltd., Brunel Science Centre, Surrey (UK). Solvent extraction studies were performed at the Karlsruher Institut für Technologie (Germany) and at the Czech Technical University in Prague (Czech Republic). All organic reagents were obtained from either Acros or Aldrich, while inorganic reagents were obtained from either BDH or Aldrich and used as received.

2,2'-Bipyridine-1,1'-dioxide $\mathbf{2 3}^{1-11}$

22
23

2,2'-Bipyridine $22(24.0 \mathrm{~g}, 153.668 \mathrm{mmol})$ was dissolved in acetic acid (150 mL) and hydrogen peroxide ($60 \mathrm{~mL}, 30 \%, 537.840 \mathrm{mmol}, 3.5 \mathrm{eq}$) was added dropwise at such a rate that the temperature did not exceed $70-80^{\circ} \mathrm{C}$. After the addition was complete, the solution was stirred at 75 ${ }^{\circ} \mathrm{C}$ for 8 h , and was then allowed to cool to room temperature and stirring was continued overnight. The solution was diluted with acetone $(2000 \mathrm{~mL})$ and the precipitated solid was filtered and washed
with acetone $(200 \mathrm{~mL})$. The solid was dried at $70^{\circ} \mathrm{C}$ for 2 h to afford the title compound 23 as a white solid (27.05 g, 93 \%). ${ }^{1} \mathrm{H}$ NMR ($400.1 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta: 7.64-7.68(\mathrm{~m}, 4 \mathrm{H}, 4 \times \mathrm{Ar} H), 7.73-7.78$ $(\mathrm{m}, 2 \mathrm{H}, 2 \times \mathrm{Ar} H), 8.36-8.39(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{ArH}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\left.\mathrm{D}_{2} \mathrm{O}\right) \delta: 128.4(2 \times$ $\mathrm{ArC}), 128.8(2 \times \mathrm{ArC}), 131.5(2 \times \mathrm{ArC}), 139.7(2 \times \mathrm{ArC}), 141.8(2 \times$ quat $) \mathrm{ppm}$.

2,2'-Bipyridine-6,6'-dicarbonitrile 24 ${ }^{7,11-13}$

The starting material $23(26.25 \mathrm{~g}, 139.494 \mathrm{mmol})$ was dissolved in DCM (500 mL) and trimethylsilyl cyanide ($52.35 \mathrm{~mL}, 418.482 \mathrm{mmol}, 3 \mathrm{eq}$) was added. Benzoyl chloride ($48.57 \mathrm{~mL}, 418.482 \mathrm{mmol}, 3$ eq) was added slowly dropwise via an addition funnell at such a rate as to maintain a gentle reflux. The solution was stirred at room temperature for 3 days, and then heated under reflux for 24 h . The solution was allowed to cool to room temperature, 10% aq. potassium carbonate solution (100 mL) was added and the phases were vigorously stirred for 10 min . The insoluble solid was filtered and washed with water $(100 \mathrm{~mL})$ and ether $(50 \mathrm{~mL})$ and allowed to dry in air to afford the title compound 24 as a white solid $(14.07 \mathrm{~g})$. The phases of the filtrate were mixed and separated and the aqueous phase was extracted with DCM (50 mL). The combined organic phases were dried and evaporated and the resulting residue was triturated with $\mathrm{MeOH}(100 \mathrm{~mL})$. The insoluble solid was filtered and washed with $\mathrm{MeOH}(100 \mathrm{~mL})$ and ether $(30 \mathrm{~mL})$ and was allowed to dry in air to yield an additional 3.05 g of product 24 . Total yield $17.12 \mathrm{~g}(60 \%) .{ }^{1} \mathrm{H}$ NMR ($400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}$) $\delta: 7.78$ (dd, J $=7.6$ and $1.0,2 \mathrm{H}, 5-\mathrm{H}$ and $\left.5^{\prime}-\mathrm{H}\right), 8.02\left(\mathrm{dd}, J=7.6\right.$ and $8.1,2 \mathrm{H}, 4-\mathrm{H}$ and $\left.4^{\prime}-\mathrm{H}\right), 8.72(\mathrm{dd}, J=8.1$ and 1.0, $2 \mathrm{H}, 3-\mathrm{H}$ and $3^{\prime}-\mathrm{H}$) ppm; ${ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}$) $\delta: 117.1(2 \times$ quat), $124.7(2 \times$ $\mathrm{ArC}), 129.1(2 \times \mathrm{ArC}), 133.4(2 \times$ quat $), 138.5(2 \times \mathrm{ArC}), 155.6(2 \times$ quat $) \mathrm{ppm}$.

2,2'-Bipyridine-6,6'-dicarbohydrazonamide 5 ${ }^{14,15}$

The starting material $24(17.12 \mathrm{~g}, 83.106 \mathrm{mmol})$ was suspended in EtOH (400 mL) and hydrazine hydrate ($230 \mathrm{~mL}, 64 \%$) was added. The mixture was stirred at room temperature for 14 days. The mixture was diluted with water $(2500 \mathrm{~mL})$ and the insoluble solid was filtered and washed with water (400 mL) and EtOH (200 mL). The solid was allowed to dry in air to afford the title compound 5 as a pale yellow solid (22.43 g, 99 \%). ${ }^{1} \mathrm{H}$ NMR ($400.1 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta: 5.42$ (br s, $4 \mathrm{H}, 2 \times$ $\left.\mathrm{N} H_{2}\right), 5.95\left(\mathrm{br} \mathrm{s}, 4 \mathrm{H}, 2 \times \mathrm{N} H_{2}\right), 7.89\left(\mathrm{t}, J=7.7,2 \mathrm{H}, 4-\mathrm{H}\right.$ and $\left.4^{\prime}-\mathrm{H}\right), 7.97(\mathrm{dd}, J=7.7$ and $1.0,2 \mathrm{H}, 5-$ H and $\left.5^{\prime}-\mathrm{H}\right), 8.61\left(\mathrm{dd}, J=7.7\right.$ and $1.0,2 \mathrm{H}, 3-\mathrm{H}$ and $\left.3^{\prime}-\mathrm{H}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR not visible.

Pyridine-2,6-dicarbohydrazonamide $12{ }^{16}$

The starting material 25 ($5.28 \mathrm{~g}, 40.892 \mathrm{mmol}$) was suspended in EtOH (100 mL) and hydrazine hydrate ($100 \mathrm{~mL}, 64 \%$) was added. The mixture was stirred at room temperature for 14 days. The mixture was diluted with water (300 mL) and the insoluble solid was filtered and washed with water $(400 \mathrm{~mL})$. The solid was allowed to dry in air to afford the title compound $\mathbf{1 2}$ as a white solid (5.26 g, $67 \%) .{ }^{1} \mathrm{H}$ NMR ($400.1 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta: 5.25\left(\mathrm{br} \mathrm{s}, 4 \mathrm{H}, 2 \times \mathrm{N} \mathrm{H}_{2}\right), 6.05\left(\mathrm{br} \mathrm{s}, 4 \mathrm{H}, 2 \times \mathrm{N} \mathrm{H}_{2}\right)$, 7.66 (app dd, $J=8.3$ and $7.3,1 \mathrm{H}, 4-\mathrm{H}), 7.81(\mathrm{~d}, J=7.6,2 \mathrm{H}, 3-\mathrm{H}$ and $5-\mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100.6
$\left.\mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta: 117.9\left(\mathrm{C}-3\right.$ and C-5), $135.9(\mathrm{C}-4), 143.5\left(\mathrm{C}-2\right.$ and C-6), $150.2\left(2 \times C=\mathrm{NNH}_{2}\right)$ ppm.

6,6'-Bis(5,6-diphenyl-1,2,4-triazin-3-yl)-2,2'-bipyridine 8

5

Dioxane, Δ

8

The starting material $5(0.90 \mathrm{~g}, 3.333 \mathrm{mmol})$ was suspended in 1,4-dioxane (140 mL) and benzil $\mathbf{6}$ $(1.54 \mathrm{~g}, 7.333 \mathrm{mmol}, 2.2 \mathrm{eq})$ was added. Triethylamine $(18 \mathrm{~mL})$ was added and the mixture was heated under reflux for 3 days. The mixture was allowed to cool to room temperature and the insoluble solid was filtered and washed with DCM (40 mL). The solid was allowed to dry in air to afford the title compound $\mathbf{8}$ as a yellow solid ($1.49 \mathrm{~g}, 72 \%$). Mp above $300{ }^{\circ} \mathrm{C}$ (from dioxane); Found: C, $77.26 ; \mathrm{H}, 4.40 ; \mathrm{N}, 18.47 \% ; \mathrm{C}_{40} \mathrm{H}_{26} \mathrm{~N}_{8}$ requires C, $77.65 ; \mathrm{H}, 4.24 ; \mathrm{N}, 18.10 \%$; IR $v_{\max }(\mathrm{N})$ $3051,1600,1576,1562,1507,1484,1443,1400,1374,1261,1214,1183,1131,1091,1076,1050$, 1024, 1003, 987, 921, 870, 837, 809, 771, 743, 726, 698, 648, 637, $594 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400.1 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}\right) \delta: 7.40-7.52(\mathrm{~m}, 12 \mathrm{H}, 8 \times m-\mathrm{ArH}$ and $4 \times p-\mathrm{Ar} H), 7.68-7.71(\mathrm{~m}, 4 \mathrm{H}, 4 \times o-\mathrm{Ar} H)$, 7.76-7.78 (m, 4H, $4 \times o-\mathrm{ArH}), 8.14\left(\mathrm{t}, J=7.8,2 \mathrm{H}, 4-\mathrm{H}\right.$ and $\left.4^{\prime}-\mathrm{H}\right), 8.76(\mathrm{dd}, J=7.8$ and $0.9,2 \mathrm{H}, 3-\mathrm{H}$ and $\left.3^{\prime}-\mathrm{H}\right), 9.03\left(\mathrm{dd}, J=7.8\right.$ and $0.9,2 \mathrm{H}, 5-\mathrm{H}$ and $\left.5^{\prime}-\mathrm{H}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}$) ס: 123.4 (C-5 and C-5'), $124.5(\mathrm{C}-3$ and $\mathrm{C}-3$ '), $128.6(4 \times m-\mathrm{ArC}), 128.6(4 \times o-\mathrm{ArC}), 129.5(4 \times m-$ $\mathrm{ArC}), 129.8(2 \times p-\mathrm{Ar} C), 130.0(4 \times o-\mathrm{Ar} C), 130.8(2 \times p-\mathrm{Ar} C), 135.3(2 \times$ quat $), 135.7(2 \times$ quat $)$,
$138.1(\mathrm{C}-4$ and $\mathrm{C}-4$ ' $), 156.0(2 \times$ quat), $156.2(2 \times$ quat $), 156.3(2 \times$ quat $), 160.9(2 \times$ quat $), 165.4(2$ \times quat) ppm ; $\mathrm{HRMS}(\mathrm{CI}) ~ m / z 619.2311:$ calculated for $\left[\mathrm{C}_{40} \mathrm{H}_{26} \mathrm{~N}_{8}+\mathrm{H}\right]^{+} 619.2358$.

$3,3^{\prime}, 3^{\prime}{ }^{\prime}, 3$,'’-[3-(2,2'-Bipyridine-6,6'-diyl)-1,2,4-triazine-5,5,6,6-tetrayl]tetrabenzenesulfonyl chloride 10

The starting material $8(1.61 \mathrm{~g}, 2.605 \mathrm{mmol})$ was placed in a round bottomed flask and chlorosulfonic acid (15 mL) was added. The solution was stirred at $170^{\circ} \mathrm{C}$ for 5 h . The solution was allowed to cool to room temperature and then carefully poured onto ice (ca. 150 mL). The precipitated solid was filtered and washed with water $(100 \mathrm{~mL})$ and allowed to dry in air to afford the title compound 10 as a yellow/green solid ($2.58 \mathrm{~g}, 98 \%$). Mp above $300{ }^{\circ} \mathrm{C}\left(\right.$ from $\mathrm{H}_{2} \mathrm{O}$); Found: C, 47.12; H, 2.32; N, 10.85; S, 12.49 \%; $\mathrm{C}_{40} \mathrm{H}_{22} \mathrm{~N}_{8} \mathrm{O}_{8} \mathrm{~S}_{4} \mathrm{Cl}_{4}$ requires C, 47.44; H, 2.19; N, 11.06; S, 12.67%; IR $v_{\max }(\mathrm{N}) 3095,1620,1596,1575,1540,1527,1476,1420,1365,1302,1215\left(\mathrm{SO}_{2}\right), 1160$ $\left(\mathrm{SO}_{2}\right), 1116\left(\mathrm{SO}_{2}\right), 1027\left(\mathrm{SO}_{2}\right), 993,899,851,797,738,677,609 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $(400.1 \mathrm{MHz}$, DMSO- d_{6}) $\delta: 7.27-7.37(\mathrm{~m}, 8 \mathrm{H}, 8 \times \mathrm{Ar} H), 7.61-7.75(\mathrm{~m}, 4 \mathrm{H}, 4 \times \mathrm{Ar} H), 8.23(\mathrm{t}, J=1.6,2 \mathrm{H}, 2 \times$ $\left.\mathrm{ArSO}_{2} \mathrm{Cl} 2-\mathrm{H}\right), 8.33-8.40\left(\mathrm{~m}, 4 \mathrm{H}, 4-\mathrm{H}, 4^{\prime}-\mathrm{H}\right.$ and $\left.2 \times \mathrm{ArSO}_{2} \mathrm{Cl} 2-\mathrm{H}\right), 8.65(\operatorname{app} \mathrm{~d}, J=7.6,2 \mathrm{H}, 3-\mathrm{H}$ and $3^{\prime}-\mathrm{H}$), 8.87 (app d, $J=7.6,2 \mathrm{H}, 5-\mathrm{H}$ and $\left.5^{\prime}-\mathrm{H}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta: 122.6$ (C-5 and C-5'), $124.6\left(\mathrm{C}-3\right.$ and $\left.\mathrm{C}-3^{\prime}\right), 125.7(2 \times \mathrm{ArC}), 126.3\left(2 \times \mathrm{ArSO}_{2} \mathrm{Cl} \mathrm{C}-2\right), 126.8(2 \times \mathrm{ArC})$, $127.0(2 \times \mathrm{Ar} C), 127.7(2 \times \mathrm{ArC}), 127.8(2 \times \mathrm{ArC}), 129.8(2 \times \mathrm{ArC}), 129.9(2 \times \mathrm{ArC}), 134.8(2 \times$
$\left.\mathrm{ArSO}_{2} \mathrm{Cl} \mathrm{C-} 3\right), 135.0\left(2 \times \mathrm{ArSO}_{2} \mathrm{Cl} \mathrm{C-} 3\right), 139.0(\mathrm{C}-4$ and C-4'), $148.8(2 \times$ quat $), 152.3(2 \times$ quat $)$, $153.0(2 \times$ quat $), 155.2\left(2 \times \mathrm{ArSO}_{2} \mathrm{Cl} \mathrm{C}-1\right), 156.2\left(2 \times \mathrm{ArSO}_{2} \mathrm{Cl} \mathrm{C}-1\right), 157.7(2 \times$ quat $), 160.2(2 \times$ quat) ppm; HRMS (CI, DMSO) $m / z 939.0648$ (as tetrasulfonic acid): calculated for [$\mathrm{C}_{40} \mathrm{H}_{26} \mathrm{~N}_{8} \mathrm{O}_{12} \mathrm{~S}_{4}$ $+\mathrm{H}]^{+} 939.0631$.

