Access to Enantioenriched 2,3- and 2,5-Dihydrofurans with a Fully Substituted C2 Stereocenter by Pd-Catalyzed Asymmetric Intermolecular Heck Reaction

Gustavo M. Borrajo-Calleja,^a Vincent Bizet,^a Thomas Bürgi,^b Clément Mazet^{a,*}

^aDepartement of Organic Chemistry, University of Geneva ^bDepartement of Physical Chemistry, University of Geneva Quai Ernest Ansermet 30, 1211 Geneva 4, Switzerland Email: Clement.Mazet@unige.ch

Supporting Information

Table of Contents

1	General	S2
2	Optimization of the asymmetric Heck reaction	S 3
2.1	Reaction conditions optimization for 2-(4-methoxyphenyl)-2-methyl-2,5-dihydrofuran	
	(3ab)	S 3
2.2	Ligand screening for 2-aryl-2-methyl-2,3-dihydrofurans	S4
3	Vibrational circular dichroism (VCD) measurements	S 8
3.1	(R)-2-(4-methoxyphenyl)-2-methyl-2,5-dihydrofuran (3ab)	S 9
3.2	(R)-2-(4-ethoxycarbonylphenyl)-2-methyl-2,3-dihydrofuran (4ap)	S14
4	Experimental procedures and characterization data	S19
4.1	General procedure for the synthesis of 5-alkyl-2,3-dihydrofuran (in a 2-Me-THF solution)	
	(GP1)	S19
4.2	Procedures for the synthesis of 5-alkyl-2,3-dihydrofuran (neat)	S20
4.3	General procedure for the asymmetric intermolecular Heck reaction with neat 5-alkyl-2,3-	
	dihydrofurans (GP2)	S23
4.4	General procedure for the asymmetric intermolecular Heck reaction with 5-alkyl-2,3-	
	dihydrofurans in a 2-Me-THF solution (GP3)	S23
4.5	Characterization data of 2-aryl-2-methyl-2,5-dihydrofurans	S24
4.6	Characterization data of 2-aryl-2-methyl-2,3-dihydrofurans	S35
4.7	Characterization data of 2-alkyl-2-aryl-2,5-dihydrofurans	S42
4.8	Characterization data of 2-alkyl-2-aryl-2,3-dihydrofurans	S48
5	NMR spectra of all compounds	S55

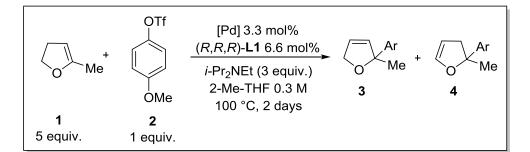
1 General

All reactions were carried out under an inert atmosphere of nitrogen using either two-manifold vacuum/inert gas lines or a *M. Braun* glove-box, unless otherwise noted. Solvents were dried over activated alumina columns and further degassed by three successive "freeze-pump-thaw" cycles if necessary.

Unless otherwise noted, commercial reagents were purchased from *Aldrich, Acros* or *Strem* and used without further purification. Liquid reagents were transferred with stainless steel syringes or cannula. Thin layer chromatography (TLC) was performed on plates of silica precoated with 0.25 mm Kieselgel 60 F_{254} from *Merck*. Flash chromatography was performed using silica gel SiliaFlash® P60 (230–400 mesh) from *Silicycle*. NMR spectra were recorded on ARX-300 and AMX-400 and AM-500 *Bruker Advance* spectrometers. ¹H and ¹³C{¹H} NMR chemical shifts are given in ppm relative to SiMe₄, with the solvent resonance used as internal reference. ¹⁹F{¹H} NMR chemical shifts are reported in ppm relative to CFCl₃. Infrared spectra were obtained on a *Perkin-Elmer* 1650 FT-IR spectrometer using neat samples on a diamond ATR Golden Gate sampler. The mass spectrometric data were obtained at the mass spectrometry facility of the University of Geneva (http://www.ms.unige.ch/sms). GC-MS analyses were performed on GC – HP 6890, column Agilent – HP1 (30 m – ID 0.32 mm, Film 0.25 µm) coupled with MS – HP 5973. The enantiomeric excesses (ee's) were determined by HPLC or GC analyses. HPLC analyses were performed on *Shimadzu* CTO-20AA, with column DAICEL OD-H, OJ-H, AD-H and IC. GC analyses were performed on HP – 6890, column Lipodex E, 50m. Retention times (t_R) are given in minutes.

