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S1: CB6 MODELING

a) b)

d) e)

oxygennitrogencarbonhydrogen xenon

f)

c)

FIG. S1. Cucurbit[6]uril (CB6) (C36H36N24O12) and xenon (Xe) modeling using the open-

source molecular builder and visualization tool, Avogadro – Version 1.1.1[1] (http://avogadro.

openmolecules.net). a) Xe encapsulation by CB6 in the van der Waals radius representation from

the top view of the molecule. b) transparent overlay of the van der Waals radius representation

shown in a) with the ball-and-stick model that is solely shown in c). d-f) displays the side view

representation of a-c), respectively.
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S2: XE-CRA EXCHANGE KINETICS IN WATER
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FIG. S2. Direct and indirect Hyper-CEST 129Xe NMR measurements for [CrA] = 11 µM dissolved

in pure water at room temperature, T = 295 K. a) 129Xe NMR spectrum with 64 averages. The

Xe-CrA resonance appears at δB = -132 ppm. b) Hyper-CEST z-spectra (dots) for continuous-wave

(cw) saturation of B1/tsat = {4.4/5 (green), 1.1/10 (orange), 0.6/15 (blue)} µT/s including global

fitting curves of the full Hyper-CEST (FHC) solution (solid lines). The fitting results are listed in

Table 1 in the main manuscript.
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S3: CB6-LINE BROADENING

In chemical equilibrium the following equation holds

[Xe] [CB6] kAB︸ ︷︷ ︸
k′

= [Xe@CB6] kBA .

We therefore have

k′ =
[Xe@CB6]

[Xe]
kBA = fB kBA .

The linewidth (full width at half maximum, FWHM) for each spin pool is influenced by the

transverse relaxation and the exchange rate out of the particular spin pool according to the

following equation (M.T. McMahon et al.[2] and citations therein),

FWHM = (k +R2)/π.

The FWHM of the solution pool yields

FWHMsol = (k′ +R2,sol)/π

= (fB · kBA +R2,sol)/π

Thus, the exchange broadening contribution is

∆νsol,ex = (0.0043 · 2, 100 s−1)/π

∼ 3 Hz ,

using the numbers listed in Table 1 in the main manuscript. We measured the FWHMsol (of

Figure 2a in the main manuscript) to be 22 Hz (at 9.4 T) for a 10 mm NMR tube; ca. 1.5

mL solution. Thus, we can see that the contribution of exchange broadening to the solution

pool linewidth is not significant.

In contrast, the line broadening of the CB6-bound Xe resonance is significant:

FWHMCB6 = (kBA +R2,CB6)/π

⇒ ∆νCB6,ex = (2, 100 s−1)/π

∼ 670 Hz .

Intuitively, the majority of the pool of Xe@CB6 is participating in exchange at any time,

leading to a large linewidth, but the residence time in the much larger solution pool is

significantly longer, thus leading to a narrow resonance.
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S4: XE-CRA EXCHANGE KINETICS IN DMSO
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FIG. S4. Direct 129Xe NMR spectrum with 100-fold zoom as average of 16 scans of 50 µM of CrA

in dimethyl sulfoxide (DMSO) at T = 295 K. The red dashed line indicates the chemical shift of

the Xe-CrA in DMSO resonance. The results of a qHyper-CEST analysis of this sample are listed

in Table I which agree well with previously reported results[3].

TABLE I. qHyper-CEST results for CrA in DMSO (at T = 295 K). The listed parameters are

identical with those of Table 1 in the main manuscript.

solvent [Xe]a host [hosttot] ∆δ (ppm) fB (10-4) kBA (s-1) β (%)b KA (M-1)c [hostocc] β · kBA

(µM) (µM) (µM) (% s-1)

DMSO 2,340 CrA 50 -166.37 ± 0.04 18 ± 1 250 ± 130 9 38 ± 4 4.5 23
a Calculation given in the Experimental Section. b As given by Eq. 3 in Ref. 3. c As given by Eq.

4 in Ref. 3.
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S5: XE-HOST PROPERTIES FOR EFFICIENT HYPER-CEST DETECTION

We derive the depolarization rate per host molecule from the 129Xe depolarization rate,

λdepol, for on-resonant saturation (in the limit of kBA � RB
2 ), as reported in Ref.[3], divided

by total host concentration, [host], and multiplied by Xe concentration free in solution, [Xe],

to

λdepol(B1, kBA) = fB kBA
(γ B1)

2

(γ B1)2 + k2BA

(1)

⇔ λdepol(B1, kBA) · [Xe]

[host]
= β · kBA

(γ B1)
2

(γ B1)2 + k2BA︸ ︷︷ ︸
= α

, (2)

with saturation pulse strength, B1, the exchange rate, kBA, the ratio of bound and free Xe,

fB, the gyromagnetic ratio, γ, and the host occupancy, β. We used the identity fB = β · [host]
[Xe]

for rewriting Eq.(1) to obtain the gas turnover rate, β·kBA . Figure S5a shows the dependence

of Eq.(2) with respect to the saturation pulse power, B1, for the Xe-host systems: CB6 in

water (green), CrA in water (blue) and CrA in DMSO (red) using the values reported in

Table 1 of the main manuscript. Figures S5b-c show its dependence versus the exchange

rate, kBA. Note that the maxima of these curves occur for the saturation pulse strength

calculated in Hz.