3,3',3', $3^{\prime}{ }^{\prime}{ }^{\prime}$-[3-(2,2'-Bipyridine-6,6'-diyl)-1,2,4-triazine-

5,5,6,6-tetrayl]tetrabenzenesulfonic acid TS-BTBP 2

Method A:

10
TS-BTBP 2

The starting material $\mathbf{1 0}(1.00 \mathrm{~g}, 0.990 \mathrm{mmol})$ was placed in a round bottomed flask and water (120 mL) was added. The mixture was heated under reflux for 2 days. The resulting solution was allowed to cool to room temperature and was then evaporated to afford the title compound TS-BTBP 2 as a green solid ($0.90 \mathrm{~g}, 97 \%$).

Method B:

TS-BTBP 2

The starting material $\mathbf{8}(0.10 \mathrm{~g}, 0.161 \mathrm{mmol})$ was placed in a round bottomed flask and oleum (4 mL , $20 \% \mathrm{SO}_{3}$ in $\mathrm{H}_{2} \mathrm{SO}_{4}$) was added. The solution was stirred at $170{ }^{\circ} \mathrm{C}$ for 3 h . The solution was allowed to cool to room temperature and acetone (150 mL) was added. The precipitated solid was filtered through a glass fiber filter paper, washed with acetone (50 mL) and was allowed to dry in air to afford a solid which was dried at $70{ }^{\circ} \mathrm{C}$ for 30 min to afford the title compound TS-BTBP 2 as a green solid ($0.15 \mathrm{~g}, 98 \%$). Mp above $300{ }^{\circ} \mathrm{C}\left(\right.$ from $\mathrm{H}_{2} \mathrm{O}$); Found: C, 50.88 ; H, 3.16; N, 11.67; S, 13.42 \%; $\mathrm{C}_{40} \mathrm{H}_{26} \mathrm{~N}_{8} \mathrm{O}_{12} \mathrm{~S}_{4}$ requires C, 51.17; H, 2.79; N, 11.93; S, 13.66 \%; IR $v_{\max }(\mathrm{N}) 3173,3089$, 1693, 1620, 1574, 1526, 1476, 1420, 1363, 1301, $1231\left(\mathrm{SO}_{2}\right), 1141\left(\mathrm{SO}_{2}\right), 1104\left(\mathrm{SO}_{2}\right), 1022\left(\mathrm{SO}_{2}\right)$, 991, 898, 797, 738, 676, 644, $607 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400.1 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta: 7.12-7.20(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{ArH})$, 7.23-7.36 (m, 4H, $4 \times \mathrm{ArH}$), 7.39-7.45 (m, 2H, 4-H and 4'-H), 7.58 ($\operatorname{app} \mathrm{d}, J=7.5,2 \mathrm{H}, 3-\mathrm{H}$ and $3^{\prime}-$ H), 7.70-7.78 (m, 4H, $4 \times \mathrm{Ar} H), 7.84\left(\mathrm{~d}, J=7.5,2 \mathrm{H}, 5-\mathrm{H}\right.$ and $\left.5^{\prime}-\mathrm{H}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100.6 MHz , $\left.\mathrm{D}_{2} \mathrm{O}\right) \delta: 125.0(2 \times$ quat $), 125.7(2 \times \mathrm{ArC}), 126.1(\mathrm{C}-3$ and $\mathrm{C}-3$ ' $), 126.5(2 \times \mathrm{ArC}), 127.1(\mathrm{C}-5$ and $\mathrm{C}-$ $\left.5^{\prime}\right), 127.5(2 \times$ quat $), 127.7(2 \times \mathrm{Ar} C), 128.7(2 \times \mathrm{Ar} C), 129.4(2 \times \mathrm{ArC}), 129.7(2 \times \mathrm{ArC}), 132.1(2 \times$ $\mathrm{ArC}), 132.3(2 \times \mathrm{ArC}), 133.1(2 \times$ quat), $133.6(2 \times$ quat $), 140.2(\mathrm{C}-4$ and $\mathrm{C}-4$ '), $143.3(2 \times$ quat $)$, $143.5(2 \times$ quat $), 156.3(2 \times$ quat $), 156.5(2 \times$ quat $), 157.1(2 \times$ quat $) \mathrm{ppm} ;{ }^{1} \mathrm{H} \operatorname{NMR}(400.1 \mathrm{MHz}$, DMSO- d_{6}) $\delta: 7.30-7.38\left(\mathrm{~m}, 6 \mathrm{H}, 2 \times \mathrm{ArSO}_{3} \mathrm{H} 5-\mathrm{H}\right.$ and $\left.4 \times \mathrm{ArSO}_{3} \mathrm{H} 4-\mathrm{H}\right), 7.62-7.77(\mathrm{~m}, 6 \mathrm{H}, 2 \times$ $\mathrm{ArSO}_{3} \mathrm{H} 5-\mathrm{H}$ and $\left.4 \times \mathrm{ArSO}_{3} \mathrm{H} 6-\mathrm{H}\right), 8.23\left(\mathrm{t}, J=1.5,2 \mathrm{H}, 2 \times \mathrm{ArSO}_{3} \mathrm{H} 2-\mathrm{H}\right), 8.34-8.38(\mathrm{~m}, 4 \mathrm{H}, 4-\mathrm{H}$, $4^{\prime}-\mathrm{H}$ and $\left.2 \times \mathrm{ArSO}_{3} \mathrm{H} 2-\mathrm{H}\right), 8.66\left(\mathrm{dd}, J=7.8\right.$ and $0.8,2 \mathrm{H}, 3-\mathrm{H}$ and $\left.3^{\prime}-\mathrm{H}\right), 8.87(\mathrm{dd}, J=7.8$ and 0.8 , $2 \mathrm{H}, 5-\mathrm{H}$ and $\left.5^{\prime}-\mathrm{H}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta: 122.6$ (C-5 and C-5'), 124.6 (C-3 and C-3'), $126.3\left(2 \times \mathrm{ArSO}_{3} \mathrm{H} \mathrm{C}-6\right), 127.0\left(2 \times \mathrm{ArSO}_{3} \mathrm{HC} \mathrm{C}-2\right), 127.6\left(2 \times \mathrm{ArSO}_{3} \mathrm{HC} \mathrm{C}-2\right), 127.7(2 \times$ $\mathrm{ArSO}_{3} \mathrm{H}$ C-5), $127.9\left(2 \times \mathrm{ArSO}_{3} \mathrm{H} \mathrm{C}-5\right), 129.0\left(2 \times \mathrm{ArSO}_{3} \mathrm{H}\right.$ C-6), $129.8\left(2 \times \mathrm{ArSO}_{3} \mathrm{H} \mathrm{C}-4\right), 129.9(2$ $\left.\times \mathrm{ArSO}_{3} \mathrm{H} \mathrm{C}-4\right), 134.8\left(2 \times \mathrm{ArSO}_{3} \mathrm{HC}-3\right), 135.0\left(2 \times \mathrm{ArSO}_{3} \mathrm{HC} \mathrm{C} 3\right), 139.0(\mathrm{C}-4$ and C-4’), $148.6(2 \times$ quat), $148.7(2 \times$ quat $), 152.2(2 \times$ quat $), 155.2\left(2 \times \mathrm{ArSO}_{3} \mathrm{HC} \mathrm{C}-1\right), 155.7\left(2 \times \mathrm{ArSO}_{3} \mathrm{HC} \mathrm{C}-1\right), 156.2(2$
\times quat $), 160.2(2 \times$ quat $) \mathrm{ppm} ; \operatorname{HRMS}\left(\mathrm{CI}, \mathrm{H}_{2} \mathrm{O}\right) \mathrm{m} / \mathrm{z}$ 939.0638: calculated for $\left[\mathrm{C}_{40} \mathrm{H}_{26} \mathrm{~N}_{8} \mathrm{O}_{12} \mathrm{~S}_{4}+\mathrm{H}\right]^{+}$ 939.0631.

Tetrasodium 3,3', $\mathbf{3}^{\prime}, \mathbf{3}^{\prime}{ }^{\prime}$ '-[3-(2,2'-bipyridine-6,6'-diyl)-1,2,4-

triazine-5,5,6,6-tetrayl]tetrabenzenesulfonate TS-BTBP 1

Method A:

TS-BTBP 1

The starting material $\mathbf{8}(0.10 \mathrm{~g}, 0.161 \mathrm{mmol})$ was placed in a round bottomed flask and oleum (4 mL , $20 \% \mathrm{SO}_{3}$ in $\mathrm{H}_{2} \mathrm{SO}_{4}$) was added. The solution was stirred at $170{ }^{\circ} \mathrm{C}$ for 3 h . The solution was allowed to cool to room temperature and carefully poured onto ice (ca. 100 mL). Solid sodium hydrogen carbonate was added to the resulting solution until the evolution of CO_{2} had ceased, and the insoluble solids were filtered. The filtrate was evaporated to yield a light yellow solid that was triturated with hot $\mathrm{MeOH}(20 \mathrm{~mL})$. The insoluble solids were filtered and washed with $\mathrm{MeOH}(20 \mathrm{~mL})$ and the filtrate was evaporated to afford the title compound TS-BTBP 1 as a light green solid $(0.16 \mathrm{~g}, 96 \%)$.

Method B:

10
TS-BTBP 1

The starting material $10(0.60 \mathrm{~g}, 0.594 \mathrm{mmol})$ was suspended in $\mathrm{MeOH}(60 \mathrm{~mL})$ and a solution of finely powdered $\mathrm{NaOH}(0.142 \mathrm{~g}, 3.564 \mathrm{mmol}, 6 \mathrm{eq})$ in $\mathrm{MeOH}(15 \mathrm{~mL})$ was added. The mixture was heated under reflux for 4 h . The solution was allowed to cool to room temperature and was filtered. Excess NaOH in the filtrate was neutralized by the dropwise addition of HCl (ca. $1-2 \mathrm{~mL}, 2 \mathrm{M}$) until the pH was neutral. The filtrate was then diluted with acetone $(600 \mathrm{~mL})$ and the precipitated solid was filtered and washed with $\mathrm{MeOH}(5 \mathrm{~mL})$ and acetone $(20 \mathrm{~mL})$. The solid was dried at $70{ }^{\circ} \mathrm{C}$ for 30 min to afford the title compound TS-BTBP 1 as a green solid ($0.40 \mathrm{~g}, 66 \%)$. Mp above $300{ }^{\circ} \mathrm{C}$ (from MeOH); Found: $\mathrm{C}, 46.38 ; \mathrm{H}, 2.45 ; \mathrm{N}, 10.77 ; \mathrm{S}, 12.62 \% ; \mathrm{C}_{40} \mathrm{H}_{22} \mathrm{~N}_{8} \mathrm{O}_{12} \mathrm{~S}_{4} \mathrm{Na}_{4}$ requires C , 46.79 ; H, 2.16; N, 10.91; S, 12.49 \%; IR $v_{\max }(\mathrm{N}) 3066,1639,1591,1542,1502,1418,1377,1314,1183$ $\left(\mathrm{SO}_{2}\right), 1122\left(\mathrm{SO}_{2}\right), 1097,1035\left(\mathrm{SO}_{2}\right), 995,907,800,745,687,614 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $(400.1 \mathrm{MHz}$, $\left.\mathrm{D}_{2} \mathrm{O}\right) \delta: 6.75-6.90(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{ArH}), 7.23-7.40(\mathrm{~m}, 6 \mathrm{H}, 6 \times \mathrm{Ar} H), 7.43\left(\mathrm{t}, J=7.6,2 \mathrm{H}, 4-\mathrm{H}\right.$ and $4^{\prime}-$ H), 7.62-7.72 (m, 2H, $2 \times \mathrm{Ar} H), 7.75\left(\operatorname{appd}, J=7.6,2 H, 3-\mathrm{H}\right.$ and $\left.3^{\prime}-\mathrm{H}\right), 7.84(\operatorname{app} \mathrm{~d}, J=7.6,2 \mathrm{H}, 5-$ H and $\left.5^{\prime}-\mathrm{H}\right), 7.93-8.15(\mathrm{~m}, 4 \mathrm{H}, 4 \times \mathrm{Ar} H), 8.23-8.36(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{ArH}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100.6 MHz , $\left.\mathrm{D}_{2} \mathrm{O}\right) \delta: 125.1(2 \times \mathrm{ArC}), 125.2(2 \times \mathrm{ArC}), 125.9(2 \times \mathrm{ArC}), 126.0(\mathrm{C}-3$ and $\mathrm{C}-3$ ') , $127.1(\mathrm{C}-5$ and C-5'), $128.1(2 \times \mathrm{ArC}), 128.9(2 \times \mathrm{ArC}), 129.5(2 \times \mathrm{ArC}), 129.7(2 \times \mathrm{ArC}), 132.0(2 \times \mathrm{ArC}), 132.7$ $(2 \times$ quat $), 133.2(2 \times$ quat $), 134.2(2 \times$ quat $), 139.7(\mathrm{C}-4$ and $\mathrm{C}-4$ '), $143.3(2 \times$ quat $), 151.1(2 \times$ quat), $155.8(2 \times$ quat $), 156.6(2 \times$ quat $), 157.6(2 \times$ quat $), 160.8(2 \times$ quat $) p p m ;{ }^{1} H$ NMR (400.1 $\left.\mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta: 7.29-7.38\left(\mathrm{~m}, 6 \mathrm{H}, 2 \times \mathrm{ArSO}_{3} \mathrm{Na} 5-\mathrm{H}\right.$ and $\left.4 \times \mathrm{ArSO}_{3} \mathrm{Na} 4-\mathrm{H}\right), 7.63-7.78(\mathrm{~m}, 6 \mathrm{H}$,
$2 \times \mathrm{ArSO}_{3} \mathrm{Na} 5-\mathrm{H}$ and $\left.4 \times \mathrm{ArSO}_{3} \mathrm{Na} 6-\mathrm{H}\right), 8.26\left(\mathrm{app} \mathrm{s}, 2 \mathrm{H}, 2 \times \mathrm{ArSO}_{3} \mathrm{Na} 2-\mathrm{H}\right), 8.35-8.39(\mathrm{~m}, 4 \mathrm{H}, 4-$ $\mathrm{H}, 4^{\prime}-\mathrm{H}$ and $\left.2 \times \mathrm{ArSO}_{3} \mathrm{Na} 2-\mathrm{H}\right), 8.67\left(\mathrm{app} \mathrm{d}, J=7.8,2 \mathrm{H}, 3-\mathrm{H}\right.$ and $\left.3^{\prime}-\mathrm{H}\right), 8.86(\operatorname{app} \mathrm{~d}, J=7.8,2 \mathrm{H}, 5-$ H and $\left.5^{\prime}-\mathrm{H}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta: 122.8$ (C-5 and C-5'), 124.6 (C-3 and C-3'), $126.3\left(2 \times \mathrm{ArSO}_{3} \mathrm{Na} \mathrm{C}-6\right), 127.0\left(2 \times \mathrm{ArSO}_{3} \mathrm{Na} \mathrm{C}-2\right), 127.6\left(2 \times \mathrm{ArSO}_{3} \mathrm{Na} \mathrm{C}-2\right), 127.7(2 \times$ $\left.\mathrm{ArSO}_{3} \mathrm{Na} \mathrm{C}-5\right), 127.9\left(2 \times \mathrm{ArSO}_{3} \mathrm{Na} \mathrm{C}-5\right), 129.0\left(2 \times \mathrm{ArSO}_{3} \mathrm{Na} \mathrm{C}-6\right), 129.7\left(2 \times \mathrm{ArSO}_{3} \mathrm{Na} \mathrm{C}-4\right)$, $129.9\left(2 \times \mathrm{ArSO}_{3} \mathrm{Na} \mathrm{C}-4\right), 134.7\left(2 \times \mathrm{ArSO}_{3} \mathrm{Na} \mathrm{C}-3\right), 134.9\left(2 \times \mathrm{ArSO}_{3} \mathrm{Na} \mathrm{C}-3\right), 139.1(\mathrm{C}-4$ and $\mathrm{C}-$ $\left.4^{\prime}\right), 148.7(2 \times$ quat $), 148.8(2 \times$ quat $), 152.3(2 \times$ quat $), 155.2\left(2 \times \mathrm{ArSO}_{3} \mathrm{Na} \mathrm{C}-1\right), 155.6(2 \times$ $\left.\mathrm{ArSO}_{3} \mathrm{Na} \mathrm{C}-1\right), 156.2\left(2 \times\right.$ quat), $160.1\left(2 \times\right.$ quat) ppm ; $\mathrm{HRMS}\left(\mathrm{CI}, \mathrm{H}_{2} \mathrm{O}\right) \mathrm{m} / \mathrm{z} 939.0679$ (as tetrasulfonic acid): calculated for $\left[\mathrm{C}_{40} \mathrm{H}_{26} \mathrm{~N}_{8} \mathrm{O}_{12} \mathrm{~S}_{4}+\mathrm{H}\right]^{+} 939.0631$.

6,6'-Bis(5-phenyl-1,2,4-triazin-3-yl)-2,2'-bipyridine 9

The starting material $5(1.00 \mathrm{~g}, 3.703 \mathrm{mmol})$ was suspended in 1,4-dioxane (100 mL) and phenylglyoxal $7(1.24 \mathrm{~g}, 8.148 \mathrm{mmol}$, 2.2 eq$)$ was added. Triethylamine (16 mL) was added and the mixture was heated under reflux for 3 days. The mixture was allowed to cool to room temperature and the insoluble solid was filtered and washed with DCM (20 mL). The solid was allowed to dry in air to afford the title compound 9 as a yellow solid ($1.53 \mathrm{~g}, 89 \%$). Mp above $300{ }^{\circ} \mathrm{C}$ (from 1,4dioxane); Found: C, 71.78; H, 3.81; N, $23.67 \% ; \mathrm{C}_{28} \mathrm{H}_{18} \mathrm{~N}_{8}$ requires C, $72.09 ; \mathrm{H}, 3.89 ; \mathrm{N}, 24.01 \%$; IR $v_{\max }(\mathrm{N}) 3092,3057,1601,1577,1560,1538,1505,1436,1419,1357,1337,1319,1269,1187$, $1157,1123,1082,1046,1027,992,980,927,900,872,830,796,762,747,682,669,662,636 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}$ NMR ($400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}$) $\delta: 7.63-7.67(\mathrm{~m}, 6 \mathrm{H}, 4 \times m-\mathrm{Ar} H$ and $2 \times p-\mathrm{Ar} H), 8.16(\mathrm{t}, J=$ $7.8,2 \mathrm{H}, 4-\mathrm{H}$ and $\left.4^{\prime}-\mathrm{H}\right), 8.37-8.40(\mathrm{~m}, 4 \mathrm{H}, 4 \times o-\mathrm{Ar} H), 8.74\left(\mathrm{dd}, J=7.8\right.$ and $0.9,2 \mathrm{H}, 3-\mathrm{H}$ and $\left.3^{\prime}-\mathrm{H}\right)$, $9.04\left(\mathrm{dd}, J=7.8\right.$ and $0.9,2 \mathrm{H}, 5-\mathrm{H}$ and $\left.5^{\prime}-\mathrm{H}\right), 9.78(\mathrm{~s}, 2 \mathrm{H}, 2 \times H \mathrm{C}=\mathrm{N}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR not visible; HRMS (CI) m / z 489.1544: calculated for $\left[\mathrm{C}_{28} \mathrm{H}_{18} \mathrm{~N}_{8}+\mathrm{Na}\right]^{+} 489.1547$.

3,3'-[3-(2,2'-Bipyridine-6,6'-diyl)-1,2,4-triazine-5,5-diyl]dibenzenesulfonyl chloride 11

The starting material $9(0.50 \mathrm{~g}, 1.072 \mathrm{mmol})$ was placed in a round bottomed flask and chlorosulfonic acid (6 mL) was added. The solution was stirred at $170{ }^{\circ} \mathrm{C}$ for 3 h . The solution was allowed to cool to room temperature and then carefully poured onto ice (ca. 50 mL). The precipitated solid was filtered and washed with water (25 mL) and allowed to dry in air to afford the title compound 11 as a yellow/green solid ($0.66 \mathrm{~g}, 93 \%$). Mp above $300{ }^{\circ} \mathrm{C}$ (from $\mathrm{H}_{2} \mathrm{O}$); Found: C, 50.32; H, 2.71; N, 16.54; S, 9.38 \%; $\mathrm{C}_{28} \mathrm{H}_{16} \mathrm{~N}_{8} \mathrm{O}_{4} \mathrm{~S}_{2} \mathrm{Cl}_{2}$ requires C, 50.69; H, 2.43; N, 16.88; S, 9.67 \%; IR $v_{\max }(\mathrm{N}) 3178,3088,1623,1585,1542,1507,1474,1441,1373,1321,1290,1272,1163$ $\left(\mathrm{SO}_{2}\right), 1120\left(\mathrm{SO}_{2}\right), 1051,1031\left(\mathrm{SO}_{2}\right), 991,911,861,821,780,767,738,700,686,662,652,606$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400.1 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta: 7.68\left(\mathrm{t}, J=7.7,2 \mathrm{H}, 2 \times \mathrm{ArSO}_{2} \mathrm{Cl} 5-\mathrm{H}\right), 7.94(\mathrm{dt}, J=7.8$ and $\left.1.2,2 \mathrm{H}, 2 \times \mathrm{ArSO}_{2} \mathrm{Cl} 4-\mathrm{H}\right), 8.36\left(\mathrm{t}, J=7.8,2 \mathrm{H}, 4-\mathrm{H}\right.$ and $\left.4^{\prime}-\mathrm{H}\right), 8.50(\mathrm{dt}, J=7.8$ and $1.2,2 \mathrm{H}, 2 \times$ $\left.\mathrm{ArSO}_{2} \mathrm{Cl} 6-\mathrm{H}\right), 8.67\left(\mathrm{dd}, J=7.8\right.$ and $0.8,2 \mathrm{H}, 3-\mathrm{H}$ and $\left.3^{\prime}-\mathrm{H}\right), 8.75\left(\mathrm{t}, J=1.2,2 \mathrm{H}, 2 \times \mathrm{ArSO}_{2} \mathrm{Cl} 2-\mathrm{H}\right)$, $8.89\left(\mathrm{dd}, J=7.8\right.$ and $0.8,2 \mathrm{H}, 5-\mathrm{H}$ and $\left.5^{\prime}-\mathrm{H}\right), 10.20(\mathrm{~s}, 2 \mathrm{H}, 2 \times H \mathrm{C}=\mathrm{N}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100.6 MHz, DMSO- d_{6}) $\delta: 122.7\left(\mathrm{C}-5\right.$ and C-5'), $124.6\left(\mathrm{C}-3\right.$ and $\left.\mathrm{C}-3^{\prime}\right), 124.9\left(2 \times \mathrm{ArSO}_{2} \mathrm{Cl} \mathrm{C}-2\right), 128.2(2 \times$ $\left.\mathrm{ArSO}_{2} \mathrm{Cl} \mathrm{C}-6\right), 129.0\left(2 \times \mathrm{ArSO}_{2} \mathrm{Cl} \mathrm{C}-5\right), 129.8\left(2 \times \mathrm{ArSO}_{2} \mathrm{Cl} \mathrm{C}-4\right), 132.8\left(2 \times \mathrm{ArSO}_{2} \mathrm{Cl} \mathrm{C}-3\right), 139.0$
(C-4 and C-4'), $146.0(2 \times \mathrm{HC}=\mathrm{N}), 149.4(2 \times$ quat $), 152.4(2 \times$ quat $), 154.8(2 \times$ quat $), 155.1(2 \times$ $\mathrm{ArSO}_{2} \mathrm{Cl} \mathrm{C}-1$), 161.9 ($2 \times$ quat) ppm ; HRMS (CI) $m / z 627.0858$ (as disulfonic acid): calculated for $\left[\mathrm{C}_{28} \mathrm{H}_{18} \mathrm{~N}_{8} \mathrm{O}_{6} \mathrm{~S}_{2}+\mathrm{H}\right]^{+}$627.0863.

3,3'-[3-(2,2'-Bipyridine-6,6'-diyl)-1,2,4-triazine-5,5-diyl]dibenzenesulfonic acid DS-BTBP 2

Method A:

The starting material $11(0.50 \mathrm{~g}, 0.755 \mathrm{mmol})$ was placed in a round bottomed flask and water (70 mL) was added. The mixture was heated under reflux for 3 days. The resulting mixture was allowed to cool to room temperature and was then evaporated to afford the title compound DS-BTBP 2 as a green solid ($0.42 \mathrm{~g}, 89 \%$).

Method B:

The starting material $9(0.12 \mathrm{~g}, 0.257 \mathrm{mmol})$ was placed in a round bottomed flask and oleum (5 mL , $20 \% \mathrm{SO}_{3}$ in $\mathrm{H}_{2} \mathrm{SO}_{4}$) was added. The solution was stirred at $170{ }^{\circ} \mathrm{C}$ for 3 h . The solution was allowed to cool to room temperature and acetone $(100 \mathrm{~mL})$ was added. The precipitated solid was filtered, washed with acetone (100 mL) and was allowed to dry in air to afford the title compound DS-BTBP

2 as a light green solid ($0.16 \mathrm{~g}, 99 \%$. Mp $258-262^{\circ} \mathrm{C}$ (decomposed); Found: C, 53.28; H, 3.14; N, 17.65; S, $10.07 \% ; \mathrm{C}_{28} \mathrm{H}_{18} \mathrm{~N}_{8} \mathrm{O}_{6} \mathrm{~S}_{2}$ requires C, $53.67 ; \mathrm{H}, 2.90 ; \mathrm{N}, 17.87 ; \mathrm{S}, 10.23 \%$; IR $v_{\max }(\mathrm{N}) 3406$, $3176,3080,1682,1618,1581,1543,1506,1435,1366,1321,1288,1163\left(\mathrm{SO}_{2}\right), 1125\left(\mathrm{SO}_{2}\right), 1030$ $\left(\mathrm{SO}_{2}\right), 992,907,880,822,786,764,737,687,670,653,610 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400.1 MHz, DMSO$\left.d_{6}\right) \delta: 7.68\left(\mathrm{t}, J=7.7,2 \mathrm{H}, 2 \times \mathrm{ArSO}_{3} \mathrm{H} 5-\mathrm{H}\right), 7.95\left(\operatorname{app~d}, J=7.7,2 \mathrm{H}, 2 \times \mathrm{ArSO}_{3} \mathrm{H} 4-\mathrm{H}\right), 8.36(\mathrm{t}, J=$ 7.7, $2 \mathrm{H}, 4-\mathrm{H}$ and $\left.4^{\prime}-\mathrm{H}\right), 8.49\left(\operatorname{app~d}, J=7.8,2 \mathrm{H}, 2 \times \mathrm{ArSO}_{3} \mathrm{H} 6-\mathrm{H}\right), 8.67(\mathrm{app} \mathrm{d}, J=7.7,2 \mathrm{H}, 3-\mathrm{H}$ and $3^{\prime}-\mathrm{H}$), $8.76\left(\operatorname{app~s}, 2 \mathrm{H}, 2 \times \mathrm{ArSO}_{3} \mathrm{H} 2-\mathrm{H}\right), 8.87\left(\operatorname{app~d}, J=7.7,2 \mathrm{H}, 5-\mathrm{H}\right.$ and $\left.5^{\prime}-\mathrm{H}\right), 10.18(\mathrm{~s}, 2 \mathrm{H}, 2 \times$ $H \mathrm{C}=\mathrm{N}$) ppm; ${ }^{13} \mathrm{C}$ NMR (100.6 MHz, DMSO- d_{6}) $\delta: 122.7$ (C-5 and C-5'), 124.5 (C-3 and C-3'), $124.9\left(2 \times \mathrm{ArSO}_{3} \mathrm{H} \mathrm{C}-2\right), 128.2\left(2 \times \mathrm{ArSO}_{3} \mathrm{H}\right.$ C-6 $), 129.0\left(2 \times \mathrm{ArSO}_{3} \mathrm{HC} \mathrm{C}-5\right), 129.8\left(2 \times \mathrm{ArSO}_{3} \mathrm{H} \mathrm{C}-\right.$ 4), $132.8\left(2 \times \mathrm{ArSO}_{3} \mathrm{H} \mathrm{C}-3\right), 138.9(\mathrm{C}-4$ and $\mathrm{C}-4$ ' $), 146.0(2 \times \mathrm{HC}=\mathrm{N}), 149.4(2 \times$ quat $), 152.5(2 \times$ quat), $154.7(2 \times$ quat $), 155.2\left(2 \times \mathrm{ArSO}_{3} \mathrm{HC}\right.$ C-1 $), 162.0(2 \times$ quat $) \mathrm{ppm}$; $\mathrm{HRMS}(\mathrm{CI}) \mathrm{m} / \mathrm{z}$ 627.0867: calculated for $\left[\mathrm{C}_{28} \mathrm{H}_{18} \mathrm{~N}_{8} \mathrm{O}_{6} \mathrm{~S}_{2}+\mathrm{H}\right]^{+} 627.0863$.

Disodium 3,3'-[3-(2,2'-bipyridine-6,6'-diyl)-1,2,4-triazine-5,5-diyl]dibenzenesulfonate DS-

BTBP 1

Method A:

The starting material $9(0.10 \mathrm{~g}, 0.214 \mathrm{mmol})$ was placed in a round bottomed flask and oleum (5 mL , $20 \% \mathrm{SO}_{3}$ in $\mathrm{H}_{2} \mathrm{SO}_{4}$) was added. The solution was stirred at $170{ }^{\circ} \mathrm{C}$ for 4 h . The solution was allowed to cool to room temperature and carefully poured onto ice (ca. 100 mL). Solid sodium hydrogen carbonate was added to the resulting mixture until the evolution of CO_{2} had ceased, and the insoluble
solids were filtered. The filtrate was evaporated to yield an off-white solid that was triturated with hot $\mathrm{MeOH}(40 \mathrm{~mL})$. The insoluble solids were filtered and washed with hot $\mathrm{MeOH}(40 \mathrm{~mL})$ and the filtrate was evaporated to afford the title compound DS-BTBP 1 as a light yellow solid $(0.12 \mathrm{~g}, 85$ \%).