In terms of Xe-host design for Hyper-CEST detection, Eq.(2) can be very useful because it

shows that CB6 in water is indeed the superior system due to both relatively high occupancy

and high exchange rate compared to CrA in water and in DMSO.

It also shows that at low saturation strength the Hyper-CEST performance is better for

lower exchange rates (compare in the insert of Figure S5a; CrA in water and CB6 in water

(blue and green, respectively)), since the Hyper-CEST labeling efficiency, α, in the limit of

kBA � RB
2 is increased for decreased exchange rates, kBA [4, 5].
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FIG. S5. Maximal on-resonant 129Xe depolarization per host concentration in given Xe concentra-

tion for the Xe-host systems: CrA in DMSO (red), CrA in H2O (blue) and CB6 in H2O (green).

The simulation parameters are listed in Table 1 in the main manuscript. (a) Xe depolarization

curve per host molecule as a function of the saturation pulse strength, B1. (b-d) Xe depolarization

curve divided by [host] versus the exchange rate, kBA, for the individual Xe-host systems with

three different saturation pulse strengths, B1 = {0.5, 3, 40} µT → ω1 = γ · B1 = {37, 22, 2960}

Hz, respectively. The system intrinsic Xe exchange rates are indicated by the straight line.
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S6: COMMERCIALLY AVAILABLE CUCURBIT[6]URIL SAMPLE BY SIGMA-

ALDRICH
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FIG. S6. qHyper-CEST analysis and results listed in Table II of the commercially available cu-

curbit[6]uril (CB6) sample (ordered by Sigma-Aldrich, product number: 94544, CAS Number:

80262-44-8, LOT Number: BCBH8803V) in water at room temperature (T = 295 K). In con-

trast to Figure 2b in the main manuscript, note that the saturation pulse strength values, B1, are

increased and the Hyper-CEST z-spectra spectrally broadened.

While the relative chemical shift between free and bound Xe, ∆δ, and the Xe exchange

rate, kBA, agree with the pure CB6 sample (see main manuscript), the ratio of bound and

free Xe, fB, the Xe host occupancy, β, the Xe binding (association) constant, KA, the host

concentration occupied by Xe, [hostocc] = β·[host], and the gas turnover β ·kBA disagree (see

Table II). This particular change of the specific Xe exchange kinetics indicates a blocking of

Xe exchange for the CB6 portals for the commercially available sample.

TABLE II. qHyper-CEST results for the Sigma-Aldrich available CB6 sample in water (at T =

295 K). The listed parameters are identical with those of Table 1 in the main manuscript except

for the host occupancy, β, the binding constant, KA and its continuative values.

solvent [Xe]a host [hosttot] ∆δ (ppm) fB (10-4) kBA (s-1) β (%)b KA (M-1)c [hostocc] β · kBA

(µM) (µM) (nM) (% s-1)

water 390 CB6 4.6 (-95.6 ± 0.2) (0.7 ± 0.07) (2,100 ± 500) 0.6 (15 ± 7) 28 13
a Calculation given in the Experimental Section in the main manuscript;

b As given by Eq. 3 in Ref.[3]; c As given by Eq. 4 in Ref.[3].

S9



S7: XE DELIVERY INTO H2O AND DMSO
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FIG. S7. Xe signal build up in H2O and DMSO versus the bubbling time for flow rates of 50 mL

per minute and 100 mL per minute including error bars.

Fit function with respect to the bubbling time, BT : S(BT ) = A0 · (1− exp{−BT/τ}). The

total measured signal is influenced by the build up due to hp Xe bubbling while hp Xe starts

to decay with its longitudinal relaxation time, T1
A (∼ 125 s for both solvents). Therefore,

the ratio of A0,DMSO/A0,H2O ∼ 5 and differs from the value 6, as expected from the ratio of

both Ostwald solubility coefficients.

• H2O at 100 mL per minute: A0 = (0.88 ± 0.04), τ = (8 ± 1) s.

• DMSO at 100 mL per minute: A0 = (4.7 ± 0.4), τ = (13 ± 2) s.

• DMSO at 50 mL per minute: A0 = (4.4 ± 0.9), τ = (27 ± 8) s.
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