Method B:

11
DS-BTBP 1

The starting material $11(0.31 \mathrm{~g}, 0.467 \mathrm{mmol})$ was suspended in $\mathrm{MeOH}(50 \mathrm{~mL})$ and a solution of finely powdered $\mathrm{NaOH}(0.074 \mathrm{~g}, 1.868 \mathrm{mmol}, 4 \mathrm{eq})$ in $\mathrm{MeOH}(20 \mathrm{~mL})$ was added. The mixture was heated under reflux for 2 days. The mixture was allowed to cool to room temperature and excess NaOH was neutralized by the dropwise addition of $\mathrm{HCl}(\mathrm{ca} .1 \mathrm{~mL}, 2 \mathrm{M})$ until the pH was neutral. The insoluble solid was then filtered and washed with $\mathrm{MeOH}(50 \mathrm{~mL})$ and allowed to dry in air to afford the title compound DS-BTBP 1 as a light yellow solid ($0.24 \mathrm{~g}, 76 \%$). Mp above $300{ }^{\circ} \mathrm{C}$ (from MeOH); Found: C, 49.77; H, 2.62; N, 16.54; S, $9.73 \% ; \mathrm{C}_{28} \mathrm{H}_{16} \mathrm{~N}_{8} \mathrm{O}_{6} \mathrm{~S}_{2} \mathrm{Na}_{2}$ requires C, 50.15; H, 2.40; N, 16.70; S, 9.56 \%; IR $v_{\max }(\mathrm{N}) 3105,1626,1592,1547,1511,1442,1421,1365,1317,1293$, $1258,1185\left(\mathrm{SO}_{2}\right), 1127\left(\mathrm{SO}_{2}\right), 1083,1034\left(\mathrm{SO}_{2}\right), 994,911,826,784,742,694,668,636,614 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400.1 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta: 7.67\left(\mathrm{t}, J=7.7,2 \mathrm{H}, 2 \times \mathrm{ArSO}_{3} \mathrm{Na} 5-\mathrm{H}\right.$), $7.94(\mathrm{dt}, J=7.7$ and $\left.1.2,2 \mathrm{H}, 2 \times \mathrm{ArSO}_{3} \mathrm{Na} 4-\mathrm{H}\right), 8.36\left(\mathrm{t}, J=7.8,2 \mathrm{H}, 4-\mathrm{H}\right.$ and $\left.4^{\prime}-\mathrm{H}\right), 8.48(\mathrm{dt}, J=7.8$ and $1.2,2 \mathrm{H}, 2 \times$ $\left.\mathrm{ArSO}_{3} \mathrm{Na} 6-\mathrm{H}\right), 8.67\left(\mathrm{dd}, J=7.8\right.$ and $0.8,2 \mathrm{H}, 3-\mathrm{H}$ and $\left.3^{\prime}-\mathrm{H}\right), 8.74\left(\mathrm{t}, J=1.4,2 \mathrm{H}, 2 \times \mathrm{ArSO}_{3} \mathrm{Na} 2-\mathrm{H}\right)$, $8.88\left(\mathrm{dd}, J=7.8\right.$ and $0.8,2 \mathrm{H}, 5-\mathrm{H}$ and $\left.5^{\prime}-\mathrm{H}\right), 10.18(\mathrm{~s}, 2 \mathrm{H}, 2 \times H \mathrm{C}=\mathrm{N}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100.6 MHz, DMSO $-d_{6}$) $\delta: 122.8(\mathrm{C}-5$ and $\mathrm{C}-5$ ' $), 124.5(\mathrm{C}-3$ and $\mathrm{C}-3$ ' $), 124.8\left(2 \times \mathrm{ArSO}_{3} \mathrm{Na} \mathrm{C}-2\right), 128.2(2 \times$
$\left.\mathrm{ArSO}_{3} \mathrm{Na} \mathrm{C}-6\right), 129.0\left(2 \times \mathrm{ArSO}_{3} \mathrm{Na} \mathrm{C}-5\right), 129.8\left(2 \times \mathrm{ArSO}_{3} \mathrm{Na} \mathrm{C}-4\right), 132.8\left(2 \times \mathrm{ArSO}_{3} \mathrm{Na} \mathrm{C}-3\right)$, $139.0(\mathrm{C}-4$ and $\mathrm{C}-4$ ' $), 146.0(2 \times \mathrm{HC}=\mathrm{N}), 149.3(2 \times$ quat $), 152.5(2 \times$ quat $), 154.6(2 \times$ quat $), 155.1$ ($2 \times \mathrm{ArSO}_{3} \mathrm{Na} \mathrm{C-1}$), $161.9(2 \times$ quat) ppm ; HRMS (CI) $m / z 627.0861$ (as disulfonic acid): calculated for $\left[\mathrm{C}_{28} \mathrm{H}_{18} \mathrm{~N}_{8} \mathrm{O}_{6} \mathrm{~S}_{2}+\mathrm{H}\right]^{+}$627.0863.

2,6-Bis(5-phenyl-1,2,4-triazin-3-yl)pyridine 13

The starting material $12(0.65 \mathrm{~g}, 3.367 \mathrm{mmol})$ was suspended in 1,4-dioxane (75 mL) and phenylglyoxal $7(1.12 \mathrm{~g}, 7.409 \mathrm{mmol}, 2.2 \mathrm{eq})$ was added. Triethylamine (6 mL) was added and the mixture was heated under reflux for 3 days. The mixture was allowed to cool to room temperature and the precipitated solid was filtered and washed with ether $(150 \mathrm{~mL})$. The solid was allowed to dry in air to afford the title compound $\mathbf{1 3}$ as a yellow solid ($1.29 \mathrm{~g}, 98 \%$). Mp 240-245 ${ }^{\circ} \mathrm{C}$ (from 1,4dioxane); Found: C, 70.71; H, 3.97; N, $24.94 \% ; \mathrm{C}_{23} \mathrm{H}_{15} \mathrm{~N}_{7}$ requires C, 70.94; H, 3.88; N, 25.18 \%; IR $v_{\max }(\mathrm{N}) 3059,1651,1598,1548,1508,1439,1404,1368,1354,1323,1286,1261,1180,1161$, 1123, 1091, 1049, 1027, 1002, 992, 914, 872, 847, 831, 762, 745, 685, 670, 642, $630 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400.1 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}\right) \delta: 7.63-7.68(\mathrm{~m}, 6 \mathrm{H}, 4 \times m-\mathrm{Ar} H$ and $2 \times p-\mathrm{Ar} H), 8.22(\mathrm{t}, J=7.8,1 \mathrm{H}, 4-$ H), $8.41-8.44(\mathrm{~m}, 4 \mathrm{H}, 4 \times o-\mathrm{Ar} H), 8.90(\mathrm{~d}, J=7.8,2 \mathrm{H}, 3-\mathrm{H}$ and $5-\mathrm{H}), 9.78(\mathrm{~s}, 2 \mathrm{H}, 2 \times H \mathrm{C}=\mathrm{N}) \mathrm{ppm}$; ${ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}\right) \delta: 125.9(\mathrm{C}-3$ and $\mathrm{C}-5), 128.0(4 \times o-\mathrm{ArC}), 129.4(4 \times \mathrm{m}-$ $\mathrm{ArC}), 132.8(2 \times p-\mathrm{ArC}), 133.3(2 \times$ quat $), 138.4(\mathrm{C}-4), 145.3(2 \times \mathrm{HC}=\mathrm{N}), 153.7(2 \times$ quat $), 155.8$
$\left(2 \times\right.$ quat), $162.6(2 \times$ quat $) \mathrm{ppm} ; \mathrm{HRMS}(\mathrm{CI}) m / z$ 390.1465: calculated for $\left[\mathrm{C}_{23} \mathrm{H}_{15} \mathrm{~N}_{7}+\mathrm{H}\right]^{+}$ 390.1462 .

3,3'-[3-(Pyridine-2,6-diyl)-1,2,4-triazine-5,5-diyl]dibenzenesulfonyl chloride 14

The starting material $13(0.60 \mathrm{~g}, 1.542 \mathrm{mmol})$ was placed in a round bottomed flask and chlorosulfonic acid (10 mL) was added. The solution was stirred at $170^{\circ} \mathrm{C}$ for 3 h . The solution was allowed to cool to room temperature and then carefully poured onto ice (ca. 100 mL). The precipitated solid was filtered and washed with water $(300 \mathrm{~mL})$ and allowed to dry in air to afford the title compound $\mathbf{1 4}$ as a green solid ($0.88 \mathrm{~g}, 97 \%$). Mp above $300{ }^{\circ} \mathrm{C}\left(\right.$ from $\mathrm{H}_{2} \mathrm{O}$); Found: $\mathrm{C}, 46.78$; $\mathrm{H}, 2.52 ; \mathrm{N}, 16.55 \% ; \mathrm{C}_{23} \mathrm{H}_{13} \mathrm{~N}_{7} \mathrm{O}_{4} \mathrm{~S}_{2} \mathrm{Cl}_{2}$ requires C, 47.11; H, 2.23; N, 16.72%; IR $v_{\max }(\mathrm{N}) 3073$, $1599,1588,1573,1537,1455,1418,1373,1352,1321,1288,1255,1165\left(\mathrm{SO}_{2}\right), 1138\left(\mathrm{SO}_{2}\right), 1103$, $1028\left(\mathrm{SO}_{2}\right), 991,910,812,784,770,750,711,683,656,608 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400.1 MHz, DMSO$\left.d_{6}\right) \delta: 7.69\left(\mathrm{t}, J=7.7,2 \mathrm{H}, 2 \times \mathrm{ArSO}_{2} \mathrm{Cl} 5-\mathrm{H}\right), 7.93\left(\mathrm{dt}, J=7.9\right.$ and $\left.1.2,2 \mathrm{H}, 2 \times \mathrm{ArSO}_{2} \mathrm{Cl} 4-\mathrm{H}\right), 8.42$ $(\mathrm{t}, J=7.8,1 \mathrm{H}, 4-\mathrm{H}), 8.47\left(\mathrm{dt}, J=7.8\right.$ and $\left.1.2,2 \mathrm{H}, 2 \times \mathrm{ArSO}_{2} \mathrm{Cl} 6-\mathrm{H}\right), 8.68(\mathrm{t}, J=1.6,2 \mathrm{H}, 2 \times$ $\left.\mathrm{ArSO}_{2} \mathrm{Cl} 2-\mathrm{H}\right), 8.76(\mathrm{~d}, J=7.8,2 \mathrm{H}, 3-\mathrm{H}$ and $5-\mathrm{H}), 10.18(\mathrm{~s}, 2 \mathrm{H}, 2 \times H \mathrm{C}=\mathrm{N}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100.6 $\left.\mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta: 124.8\left(2 \times \mathrm{ArSO}_{2} \mathrm{Cl} \mathrm{C}-2\right), 125.9\left(\mathrm{C}-3\right.$ and C-5), $128.4\left(2 \times \mathrm{ArSO}_{2} \mathrm{Cl} \mathrm{C}-6\right), 129.1$ $\left(2 \times \mathrm{ArSO}_{2} \mathrm{Cl} \mathrm{C}-5\right), 129.8\left(2 \times \mathrm{ArSO}_{2} \mathrm{Cl} \mathrm{C}-4\right), 132.8\left(2 \times \mathrm{ArSO}_{2} \mathrm{Cl} \mathrm{C-} 3\right), 139.0(\mathrm{C}-4), 146.1(2 \times$ $\mathrm{HC}=\mathrm{N}), 149.3(2 \times$ quat $), 153.5(2 \times$ quat $), 154.8\left(2 \times \mathrm{ArSO}_{2} \mathrm{ClC-1}\right), 162.1(2 \times$ quat $) \mathrm{ppm} ; \mathrm{HRMS}$ (CI) $m / z 550.0614$ (as disulfonic acid): calculated for $\left[\mathrm{C}_{23} \mathrm{H}_{15} \mathrm{~N}_{7} \mathrm{O}_{6} \mathrm{~S}_{2}+\mathrm{H}\right]^{+} 550.0603$.

3,3'-[3-(Pyridine-2,6-diyl)-1,2,4-triazine-5,5-diyl]dibenzenesulfonic acid DS-BTP 2

The starting material $\mathbf{1 3}(0.12 \mathrm{~g}, 0.308 \mathrm{mmol})$ was placed in a round bottomed flask and oleum (5 $\mathrm{mL}, 20 \% \mathrm{SO}_{3}$ in $\mathrm{H}_{2} \mathrm{SO}_{4}$) was added. The solution was stirred at $170{ }^{\circ} \mathrm{C}$ for 3 h . The solution was allowed to cool to room temperature and acetone $(100 \mathrm{~mL})$ was added. The precipitated solid was filtered, washed with acetone (100 mL) and was allowed to dry in air to afford the title compound DS-BTP 2 as a grey solid ($0.16 \mathrm{~g}, 94 \%$). Mp above $300^{\circ} \mathrm{C}$ (from acetone); Found: C, 49.96; H, 3.05; N, 17.68; S $11.81 \% ; \mathrm{C}_{23} \mathrm{H}_{15} \mathrm{~N}_{7} \mathrm{O}_{6} \mathrm{~S}_{2}$ requires C, $50.27 ; \mathrm{H}, 2.75$; N, 17.83; S 11.67%; IR $v_{\max }$ (N) $3076,1708,1609,1580,1536,1459,1420,1375,1351,1331,1221,1162\left(\mathrm{SO}_{2}\right), 1135\left(\mathrm{SO}_{2}\right)$, $1025\left(\mathrm{SO}_{2}\right), 989,890,864,835,810,772,711,684,656 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400.1 MHz, DMSO- d_{6}) $\delta:$ $7.69\left(\mathrm{t}, J=7.7,2 \mathrm{H}, 2 \times \mathrm{ArSO}_{3} \mathrm{H} 5-\mathrm{H}\right), 7.94\left(\operatorname{app~d}, J=7.9,2 \mathrm{H}, 2 \times \mathrm{ArSO}_{3} \mathrm{H} 4-\mathrm{H}\right), 8.43(\mathrm{t}, J=7.8$, $1 \mathrm{H}, 4-\mathrm{H}), 8.48\left(\operatorname{app~d}, J=7.8,2 \mathrm{H}, 2 \times \mathrm{ArSO}_{3} \mathrm{H} 6-\mathrm{H}\right), 8.69\left(\mathrm{t}, J=1.5,2 \mathrm{H}, 2 \times \mathrm{ArSO}_{3} \mathrm{H} 2-\mathrm{H}\right), 8.76(\mathrm{~d}$, $J=7.8,2 \mathrm{H}, 3-\mathrm{H}$ and $5-\mathrm{H}), 10.19(\mathrm{~s}, 2 \mathrm{H}, 2 \times H \mathrm{C}=\mathrm{N}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($\left.100.6 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta:$ $124.8\left(2 \times \mathrm{ArSO}_{3} \mathrm{H} \mathrm{C}-2\right), 125.8\left(\mathrm{C}-3\right.$ and C-5), $128.3\left(2 \times \mathrm{ArSO}_{3} \mathrm{H} \mathrm{C}-6\right), 129.1\left(2 \times \mathrm{ArSO}_{3} \mathrm{H} \mathrm{C}-5\right)$, $129.7\left(2 \times \mathrm{ArSO}_{3} \mathrm{HC}-4\right), 132.8\left(2 \times \mathrm{ArSO}_{3} \mathrm{HC}-3\right), 139.0(\mathrm{C}-4), 146.1(2 \times \mathrm{HC}=\mathrm{N}), 149.2(2 \times$ quat $)$, $153.4(2 \times$ quat $), 154.8\left(2 \times \mathrm{ArSO}_{3} \mathrm{HC} \mathrm{C}-1\right), 162.0(2 \times$ quat) ppm ; HRMS (CI) m / z 548.0430: calculated for $\left[\mathrm{C}_{23} \mathrm{H}_{14} \mathrm{~N}_{7} \mathrm{O}_{6} \mathrm{~S}_{2}\right]^{-} 548.0441$.

Disodium 3,3'-[3-(pyridine-2,6-diyl)-1,2,4-triazine-5,5-diyl]dibenzenesulfonate DS-BTP 1

The starting material $14(0.60 \mathrm{~g}, 1.023 \mathrm{mmol})$ was suspended in $\mathrm{MeOH}(50 \mathrm{~mL})$ and a solution of finely powdered $\mathrm{NaOH}(0.163 \mathrm{~g}, 4.095 \mathrm{mmol}, 4 \mathrm{eq})$ in $\mathrm{MeOH}(30 \mathrm{~mL})$ was added. The mixture was heated under reflux for 5 h . The solution was allowed to cool to room temperature and the excess NaOH was neutralized by the dropwise addition of $\mathrm{HCl}(\mathrm{ca} .1 \mathrm{~mL}, 2 \mathrm{M}$) until the pH was neutral. The insoluble solid was filtered and washed with $\mathrm{MeOH}(120 \mathrm{~mL})$ and allowed to dry in air to afford the title compound DS-BTP 1 as a light yellow solid ($0.39 \mathrm{~g}, 65 \%$). Mp above $300{ }^{\circ} \mathrm{C}$ (from $\mathrm{MeOH})$; Found: C, 46.48; H, 2.59; N, 16.85; S, 10.67 \%; $\mathrm{C}_{23} \mathrm{H}_{13} \mathrm{~N}_{7} \mathrm{O}_{6} \mathrm{~S}_{2} \mathrm{Na}_{2}$ requires C, 46.55; H, 2.21; N, 16.52; S, 10.80 \%; IR $v_{\max }(\mathrm{N}) 3071,1630,1599,1546,1508,1483,1412,1373,1355$, 1318, 1297, 1266, $1183\left(\mathrm{SO}_{2}\right), 1125\left(\mathrm{SO}_{2}\right), 1086,1054,1032\left(\mathrm{SO}_{2}\right), 1007,995,909,865,846,811$, 784, 750, 715, 689, 673, 662, 645, $607 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400.1 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta: 7.69(\mathrm{t}, J=7.7$, $\left.2 \mathrm{H}, 2 \times \mathrm{ArSO}_{3} \mathrm{Na} 5-\mathrm{H}\right), 7.94\left(\mathrm{dt}, J=7.9\right.$ and $\left.1.2,2 \mathrm{H}, 2 \times \mathrm{ArSO}_{3} \mathrm{Na} 4-\mathrm{H}\right), 8.45(\mathrm{t}, J=7.8,1 \mathrm{H}, 4-\mathrm{H})$, $8.48\left(\mathrm{dt}, J=7.8\right.$ and $\left.1.2,2 \mathrm{H}, 2 \times \mathrm{ArSO}_{3} \mathrm{Na} 6-\mathrm{H}\right), 8.69\left(\mathrm{t}, J=1.5,2 \mathrm{H}, 2 \times \mathrm{ArSO}_{3} \mathrm{Na} 2-\mathrm{H}\right), 8.78(\mathrm{~d}, J=$ 7.8, $2 \mathrm{H}, 3-\mathrm{H}$ and $5-\mathrm{H}$), $10.20(\mathrm{~s}, 2 \mathrm{H}, 2 \times \mathrm{HC}=\mathrm{N}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100.6 MHz, DMSO- d_{6}) $\delta: 124.8(2$ $\left.\times \mathrm{ArSO}_{3} \mathrm{Na} \mathrm{C-}-2\right), 125.8(\mathrm{C}-3$ and $\mathrm{C}-5), 128.2\left(2 \times \mathrm{ArSO}_{3} \mathrm{Na} \mathrm{C}-6\right), 129.0\left(2 \times \mathrm{ArSO}_{3} \mathrm{Na} \mathrm{C}-5\right), 129.8$ $\left(2 \times \mathrm{ArSO}_{3} \mathrm{Na} \mathrm{C}-4\right), 132.7\left(2 \times \mathrm{ArSO}_{3} \mathrm{Na} \mathrm{C}-3\right), 139.1(\mathrm{C}-4), 146.1(2 \times \mathrm{HC}=\mathrm{N}), 149.4(2 \times$ quat $)$, $153.4\left(2 \times\right.$ quat), $154.8\left(2 \times \mathrm{ArSO}_{3} \mathrm{Na} \mathrm{C}-1\right), 162.0(2 \times$ quat $) \mathrm{ppm}$; HRMS (CI) $m / z 548.0444$ (as disulfonic acid monoanion): calculated for $\left[\mathrm{C}_{23} \mathrm{H}_{13} \mathrm{~N}_{7} \mathrm{O}_{6} \mathrm{~S}_{2}+\mathrm{H}\right]^{-} 548.0441$.

2,6-Bis(6-phenyl-1,2,4-triazin-3-yl)pyridine $15{ }^{17}$

BTP 15 was synthesized from acetophenone as described previously in the literature ${ }^{17}$ and had: ${ }^{1} \mathrm{H}$ NMR (399.7 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}\right) \delta: 7.59-7.64(\mathrm{~m}, 6 \mathrm{H}, 4 \times m-\mathrm{ArH}$ and $2 \times p-\mathrm{Ar} H), 8.19-8.21(\mathrm{~m}$, $4 \mathrm{H}, 4 \times o-\mathrm{Ar} H), 8.22(\mathrm{t}, J=7.9,1 \mathrm{H}, 4-\mathrm{H}), 8.91(\mathrm{~d}, J=7.9,2 \mathrm{H}, 3-\mathrm{H}$ and $5-\mathrm{H}), 9.27(\mathrm{~s}, 2 \mathrm{H}, 2 \times$ $H C=\mathrm{N})$ ppm.

3,3'-[3-(Pyridine-2,6-diyl)-1,2,4-triazine-6,6-diyl]dibenzenesulfonyl chloride 16

The starting material $15(0.20 \mathrm{~g}, 0.514 \mathrm{mmol})$ was placed in a round bottomed flask and chlorosulfonic acid (8 mL) was added. The solution was stirred at $170{ }^{\circ} \mathrm{C}$ for 3 h . The solution was allowed to cool to room temperature and then carefully poured onto ice (ca. 100 mL). The precipitated solid was filtered and washed with water $(100 \mathrm{~mL})$ and allowed to dry in air to afford the title compound 16 as a light yellow solid ($0.25 \mathrm{~g}, 83 \%$). Mp above $300{ }^{\circ} \mathrm{C}$ (from $\mathrm{H}_{2} \mathrm{O}$); Found: C, 46.65; H, 2.63; N, 16.48 \%; $\mathrm{C}_{23} \mathrm{H}_{13} \mathrm{~N}_{7} \mathrm{O}_{4} \mathrm{~S}_{2} \mathrm{Cl}_{2}$ requires C, 47.11; H, 2.23; N, 16.72%; IR $v_{\max }(\mathrm{N})$ $3057,1620,1575,1446,1399,1330,1172,1144,1039,935,847,798,785,766,716,688 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (399.7 MHz, DMSO- d_{6}) $\delta: 7.59\left(\mathrm{t}, J=7.5,2 \mathrm{H}, 2 \times \mathrm{ArSO}_{2} \mathrm{Cl} 5-\mathrm{H}\right), 7.79-7.84(\mathrm{~m}, 2 \mathrm{H}, 2 \times$ $\left.\mathrm{ArSO}_{2} \mathrm{Cl} 4-\mathrm{H}\right), 8.22-8.27\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{ArSO}_{2} \mathrm{Cl} 6-\mathrm{H}\right), 8.32(\mathrm{t}, J=7.9,1 \mathrm{H}, 4-\mathrm{H}), 8.52(\mathrm{t}, J=1.5,2 \mathrm{H}$, $\left.2 \times \mathrm{ArSO}_{2} \mathrm{Cl} 2-\mathrm{H}\right), 8.71(\mathrm{~d}, J=7.9,2 \mathrm{H}, 3-\mathrm{H}$ and $5-\mathrm{H}), 9.59(\mathrm{~s}, 2 \mathrm{H}, 2 \times H \mathrm{C}=\mathrm{N}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR not visible; HRMS (CI) $m / z 550.0609$ (as disulfonic acid): calculated for $\left[\mathrm{C}_{23} \mathrm{H}_{15} \mathrm{~N}_{7} \mathrm{O}_{6} \mathrm{~S}_{2}+\mathrm{H}\right]^{+} 550.0603$.

3,3'-[3-(Pyridine-2,6-diyl)-1,2,4-triazine-6,6-diyl]dibenzenesulfonic acid DS-BTP 4

The starting material $15(0.18 \mathrm{~g}, 0.462 \mathrm{mmol})$ was placed in a round bottomed flask and oleum (8 $\mathrm{mL}, 20 \% \mathrm{SO}_{3}$ in $\mathrm{H}_{2} \mathrm{SO}_{4}$) was added. The solution was stirred at $170{ }^{\circ} \mathrm{C}$ for 3 h . The solution was allowed to cool to room temperature and acetone $(100 \mathrm{~mL})$ was added. The precipitated solid was filtered, washed with acetone (100 mL) and was allowed to dry in air to afford the title compound DS-BTP 4 as a grey solid ($0.14 \mathrm{~g}, 56 \%$). Mp above $300^{\circ} \mathrm{C}$ (from acetone); Found: C, 49.88; H, 3.02; $\mathrm{N}, 17.78$ \%; $\mathrm{C}_{23} \mathrm{H}_{15} \mathrm{~N}_{7} \mathrm{O}_{6} \mathrm{~S}_{2}$ requires C, 50.27; H, 2.75; N, 17.83 \%; IR $v_{\max }(\mathrm{N}) 3126,1715$, $1679,1630,1575,1557,1461,1445,1423,1358,1164,1122,1033,994,802,737,688,672 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (399.7 MHz, DMSO- d_{6}) $\delta: 7.51\left(\mathrm{t}, J=7.6,2 \mathrm{H}, 2 \times \mathrm{ArSO}_{3} \mathrm{H} 5-\mathrm{H}\right), 7.77-7.82(\mathrm{~m}, 2 \mathrm{H}, 2 \times$ $\left.\mathrm{ArSO}_{3} \mathrm{H} 4-\mathrm{H}\right), 8.21-8.25\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{ArSO}_{3} \mathrm{H} 6-\mathrm{H}\right), 8.32(\mathrm{t}, J=7.9,1 \mathrm{H}, 4-\mathrm{H}), 8.52(\mathrm{app} \mathrm{s}, 2 \mathrm{H}, 2 \times$ $\left.\mathrm{ArSO}_{3} \mathrm{H} 2-\mathrm{H}\right), 8.71(\mathrm{~d}, J=7.9,2 \mathrm{H}, 3-\mathrm{H}$ and $5-\mathrm{H}), 9.59(\mathrm{~s}, 2 \mathrm{H}, 2 \times H \mathrm{C}=\mathrm{N}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR not visible; HRMS (CI) m / z 548.0422: calculated for $\left[\mathrm{C}_{23} \mathrm{H}_{14} \mathrm{~N}_{7} \mathrm{O}_{6} \mathrm{~S}_{2}\right]^{-} 548.0441$.

Disodium 3,3'-[3-(pyridine-2,6-diyl)-1,2,4-triazine-6,6-diyl]dibenzenesulfonate DS-BTP 3

The starting material $16(0.50 \mathrm{~g}, 0.853 \mathrm{mmol})$ was suspended in $\mathrm{MeOH}(40 \mathrm{~mL})$ and a solution of finely powdered $\mathrm{NaOH}(0.136 \mathrm{~g}, 3.413 \mathrm{mmol}, 4 \mathrm{eq})$ in $\mathrm{MeOH}(20 \mathrm{~mL})$ was added. The mixture was heated under reflux for 6 h . The solution was allowed to cool to room temperature and stirring was
continued overnight. The excess NaOH was neutralized by the dropwise addition of HCl (ca .0 .8 mL , $2 \mathrm{M})$ until the pH was neutral. The insoluble solid was filtered and washed with $\mathrm{MeOH}(100 \mathrm{~mL})$ and allowed to dry in air to afford the title compound DS-BTP 3 as a light green solid $(0.24 \mathrm{~g}, 48 \%)$. Mp above $300{ }^{\circ} \mathrm{C}$ (from MeOH); Found: C, 46.47 ; $\mathrm{H}, 2.56$; N, $16.41 \% ; \mathrm{C}_{23} \mathrm{H}_{13} \mathrm{~N}_{7} \mathrm{O}_{6} \mathrm{~S}_{2} \mathrm{Na}_{2}$ requires C, 46.55; H, 2.21; N, 16.52 \%; IR $v_{\max }(\mathrm{N}) 3478,1660,1605,1556,1446,1389,1301,1279,1193$, $1125,1038,995,872,766,719,668 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($399.7 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta: 7.59(\mathrm{t}, J=7.6,2 \mathrm{H}$, $\left.2 \times \mathrm{ArSO}_{3} \mathrm{Na} 5-\mathrm{H}\right), 7.80-7.83\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{ArSO}_{3} \mathrm{H} 4-\mathrm{H}\right), 8.22-8.24\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{ArSO}_{3} \mathrm{H} 6-\mathrm{H}\right), 8.33$ $(\mathrm{t}, J=7.9,1 \mathrm{H}, 4-\mathrm{H}), 8.54\left(\mathrm{app} \mathrm{s}, 2 \mathrm{H}, 2 \times \mathrm{ArSO}_{3} \mathrm{H} 2-\mathrm{H}\right), 8.73(\mathrm{~d}, J=7.9,2 \mathrm{H}, 3-\mathrm{H}$ and $5-\mathrm{H}), 9.59(\mathrm{~s}$, $2 \mathrm{H}, 2 \times H \mathrm{C}=\mathrm{N}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100.5 MHz, DMSO- $\left.d_{6}\right) \delta: 124.5\left(2 \times \mathrm{ArSO}_{3} \mathrm{Na} \mathrm{C}-2\right), 126.0(\mathrm{C}-3$ and C-5), $127.7\left(2 \times \mathrm{ArSO}_{3} \mathrm{Na} \mathrm{C}-6\right), 128.8\left(2 \times \mathrm{ArSO}_{3} \mathrm{Na} \mathrm{C}-5\right), 129.4\left(2 \times \mathrm{ArSO}_{3} \mathrm{Na} \mathrm{C}-4\right), 132.9(2 \times$ quat), $139.6(\mathrm{C}-4), 148.6(2 \times \mathrm{HC}=\mathrm{N}), 150.0(2 \times$ quat $), 153.5(2 \times$ quat $), 155.9\left(2 \times \mathrm{ArSO}_{3} \mathrm{Na} \mathrm{C}-1\right)$, 161.7 ($2 \times$ quat) ppm; HRMS (CI) $\mathrm{m} / \mathrm{z} 548.0453$ (as disulfonic acid monoanion): calculated for $\left[\mathrm{C}_{23} \mathrm{H}_{13} \mathrm{~N}_{7} \mathrm{O}_{6} \mathrm{~S}_{2}+\mathrm{H}\right]^{-}$548.0441.

2,9-Bis(5,6-diphenyl-1,2,4-triazin-3-yl)-1,10-phenanthroline 18

The starting material $17(0.10 \mathrm{~g}, 0.340 \mathrm{mmol})$ was suspended in 1,4-dioxane (20 mL) and benzil $\mathbf{6}$ $(0.157 \mathrm{~g}, 0.748 \mathrm{mmol}, 2.2 \mathrm{eq})$ was added. Triethylamine (2 mL) was added and the mixture was heated under reflux for 4 days. The mixture was allowed to cool to room temperature and the
solvents were evaporated. The solid residue was triturated with $\mathrm{MeOH}(30 \mathrm{~mL})$ and the insoluble solid was filtered and washed with $\mathrm{MeOH}(50 \mathrm{~mL})$ and ether $(25 \mathrm{~mL})$. The solid was allowed to dry in air to afford the title compound $\mathbf{1 8}$ as a yellow solid ($0.10 \mathrm{~g}, 48 \%$). Mp 289-293 ${ }^{\circ} \mathrm{C}$ (from 1,4dioxane); Found: C, 78.34; H, 3.98; N, $17.81 \% ; \mathrm{C}_{42} \mathrm{H}_{26} \mathrm{~N}_{8}$ requires C, $78.49 ; \mathrm{H}, 4.08 ; \mathrm{N}, 17.43 \%$; IR $v_{\max }(\mathrm{N}) 3053,1619,1600,1583,1552,1489,1444,1377,1362,1308,1216,1198,1180,1147$, $1133,1102,1074,1049,1026,1008,919,872,842,768,751,726,697,690,637,594,564 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}$) $\delta: 7.35-7.49(\mathrm{~m}, 12 \mathrm{H}, 8 \times m-\mathrm{Ar} H$ and $4 \times p-\mathrm{Ar} H), 7.74(\operatorname{app} \mathrm{~d}, J$ $=6.8,4 \mathrm{H}, 4 \times o-\mathrm{Ar} H), 7.94(\operatorname{app~d}, J=6.8,4 \mathrm{H}, 4 \times o-\mathrm{Ar} H), 8.00(\mathrm{~s}, 2 \mathrm{H}, 5-\mathrm{H}$ and $6-\mathrm{H}), 8.53(\mathrm{~d}, J=$ $8.3,2 \mathrm{H}, 4-\mathrm{H}$ and $7-\mathrm{H}$), $9.03(\mathrm{~d}, J=8.3,2 \mathrm{H}, 3-\mathrm{H}$ and $8-\mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$, $\left.\mathrm{Me}_{4} \mathrm{Si}\right) \delta: 123.2(\mathrm{C}-3$ and $\mathrm{C}-8), 127.6(\mathrm{C}-5$ and C-6), $128.6(4 \times m-\mathrm{ArC}), 128.6(4 \times m-\mathrm{ArC}), 129.6$ $(4 \times o-\mathrm{ArC}), 129.7(2 \times p-\mathrm{ArC}), 130.4(4 \times o-\mathrm{Ar} C), 130.7(2 \times p-\mathrm{Ar} C), 135.5(2 \times$ quat $), 135.6(2 \times$ quat), $137.2(\mathrm{C}-4$ and C-7), $146.6(2 \times$ quat $), 153.1(2 \times$ quat $), 156.0(2 \times$ quat $), 156.3(2 \times$ quat $)$, $160.9\left(2 \times\right.$ quat), $165.2\left(2 \times\right.$ quat) ppm ; HRMS (CI) $m / z 643.2338$: calculated for $\left[\mathrm{C}_{42} \mathrm{H}_{26} \mathrm{~N}_{8}+\mathrm{H}\right]^{+}$ 643.2353.

3,3',3', $\mathbf{3}^{\prime \prime}{ }^{\prime}$-[3-(1,10-Phenanthroline-2,9-diyl)-1,2,4-triazine-5,5,6,6-tetrayl]tetrabenzenesulfonyl

 chloride 19

19

The starting material $18(0.51 \mathrm{~g}, 0.794 \mathrm{mmol})$ was placed in a round bottomed flask and chlorosulfonic acid (10 mL) was added. The solution was stirred at $170^{\circ} \mathrm{C}$ for 3 h . The solution was allowed to cool to room temperature and then carefully poured onto ice (ca. 100 mL). The precipitated solid was filtered and washed with water $(50 \mathrm{~mL})$ and allowed to dry in air to afford the title compound 19 as a yellow solid ($0.71 \mathrm{~g}, 86 \%$). Mp 286-290 ${ }^{\circ} \mathrm{C}$ (decomposed); Found: C, 48.32; $\mathrm{H}, 2.47 ; \mathrm{N}, 10.65 \% ; \mathrm{C}_{42} \mathrm{H}_{22} \mathrm{~N}_{8} \mathrm{O}_{8} \mathrm{~S}_{4} \mathrm{Cl}_{4}$ requires C, 48.66; H, 2.14; N, 10.81%; IR $v_{\max }(\mathrm{N}) 3092$, $1625,1593,1577,1541,1532,1474,1420,1307,1219\left(\mathrm{SO}_{2}\right), 1167\left(\mathrm{SO}_{2}\right), 1118\left(\mathrm{SO}_{2}\right), 1098,1024$ $\left(\mathrm{SO}_{2}\right), 992,851,803,791,745,677 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400.1 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta: 7.29-7.47(\mathrm{~m}, 6 \mathrm{H}, 6$ $\times \mathrm{ArH}), 7.64-7.77(\mathrm{~m}, 6 \mathrm{H}, 6 \times \mathrm{ArH}), 8.21-8.31\left(\mathrm{~m}, 4 \mathrm{H}, 4 \times \mathrm{ArSO}_{2} \mathrm{Cl} 2-\mathrm{H}\right), 8.35(\mathrm{~s}, 2 \mathrm{H}, 5-\mathrm{H}$ and $6-$ H), $8.92(\mathrm{~d}, J=8.4,2 \mathrm{H}, 4-\mathrm{H}$ and $7-\mathrm{H}), 9.02(\mathrm{~d}, J=8.4,2 \mathrm{H}, 3-\mathrm{H}$ and $8-\mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100.6 $\left.\mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta: 123.9(\mathrm{C}-4$ and $\mathrm{C}-7), 125.8(2 \times \mathrm{ArC}), 126.4(2 \times \mathrm{ArC}), 126.8(2 \times \mathrm{ArC}), 127.0$ $(2 \times \mathrm{ArC}), 127.8\left(2 \times \mathrm{ArSO}_{2} \mathrm{Cl} \mathrm{C}-2\right), 128.1(2 \times \mathrm{ArC}), 128.1(2 \times \mathrm{ArC}), 129.0(\mathrm{C}-5$ and C-6), 130.0 $(2 \times \mathrm{ArC}), 134.6\left(2 \times \mathrm{ArSO}_{2} \mathrm{Cl} \mathrm{C-} 3\right), 134.7\left(2 \times \mathrm{ArSO}_{2} \mathrm{Cl} \mathrm{C-} 3\right), 139.4(\mathrm{C}-3$ and $\mathrm{C}-8), 143.6(2 \times$ quat), $146.5(2 \times$ quat $), 148.7(2 \times$ quat $), 149.2(2 \times$ quat $), 151.9(2 \times$ quat $), 155.6(2 \times$ quat $), 159.6$ ($2 \times$ quat), 164.5 ($2 \times$ quat) ppm ; HRMS (CI) $\mathrm{m} / \mathrm{z} 963.0658$ (as tetrasulfonic acid): calculated for $\left[\mathrm{C}_{42} \mathrm{H}_{26} \mathrm{~N}_{8} \mathrm{O}_{12} \mathrm{~S}_{4}+\mathrm{H}\right]^{+} 963.0631$.

3,3',3', $3^{\prime \prime}{ }^{\prime}$-[3-(1,10-phenanthroline-2,9-diyl)-1,2,4-triazine-5,5,6,6-tetrayl]tetrabenzenesulfonic

 acid TS-BTPhen 2

TS-BTPhen 2

The starting material $\mathbf{1 8}(0.35 \mathrm{~g}, 0.545 \mathrm{mmol})$ was placed in a round bottomed flask and oleum (10 $\mathrm{mL}, 20 \% \mathrm{SO}_{3}$ in $\mathrm{H}_{2} \mathrm{SO}_{4}$) was added. The solution was stirred at $170{ }^{\circ} \mathrm{C}$ for 3 h . The solution was allowed to cool to room temperature and acetone $(500 \mathrm{~mL})$ was added. The precipitated solid was filtered, washed with acetone $(150 \mathrm{~mL})$ and was allowed to dry in air to afford a solid that was dried at $70{ }^{\circ} \mathrm{C}$ for 30 min to afford the title compound TS-BTPhen 2 as a brown solid $(0.50 \mathrm{~g}, 95 \%)$. Mp 230-235 ${ }^{\circ} \mathrm{C}$ (decomposed); Found: C, 51.96 ; H, 3.13; N, 11.72; S $13.68 \% ; \mathrm{C}_{42} \mathrm{H}_{26} \mathrm{~N}_{8} \mathrm{O}_{12} \mathrm{~S}_{4}$ requires C, 52.39 ; H, 2.72 ; N, 11.63; S 13.32 \%; IR $v_{\text {max }}(\mathrm{N}) 3069,1708,1640,1619,1595,1534,1498,1365$, 1328, $1138\left(\mathrm{SO}_{2}\right), 1116\left(\mathrm{SO}_{2}\right), 1023\left(\mathrm{SO}_{2}\right), 992,872,804,768,730,680,610 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400.1 $\left.\mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta: 6.28-7.10(\mathrm{~m}, 8 \mathrm{H}, 8 \times \mathrm{ArH}), 7.21-7.42(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{ArH}), 7.56-7.82(\mathrm{~m}, 4 \mathrm{H}, 4 \times$ $\mathrm{Ar} H), 7.87-8.03(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{ArH}), 8.17-8.27(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{ArH}), 8.65-9.02(\mathrm{~m}, 4 \mathrm{H}, 4 \times \mathrm{ArH}) \mathrm{ppm} ;$ ${ }^{1} \mathrm{H}$ NMR (400.1 MHz, DMSO- d_{6}) $\delta: 7.35-7.58(\mathrm{~m}, 6 \mathrm{H}, 6 \times \mathrm{Ar} H), 7.66-7.80(\mathrm{~m}, 6 \mathrm{H}, 6 \times \mathrm{Ar} H)$, $8.20-8.29\left(\mathrm{~m}, 4 \mathrm{H}, 4 \times \mathrm{ArSO}_{3} \mathrm{H} 2-\mathrm{H}\right), 8.36(\mathrm{~s}, 2 \mathrm{H}, 5-\mathrm{H}$ and $6-\mathrm{H}), 8.91-8.98(\mathrm{~m}, 2 \mathrm{H}, 4-\mathrm{H}$ and $7-\mathrm{H})$, 9.02-9.08 (m, 2H, 3-H and 8-H) ppm; ${ }^{13} \mathrm{C}$ NMR (100.6 MHz, DMSO- d_{6}) $\delta: 124.0$ (C-4 and C-7), $125.7(2 \times \mathrm{ArC}), 126.5(2 \times \mathrm{ArC}), 126.9(2 \times \mathrm{Ar} C), 127.1(2 \times \mathrm{ArC}), 128.0\left(2 \times \mathrm{ArSO}_{3} \mathrm{H} \mathrm{C}-2\right), 128.3$ $(2 \times \mathrm{ArC}), 129.2\left(\mathrm{C}-5\right.$ and C-6), $130.0(2 \times \mathrm{ArC}), 130.3(2 \times \mathrm{ArC}), 134.4\left(2 \times \mathrm{ArSO}_{3} \mathrm{H} \mathrm{C}-3\right), 134.5$ $\left(2 \times \mathrm{ArSO}_{3} \mathrm{H}\right.$ C-3), $140.3(\mathrm{C}-3$ and C-8), $142.4(2 \times$ quat $), 148.1(2 \times$ quat $), 148.1(2 \times$ quat $), 148.7$ $(2 \times$ quat $), 151.0(2 \times$ quat $), 156.1(2 \times$ quat $), 156.4(2 \times$ quat $), 158.8(2 \times$ quat $)$ ppm; HRMS (CI) $m / z 961.0479$ (as tetrasulfonic acid monoanion): calculated for $\left[\mathrm{C}_{42} \mathrm{H}_{25} \mathrm{~N}_{8} \mathrm{O}_{12} \mathrm{~S}_{4}\right]^{-}$961.0469.

Tetrasodium 3,3', $\mathbf{3}^{\prime}, \mathbf{3}^{\prime}{ }^{\prime}$ '-[3-(1,10-phenanthroline-2,9-diyl)-1,2,4-

19
TS-BTPhen 1
The starting material $19(0.55 \mathrm{~g}, 0.532 \mathrm{mmol})$ was suspended in $\mathrm{MeOH}(80 \mathrm{~mL})$ and a solution of finely powdered $\mathrm{NaOH}(0.127 \mathrm{~g}, 3.191 \mathrm{mmol}, 6 \mathrm{eq})$ in $\mathrm{MeOH}(30 \mathrm{~mL})$ was added. The mixture was heated under reflux for 3 h . The solution was allowed to cool to room temperature and was filtered. Excess NaOH in the filtrate was neutralized by the dropwise addition of $\mathrm{HCl}(\mathrm{ca} .1 .5 \mathrm{~mL}, 2 \mathrm{M})$ until the pH was neutral. The filtrate was then diluted with acetone $(1000 \mathrm{~mL})$ and the precipitated solid was filtered and washed with $\mathrm{MeOH}(10 \mathrm{~mL})$ and acetone $(200 \mathrm{~mL})$. The solid was allowed to dry in air and then dried at $70^{\circ} \mathrm{C}$ for 30 min to afford the title compound TS-BTPhen 1 as a green solid ($0.51 \mathrm{~g}, 91 \%$). Mp above $300^{\circ} \mathrm{C}$ (from MeOH); Found: C, 48.13; H, 2.31; N, 10.32; S, 11.87 \%; $\mathrm{C}_{42} \mathrm{H}_{22} \mathrm{~N}_{8} \mathrm{O}_{12} \mathrm{~S}_{4} \mathrm{Na}_{4}$ requires C, 48.00; H, 2.11; N, 10.66; S, 12.20%; IR $v_{\text {max }}(\mathrm{N}) 3431,1632,1498$, 1423, 1380, 1314, $1188\left(\mathrm{SO}_{2}\right), 1157,1123,1036\left(\mathrm{SO}_{2}\right), 996,871,802,732,687,617 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400.1 MHz, $\left.\mathrm{D}_{2} \mathrm{O}\right) \delta: 6.22-6.38(\mathrm{~m}, 4 \mathrm{H}, 4 \times \mathrm{Ar} H), 6.81-6.98(\mathrm{~m}, 4 \mathrm{H}, 4 \times \mathrm{ArH}), 7.15-7.23(\mathrm{~m}, 2 \mathrm{H}, 2$ $\times \mathrm{Ar} H), 7.34-7.40(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{Ar} H), 7.50-7.72(\mathrm{~m}, 4 \mathrm{H}, 4 \times \mathrm{Ar} H), 7.79-7.85(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{Ar} H)$, 8.36-8.53 (m, 4H, $4 \times \mathrm{ArH}) \mathrm{ppm} ;{ }^{1} \mathrm{H}$ NMR ($400.1 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta: 7.29-7.41(\mathrm{~m}, 6 \mathrm{H}, 6 \times \mathrm{ArH})$, 7.67-7.82 (m, 6H, $6 \times \mathrm{Ar} H), 8.35-8.48(\mathrm{~m}, 6 \mathrm{H}, 6 \times \mathrm{Ar} H), 9.00-9.08(\mathrm{~m}, 4 \mathrm{H}, 4 \times \mathrm{ArH}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100.6 MHz, DMSO- d_{6}) $\delta: 123.1(2 \times \mathrm{ArC}), 125.8(2 \times \mathrm{ArC}), 126.6(2 \times \mathrm{ArC}), 126.9(2 \times$ $\mathrm{ArC}), 127.1(2 \times \mathrm{ArC}), 127.6\left(2 \times \mathrm{ArSO}_{3} \mathrm{Na} \mathrm{C}-2\right), 128.1(2 \times \mathrm{ArC}), 129.0(2 \times \mathrm{ArC}), 129.5(2 \times$ $\mathrm{ArC}), 130.2(2 \times \mathrm{ArC}), 134.4\left(2 \times \mathrm{ArSO}_{3} \mathrm{Na} \mathrm{C}-3\right), 134.6\left(2 \times \mathrm{ArSO}_{3} \mathrm{Na} \mathrm{C}-3\right), 139.3(\mathrm{C}-3$ and C-8), $144.9(2 \times$ quat $), 145.4(2 \times$ quat $), 149.0(2 \times$ quat $), 149.2(2 \times$ quat $), 151.5(2 \times$ quat $), 155.8(2 \times$
quat), $156.6(2 \times$ quat), $159.0(2 \times$ quat $) \mathrm{ppm} ; \operatorname{HRMS}(\mathrm{CI}) \mathrm{m} / \mathrm{z}$ 1026.9911: calculated for $\left[\mathrm{C}_{42} \mathrm{H}_{22} \mathrm{~N}_{8} \mathrm{O}_{12} \mathrm{~S}_{4} \mathrm{Na}_{3}\right]^{-} 1026.9928$.

Tetrakis(tetraphenylphosphonium) $\mathbf{3 , 3}{ }^{\prime}, 3^{\prime}{ }^{\prime}, 3$,''-[3-(2,2'-bipyridine-6,6'-diyl)-1,2,4-

triazine-5,5,6,6-tetrayl]tetrabenzenesulfonate 20

The starting material TS-BTBP $1(0.21 \mathrm{~g}, 0.204 \mathrm{mmol})$ was dissolved in distilled water (10 mL) in a conical flask. In a separate flask, tetraphenylphosphonium chloride ($0.61 \mathrm{~g}, 1.637 \mathrm{mmol}, 8 \mathrm{eq}$) was dissolved in distilled water (15 mL). This solution was added to the solution of the starting material TS-BTBP 1, and the resulting cloudy suspension was extracted with DCM $(2 \times 50 \mathrm{~mL})$. The combined organic extracts were washed with distilled water $(2 \times 30 \mathrm{~mL})$, dried over sodium sulfate and evaporated to afford the title compound $\mathbf{2 0}$ as a light green solid ($0.34 \mathrm{~g}, 72 \%) . \mathrm{Mp} 219-224^{\circ} \mathrm{C}$ (from DCM); Found: C, $70.82 ; \mathrm{H}, 4.85 ; \mathrm{N}, 4.76 ; \mathrm{S}, 5.12 ; \mathrm{P}, 5.69 \% ; \mathrm{C}_{136} \mathrm{H}_{102} \mathrm{~N}_{8} \mathrm{O}_{12} \mathrm{~S}_{4} \mathrm{P}_{4}$ requires C, 71.25; H, 4.48; N, 4.89; S 5.59; P, 5.40 \%; IR $v_{\max }(\mathrm{N}) 3415,3063,1617,1585,1483,1436,1375$, 1318, $1203\left(\mathrm{SO}_{2}\right), 1105\left(\mathrm{SO}_{2}\right), 1032,995,802,760,719,687,614 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400.1 MHz, $\left.\mathrm{CD}_{3} \mathrm{CN}\right) \delta: 7.23\left(\mathrm{t}, J=7.7,2 \mathrm{H}, 2 \times \mathrm{ArSO}_{3}{ }^{-} 5-\mathrm{H}\right), 7.28\left(\mathrm{t}, J=7.7,2 \mathrm{H}, 2 \times \mathrm{ArSO}_{3}{ }^{-} 5-\mathrm{H}\right), 7.31-7.34$ $\left(\mathrm{m}, 4 \mathrm{H}, 4 \times \mathrm{ArSO}_{3}{ }^{-} 4-\mathrm{H}\right), 7.65-7.71\left(\mathrm{~m}, 32 \mathrm{H}, 32 \times \mathrm{Ph}_{4} \mathrm{P}^{+} m-\mathrm{Ar} H\right), 7.73-7.78\left(\mathrm{~m}, 32 \mathrm{H}, 32 \times \mathrm{Ph}_{4} \mathrm{P}^{+} o-\right.$ $\mathrm{Ar} H), 7.82-7.86\left(\mathrm{~m}, 4 \mathrm{H}, 4 \times \mathrm{ArSO}_{3}{ }^{-} 6-\mathrm{H}\right), 7.90-7.95\left(\mathrm{~m}, 16 \mathrm{H}, 16 \times \mathrm{Ph}_{4} \mathrm{P}^{+} p-\mathrm{ArH}\right), 8.08(\mathrm{t}, J=7.8$, $2 \mathrm{H}, 4-\mathrm{H}$ and $\left.4^{\prime}-\mathrm{H}\right), 8.25\left(\mathrm{t}, J=1.3,2 \mathrm{H}, 2 \times \mathrm{ArSO}_{3}{ }^{-} 2-\mathrm{H}\right), 8.43\left(\mathrm{t}, J=1.3,2 \mathrm{H}, 2 \times \mathrm{ArSO}_{3}{ }^{-} 2-\mathrm{H}\right), 8.55$
(dd, $J=7.8$ and $0.9,2 \mathrm{H}, 3-\mathrm{H}$ and $\left.3^{\prime}-\mathrm{H}\right), 8.77\left(\mathrm{dd}, J=7.8\right.$ and $0.9,2 \mathrm{H}, 5-\mathrm{H}$ and $\left.5^{\prime}-\mathrm{H}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\left.\mathrm{CD}_{3} \mathrm{CN}\right) \delta: 117.4\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{P}}=95.1,16 \times \mathrm{Ph}_{4} \mathrm{P}^{+}\right.$ipso-ArC), $122.3(\mathrm{C}-5$ and $\mathrm{C}-5$ ' $), 124.0$ (C-3 and C-3'), $126.4\left(2 \times \mathrm{ArSO}_{3}{ }^{-} \mathrm{C}-2\right), 126.6\left(2 \times \mathrm{ArSO}_{3}{ }^{-} \mathrm{C}-2\right), 127.0\left(2 \times \mathrm{ArSO}_{3}{ }^{-} \mathrm{C}-6\right), 127.3(2$ $\left.\times \mathrm{ArSO}_{3}{ }^{-} \mathrm{C}-6\right), 127.4\left(2 \times \mathrm{ArSO}_{3}{ }^{-} \mathrm{C}-5\right), 127.7\left(2 \times \mathrm{ArSO}_{3}{ }^{-} \mathrm{C}-5\right), 129.3\left(2 \times \mathrm{ArSO}_{3}{ }^{-} \mathrm{C}-4\right), 129.4(2$ $\left.\times \mathrm{ArSO}_{3}{ }^{-} \mathrm{C}-4\right), 130.0\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{P}}=12.7,32 \times \mathrm{Ph}_{4} \mathrm{P}^{+} o-\mathrm{ArC}\right), 134.3\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{P}}=10.5,32 \times \mathrm{Ph}_{4} \mathrm{P}^{+} m-\mathrm{ArC}\right)$, $134.8(2 \times$ quat $), 135.0\left(\mathrm{~d},{ }^{4} J_{\mathrm{C}-\mathrm{P}}=3.0,16 \times \mathrm{Ph}_{4} \mathrm{P}^{+} p-\mathrm{Ar} C\right), 135.2(2 \times$ quat $), 138.1(\mathrm{C}-4$ and $\mathrm{C}-4$) $)$, $149.0(2 \times$ quat $), 149.2(2 \times$ quat $), 152.3(2 \times$ quat $), 155.4(2 \times$ quat $), 155.6(2 \times$ quat $), 156.2(2 \times$ quat), $160.3(2 \times$ quat $) ~ p p m ; ~{ }^{31} \mathrm{P}$ NMR ($161.8 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta: 22.9\left(\mathrm{~s}, 4 \times \mathrm{Ph}_{4} P^{+}\right) \mathrm{ppm} ; \mathrm{HRMS}(\mathrm{CI})$ $m / z 937.0436$ (as triprotonated tetraanion): calculated for $\left[\mathrm{C}_{40} \mathrm{H}_{25} \mathrm{~N}_{8} \mathrm{O}_{12} \mathrm{~S}_{4}\right]^{-} 937.0474$.

Bis(tetraphenylphosphonium) 3,3'-[3-(pyridine-2,6-diyl)-1,2,4-triazine-

5,5-diyl]dibenzenesulfonate 21

DS-BTP 1

The starting material DS-BTP $\mathbf{1}(0.12 \mathrm{~g}, 0.202 \mathrm{mmol})$ was dissolved in distilled water $(10 \mathrm{~mL})$ in a conical flask. In a separate flask, tetraphenylphosphonium chloride ($0.30 \mathrm{~g}, 0.809 \mathrm{mmol}, 4 \mathrm{eq}$) was dissolved in distilled water $(10 \mathrm{~mL})$. This solution was added to the solution of the starting material DS-BTP 1, and the resulting cloudy suspension was extracted with DCM $(2 \times 50 \mathrm{~mL})$. The combined organic extracts were washed with distilled water $(2 \times 30 \mathrm{~mL})$, dried over sodium sulfate and evaporated to afford the title compound 21 as a light yellow solid ($0.23 \mathrm{~g}, 93 \%$). Mp 168-172 ${ }^{\circ} \mathrm{C}$ (from DCM); Found: C, 69.02; H, 4.61; N, 7.74; S, 4.87; P, $5.16 \% ; \mathrm{C}_{71} \mathrm{H}_{55} \mathrm{~N}_{7} \mathrm{O}_{6} \mathrm{~S}_{2} \mathrm{P}_{2}$ requires C, 69.43; H, 4.51; N, 7.98; S 5.22; P, 5.04 \%; IR $v_{\max }(\mathrm{N}) 3434,3058,1585,1540,1502,1483,1436$,

1316, $1207\left(\mathrm{SO}_{2}\right), 1106\left(\mathrm{SO}_{2}\right), 1031,994,839,790,757,720,688,666,642,612 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400.1 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta: 7.49\left(\mathrm{t}, J=7.7,2 \mathrm{H}, 2 \times \mathrm{ArSO}_{3}{ }^{-} 5-\mathrm{H}\right), 7.56-7.62\left(\mathrm{~m}, 16 \mathrm{H}, 16 \times \mathrm{Ph}_{4} \mathrm{P}^{+} m-\right.$ $\mathrm{Ar} H), 7.74-7.79\left(\mathrm{~m}, 16 \mathrm{H}, 16 \times \mathrm{Ph}_{4} \mathrm{P}^{+} o-\mathrm{Ar} H\right), 7.86-7.91\left(\mathrm{~m}, 8 \mathrm{H}, 8 \times \mathrm{Ph}_{4} \mathrm{P}^{+} p-\mathrm{Ar} H\right), 8.17(\mathrm{t}, J=7.8$, $1 \mathrm{H}, 4-\mathrm{H}), 8.21\left(\mathrm{dt}, J=7.7\right.$ and $\left.1.4,2 \mathrm{H}, 2 \times \mathrm{ArSO}_{3}^{-} 4-\mathrm{H}\right), 8.48\left(\mathrm{dt}, J=7.7\right.$ and $1.4,2 \mathrm{H}, 2 \times \mathrm{ArSO}_{3}{ }^{-} 6-$ $\mathrm{H}), 8.77\left(\mathrm{t}, J=1.5,2 \mathrm{H}, 2 \times \mathrm{ArSO}_{3}{ }^{-} 2-\mathrm{H}\right), 8.82(\mathrm{~d}, J=7.8,2 \mathrm{H}, 3-\mathrm{H}$ and $5-\mathrm{H}), 9.68(\mathrm{~s}, 2 \mathrm{H}, 2 \times H \mathrm{C}=\mathrm{N})$ ppm; ${ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 117.4\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{P}}=89.4,8 \times \mathrm{Ph}_{4} \mathrm{P}^{+}\right.$ipso-ArC), $125.6(2 \times$ $\left.\mathrm{ArSO}_{3}{ }^{-} \mathrm{C}-2\right), 125.9\left(\mathrm{C}-3\right.$ and C-5), $128.5\left(2 \times \mathrm{ArSO}_{3}{ }^{-} \mathrm{C}-6\right), 129.0\left(2 \times \mathrm{ArSO}_{3}{ }^{-} \mathrm{C}-5\right), 130.8\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{P}}\right.$ $\left.=12.8,16 \times \mathrm{Ph}_{4} \mathrm{P}^{+} o-\mathrm{ArC}\right), 131.0\left(2 \times \mathrm{ArSO}_{3}{ }^{-} \mathrm{C}-4\right), 132.4(2 \times$ quat $), 134.4\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{P}}=10.3,16 \times\right.$ $\left.\mathrm{Ph}_{4} \mathrm{P}^{+} m-\mathrm{Ar} C\right), 135.8\left(\mathrm{~d},{ }^{4} J_{\mathrm{C}-\mathrm{P}}=2.9,8 \times \mathrm{Ph}_{4} \mathrm{P}^{+} p-\mathrm{Ar} C\right), 138.4(\mathrm{C}-4), 145.3(2 \times \mathrm{HC}=\mathrm{N}), 148.8(2 \times$ quat), $153.8(2 \times$ quat $), 155.6\left(2 \times \mathrm{ArSO}_{3}{ }^{-} \mathrm{C}-1\right), 162.5(2 \times$ quat $) \mathrm{ppm} ;{ }^{31} \mathrm{P}$ NMR (161.8 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta: 23.0\left(\mathrm{~s}, 2 \times \mathrm{Ph}_{4} P^{+}\right) \mathrm{ppm} ; H R M S(\mathrm{CI}) \mathrm{m} / \mathrm{z} 548.0437$ (as monoprotonated dianion): calculated for $\left[\mathrm{C}_{23} \mathrm{H}_{14} \mathrm{~N}_{7} \mathrm{O}_{6} \mathrm{~S}_{2}\right]^{-} 548.0441$.

2: Solvent Extraction Studies

General procedures

The approximate solubilities of the tested ligands in $0.5 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{HNO}_{3}$ were determined, and are shown in Table 1. The solubilities of the ligands were determined by stepwise dissolution of a known mass of the ligand. The diluent was then added incrementally in $100 \mu \mathrm{~L}$ aliquots followed by shaking after each addition until a clear aqueous solution was obtained.

For the measurements of distribution ratios, the aqueous solutions were prepared by spiking 1.18 mL of nitric acid solutions $\left(0.25-1 \mathrm{~mol} \mathrm{~L}^{-1}\right)$ containing $10 \mathrm{mmol}^{-1}$ of the tested ligand with $10 \mu \mathrm{~L}$ of working solutions of ${ }^{241} \mathrm{Am}$ and with $10 \mu \mathrm{~L}$ of working solutions of ${ }^{152} \mathrm{Eu}$ tracers. The organic phase solutions consisted of $0.2 \mathrm{~mol} \mathrm{~L}^{-1}$ TODGA dissolved in 5% vol. 1-octanol in kerosene. In each case before contacting with the organic phase, an aliquot of $200 \mu \mathrm{~L}$ was taken from the labeled aqueous phases to measure activity of americium and europium to allow for activity balance calculations. Each organic phase (1 mL) was shaken with each of the aqueous phases $(1 \mathrm{~mL})$ for 6 hours at a termostatted temperature of $22^{\circ} \mathrm{C}$, using a horizontal GFL 3005 Orbital Shaker ($250 \mathrm{~min}^{-1}$).

After phase separation by centrifugation (1 minute, $6000 \mathrm{rot} / \mathrm{min}$), two parallel $200 \mu \mathrm{~L}$ aliquots of each phase were withdrawn into glass ampules for the analysis. The walls of the glass ampules were washed with 1 mL of distilled water or 5% vol. 1-octanol in kerosene and ampoules were covered with a piece of parafilm. Activity measurements of ${ }^{241} \mathrm{Am}$ and ${ }^{152} \mathrm{Eu}$ were performed with a γ-ray spectrometer EG\&G Ortec with a PGT HPGe detector. The γ-lines at 59.5 keV , and 121.8 keV were examined for ${ }^{241} \mathrm{Am}$ and ${ }^{152} \mathrm{Eu}$, respectively. The errors given in the figures, throughout the text and in the supporting information are 1σ and are based on the counting statistics.

Table 1. Solubilities of disulfonated and tetrasulfonated ligands in $0.5 \mathrm{M} \mathrm{HNO}_{3}$.

Ligand	Solubility (mol/L)
TS-BTBP 1	>0.11
TS-BTBP 2	>0.11
TS-BTPhen 1	>0.11
TS-BTPhen 2	>0.11
DS-BTBP 1	<0.01
DS-BTBP 2	<0.01
DS-BTP 1	>0.11
DS-BTP 2	>0.11
DS-BTP 3	<0.005
DS-BTP 4	≥ 0.005

2.1 Extraction of $\mathrm{Am}(\mathrm{III})$ and $\mathrm{Eu}($ III $)$ by TODGA in the absence and presence of sulfonated

ligands

Table 2. Extraction of $\mathrm{Am}(\mathrm{III})$ and $\mathrm{Eu}(\mathrm{III})$ from 0.28 M nitric acid by TODGA (0.2 M dissolved in 5 vol. \% octanol in kerosene) in the absence and presence of sulfonated ligands
in the aqueous phase.

Ligand (0.01 M)	$\left[\mathrm{HNO}_{3}\right]$	D_{Am}	D_{Eu}	$\mathrm{SF}_{\mathrm{Eu} / \mathrm{Am}}$
None	0.28 M	9.4 ± 0.4	58 ± 7	6.2 ± 0.8
TS-BTBP 1	0.28 M	0.003 ± 0.001	2.1 ± 0.1	707 ± 312
TS-BTBP 2	0.28 M	$-^{a}$	$-^{a}$	$-^{a}$
TS-BTPhen 1	0.28 M	0.012 ± 0.003	5.8 ± 0.2	482 ± 110
TS-BTPhen 2	0.28 M	0.007 ± 0.002	6.5 ± 0.3	934 ± 233
DS-BTBP 1	0.28 M	$-^{a}$	$-^{a}$	$-^{a}$
DS-BTBP 2	0.28 M	$-^{a}$	$-^{a}$	$-^{a}$
DS-BTP 1	0.28 M	$-^{a}$	$-^{a}$	$-^{a}$
DS-BTP 2	0.28 M	$-^{a}$	$-^{a}$	$-^{a}$
DS-BTP 3	0.28 M	$-^{a}$	$-^{a}$	$-^{a}$
DS-BTP 4 ${ }^{b}$	0.28 M	4.2 ± 0.1	29.8 ± 1.9	7.1 ± 0.5

${ }^{a}$ Not measured. ${ }^{b}$ Ligand concentration was 0.005 M .

Table 3. Extraction of $\mathrm{Am}(\mathrm{III})$ and $\mathrm{Eu}(\mathrm{III})$ from 0.5 M nitric acid by TODGA (0.2 M dissolved in 5 vol. \% octanol in kerosene) in the absence and presence of sulfonated ligands
in the aqueous phase.

Ligand (0.01 M)	$\left[\mathrm{HNO}_{3}\right]$	D_{Am}	D_{Eu}	$\mathrm{SF}_{\mathrm{Eu} / \mathrm{Am}}$
None	0.5 M	46 ± 4	162 ± 37	3.5 ± 0.9
TS-BTBP 1	0.5 M	0.121 ± 0.009	74 ± 21	616 ± 178
TS-BTBP 2	0.5 M	0.18 ± 0.01	83 ± 24	458 ± 132
TS-BTPhen 1	0.5 M	0.25 ± 0.001	79 ± 19	321 ± 79
TS-BTPhen 2	0.5 M	0.30 ± 0.01	76 ± 22	256 ± 77
DS-BTBP 1	0.5 M	38 ± 3	150 ± 30	7.75 ± 1.1
DS-BTBP 2	0.5 M	32 ± 3	144 ± 32	5 ± 1
DS-BTP 1	0.5 M	24.3 ± 1.4	139 ± 18	5.7 ± 0.8
DS-BTP 2	0.5 M	27 ± 3	98 ± 27	4 ± 1
DS-BTP 3	0.5 M	$-^{a}$	$-^{a}$	$-a$
DS-BTP 4 ${ }^{b}$	0.5 M	24.1 ± 4.9	111 ± 33	4.6 ± 1.6

${ }^{a}$ Not measured. ${ }^{b}$ Ligand concentration was 0.005 M .

Table 4. Extraction of Am(III) and Eu(III) from 0.77 M nitric acid by TODGA (0.2 M dissolved in 5 vol. \% octanol in kerosene) in the absence and presence of sulfonated ligands
in the aqueous phase.

Ligand (0.01 M)	$\left[\mathrm{HNO}_{3}\right]$	D_{Am}	D_{Eu}	$\mathrm{SF}_{\mathrm{Eu} / \mathrm{Am}}$
None	0.77 M	103 ± 14	543 ± 302	5.3 ± 3.0
TS-BTBP 1	0.77 M	0.71 ± 0.03	184 ± 70	260 ± 99
TS-BTBP 2	0.77 M	0.63 ± 0.02	172 ± 86	271 ± 136
TS-BTPhen 1	0.77 M	1.22 ± 0.03	169 ± 65	138 ± 54
TS-BTPhen 2	0.77 M	1.46 ± 0.04	207 ± 96	142 ± 66
DS-BTBP 1	0.77 M	$-^{a}$	$-^{a}$	$-^{a}$
DS-BTBP 2	0.77 M	47 ± 5	192 ± 119	4 ± 3
DS-BTP 1	0.77 M	$-^{a}$	$-^{a}$	$-^{a}$
DS-BTP 2	0.77 M	74 ± 8	487 ± 292	7 ± 4
DS-BTP 3	0.77 M	$-^{a}$	$-^{a}$	$-^{a}$
DS-BTP 4 ${ }^{b}$	0.77 M	54.5 ± 4.7	178 ± 32	3.3 ± 0.7

${ }^{a}$ Not measured. ${ }^{b}$ Ligand concentration was 0.005 M .

Table 5. Extraction of Am(III) and Eu(III) from 1.04 M nitric acid by TODGA (0.2 M dissolved in 5 vol. \% octanol in kerosene) in the absence and presence of sulfonated ligands
in the aqueous phase.

Ligand (0.01 M)	$\left[\mathrm{HNO}_{3}\right]$	D_{Am}	D_{Eu}	$\mathrm{SF}_{\mathrm{Eu} / \mathrm{Am}}$
None	1.04 M	175 ± 31	385 ± 243	2.2 ± 1.4
TS-BTBP 1	1.04 M	2.23 ± 0.06	282 ± 164	127 ± 73
TS-BTBP 2	1.04 M	$-^{a}$	$-^{a}$	$-^{a}$
TS-BTPhen 1	1.04 M	4.7 ± 0.2	144 ± 60	31 ± 13
TS-BTPhen 2	1.04 M	4.2 ± 0.1	274 ± 94	65 ± 22
DS-BTBP 1	1.04 M	$-^{a}$	$-^{a}$	$-^{a}$
DS-BTBP 2	1.04 M	$-^{a}$	$-^{a}$	$-^{a}$
DS-BTP 1	1.04 M	$-^{a}$	$-^{a}$	$-^{a}$
DS-BTP 2	1.04 M	$-^{a}$	$-^{a}$	$-^{a}$
DS-BTP 3	1.04 M	$-^{a}$	$-^{a}$	$-^{a}$
DS-BTP 4 ${ }^{b}$	1.04 M	88.2 ± 9.6	207 ± 56	2.4 ± 0.7

${ }^{a}$ Not measured. ${ }^{b}$ Ligand concentration was 0.005 M .

Figure 1. Extraction of $\mathrm{Am}(\mathrm{III})$ and $\mathrm{Eu}(\mathrm{III})$ from nitric acid by TODGA (0.2 M dissolved in 5 vol. $\%$ octanol in kerosene) in the absence of tetrasulfonated BTBP and BTPhen ligands $(0.01 \mathrm{M})$ in the aqueous phase as a function of initial nitric acid concentration $(D=$ distribution ratio, $\mathrm{SF}=$ separation factor, dashed bars $=D_{\mathrm{Am}}$, clear bars $=D_{\mathrm{Eu}} \bullet \bullet=\mathrm{SF}_{\mathrm{Eu} / \mathrm{Am}}$, mixing time: 360 min , temperature: $22^{\circ} \mathrm{C} \pm 1{ }^{\circ} \mathrm{C}$).

Figure 2. Extraction of $\mathrm{Am}(\mathrm{III})$ and $\mathrm{Eu}(\mathrm{III})$ from nitric acid by TODGA (0.2 M dissolved in 5 vol. $\%$ octanol in kerosene) in the presence of tetrasulfonated BTPhen ligand TS-BTPhen $1(0.01 \mathrm{M})$ in the aqueous phase as a function of initial nitric acid concentration $(D=$ distribution ratio, $\mathrm{SF}=$ separation factor, dashed bars $=D_{\mathrm{Am}}$, clear bars $=D_{\mathrm{Eu}}, \bullet=\mathrm{SF}_{\mathrm{Eu} / \mathrm{Am}}$, mixing time: 360 min ., temperature: $22^{\circ} \mathrm{C} \pm 1^{\circ} \mathrm{C}$).

Figure 3. Extraction of $\mathrm{Am}(\mathrm{III})$ and $\mathrm{Eu}(\mathrm{III})$ from nitric acid by TODGA (0.2 M dissolved in 5 vol. $\%$ octanol in kerosene) in the presence of tetrasulfonated BTBP ligand TS-BTBP $2(0.01 \mathrm{M})$ in the aqueous phase as a function of initial nitric acid concentration $(D=$ distribution ratio, $\mathrm{SF}=$ separation factor, dashed bars $=D_{\mathrm{Am}}$, clear bars $=D_{\mathrm{Eu}}, \bullet=\mathrm{SF}_{\mathrm{Eu} / \mathrm{Am}}$, mixing time: 360 min ., temperature: $22^{\circ} \mathrm{C} \pm 1^{\circ} \mathrm{C}$).

Figure 4. Extraction of $\mathrm{Am}(\mathrm{III})$ and $\mathrm{Eu}(\mathrm{III})$ from nitric acid by TODGA (0.2 M dissolved in 5 vol. $\%$ octanol in kerosene) in the presence of disulfonated BTBP ligand DS-BTBP $2(0.01 \mathrm{M})$ in the aqueous phase as a function of initial nitric acid concentration $(D=$ distribution ratio, $\mathrm{SF}=$ separation factor, dashed bars $=D_{\mathrm{Am}}$, clear bars $=D_{\mathrm{Eu}} \bullet \bullet=\mathrm{SF}_{\mathrm{Eu} / \mathrm{Am}}$, mixing time: 360 min ., temperature: $22^{\circ} \mathrm{C} \pm 1^{\circ} \mathrm{C}$).

Figure 5. Extraction of $\mathrm{Am}(\mathrm{III})$ and $\mathrm{Eu}(\mathrm{III})$ from nitric acid by TODGA (0.2 M dissolved in 5 vol. $\%$ octanol in kerosene) in the presence of disulfonated BTP ligand DS-BTP $2(0.01 \mathrm{M})$ in the aqueous phase as a function of initial nitric acid concentration $(D=$ distribution ratio, $\mathrm{SF}=$ separation factor, dashed bars $=D_{\mathrm{Am}}$, clear bars $=D_{\mathrm{Eu}}, \bullet=\mathrm{SF}_{\mathrm{Eu} / \mathrm{Am}}$, mixing time: 360 min ., temperature: $\left.22^{\circ} \mathrm{C} \pm 1^{\circ} \mathrm{C}\right)$.

Figure 6. Extraction of $\mathrm{Am}(\mathrm{III})$ and $\mathrm{Eu}(\mathrm{III})$ from nitric acid by TODGA (0.2 M dissolved in 5 vol. $\%$ octanol in kerosene) in the presence of disulfonated BTP ligand DS-BTP $4(0.005 \mathrm{M})$ in the aqueous phase as a function of initial nitric acid concentration $(D=$ distribution ratio, $\mathrm{SF}=$ separation factor, dashed bars $=D_{\mathrm{Am}}$, clear bars $=D_{\mathrm{Eu}} \bullet \bullet=\mathrm{SF}_{\mathrm{Eu} / \mathrm{Am}}$, mixing time: 360 min., temperature: $\left.22^{\circ} \mathrm{C} \pm 1^{\circ} \mathrm{C}\right)$.

3. References

1. S. Anderson, E. C. Constable, K. R. Seddon, J. E. Turp, J. E. Baggott, M. J. Pilling, J. Chem. Soc. Dalton Trans. 1985, 2247.
2. P. Baran, M. Koman, D. Valigura, J. Mrozinski, J. Chem. Soc. Dalton Trans. 1991, 1385.
3. H.-C. Tung, C. Kang, D. T. Sawyer, J. Am. Chem. Soc. 1992, 114, 3445.
4. G.-J. Ten Brink, I. W. C. E. Arends, M. Hoogenraad, G. Verspui, R. A. Sheldon, Adv. Synth. Catal. 2003, 345, 497.
5. D. Zhang, E. J. Dufek, E. L. Clennan, J. Org. Chem. 2006, 71, 315.
6. H. Staats, F. Eggers, O. Hans, F. Fahrenkrug, J. Matthey, U. Luening, A. Luetzen, Eur. J. Org. Chem. 2009, 4777.
7. E. S. Andreiadis, R. Demadrille, D. Imbert, J. Pecaut, M. Mazzanti, Chem. Eur. J. 2009, 15, 9458.
8. P. Fabbrizzi, B. Cecconi, S. Cicchi, Synlett 2011, 223.
9. W.-S. Han, J.-K. Han, H.-Y. Kim, M. J. Choi, Y.-S. Kang, C. Pac, S. O. Kang, Inorg. Chem. 2011, 50, 3271.
10. S. Ladouceur, K. N. Swanick, S. Gallagher-Duval, Z. Ding, E. Zysman-Colman, Eur. J. Inorg. Chem. 2013, 5329.
11. B. Oelkers, Eur. J. Inorg. Chem. 2014, 5838.
12. P. N. W. Baxter, J. A. Connor, W. B. Schweizer, J. D. Wallis, J. Chem. Soc. Dalton Trans. 1992, 3015.
13. V.-M. Mukkala, M. Kwiatkowski, J. Kankare, H. Takalo, Helv. Chim. Acta 1993, 76, 893.
14. G. R. Pabst, O. C. Pfüller, J. Sauer, Tetrahedron 1999, 55, 5047.
15. M. R. S. Foreman, M. J. Hudson, M. G. B. Drew, C. Hill, C. Madic, Dalton Trans. 2006, 1645.
16. T. Ishizuka, L. E. Sinks, K. Song, N. Sheng-Ting, A. Nayak, K. Clays, M. J. Therien, J. Am. Chem. Soc. 2011, 133, 2884.
17. V. N. Kozhevnikov, D. N. Kozhevnikov, O. V. Shabunina, V. L. Rusinov, O. N. Chupakhin, Tetrahedron Lett. 2005, 46, 1521.