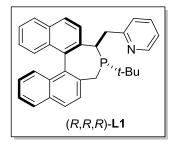
The aryl trifluoromethanesulfonates were prepared according to reported procedures.¹ (*R*)-Difluorphos was purchased from *Strem*, other chiral ligands were obtained from commercial sources. The homemade ligand (*R*,*R*,*R*) and (*S*,*S*,*S*)-L1 were prepared according to a previous report.² The 5methyl-2,3-dihydrofuran 97% (1a) was obtained from *Sigma-Aldrich* and used without further purification. The racemates of 3aa, 3ab, 3ad, 3ae, 3af, 3ag, 3ah, 3ai, 3aj and 3al were obtained using **GP2**, and for 3bb using **GP3**, with 2-(2-(diphenylphosphino)phenyl)-4,5-dihydrooxazole as ligand.³ The racemates of 3ak, 3db, 3eb, 3fb and 3gb were obtained using **GP2**, and for 3cb using **GP3**, with the racemic mixture (*R*,*R*,*R*/*S*,*S*,*S*)-L1 as ligand.⁴ The racemates of 4ac, 4am, 4an, 4ao, 4ap, 4aq, 4ar, 4dc, 4ec, 4fc and 4gc were obtained using **GP2**, and for 4bc and 4cc using **GP3**, with *rac*-BINAP as ligand.

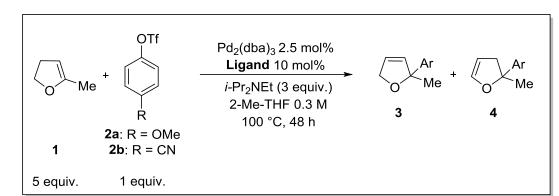
^{1 (}*a*) L. Qin, X. Ren, Y. Lu, Y. Li and J. Zhou, *Angew. Chem. Int. Ed.*, 2012, **51**, 5915; (*b*) For 2-methylbenzo[d]thiazol-5-yl trifluoromethanesulfonate, see : E. V. Vinogradova, N. H. Park, B. P. Fors and S. L. Buchwald, *Org. Lett.*, 2013, **15**, 1394.


² P. Nareddy, L. Mantilli, L. Guénée and C. Mazet, Angew. Chem. Int. Ed., 2012, 51, 1.

³ B. Wüstenberg and A. Pfaltz, Adv. Synth. Catal., 2008, 350, 174.

⁴ Rac-L1 was obtained by mixing both enantiomers.


2 Optimization of the asymmetric Heck reaction

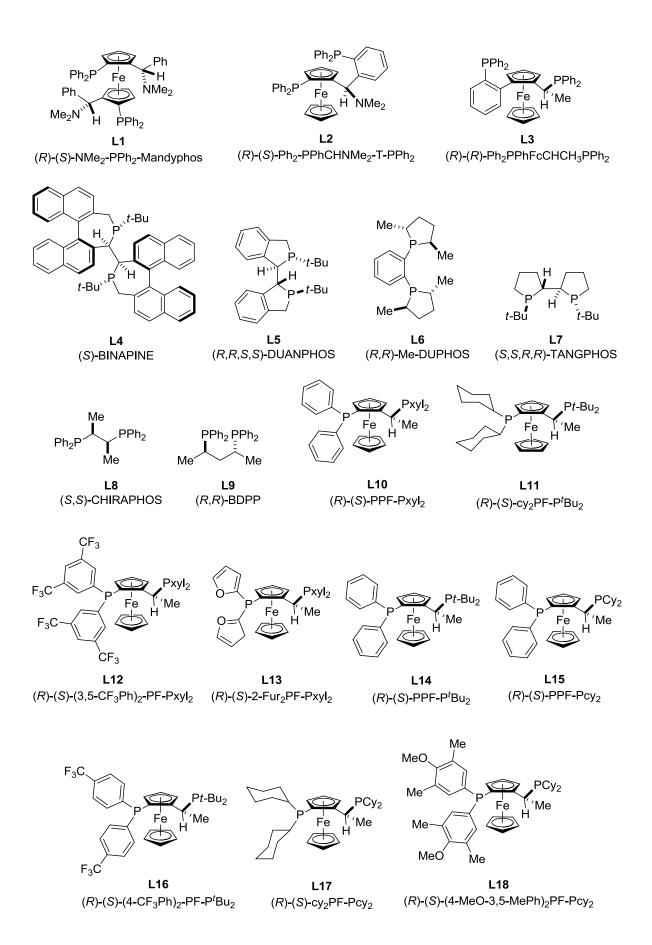

2.1 Reaction conditions optimization for 2-(4-methoxyphenyl)-2-methyl-2,5-dihydrofuran (3ab)

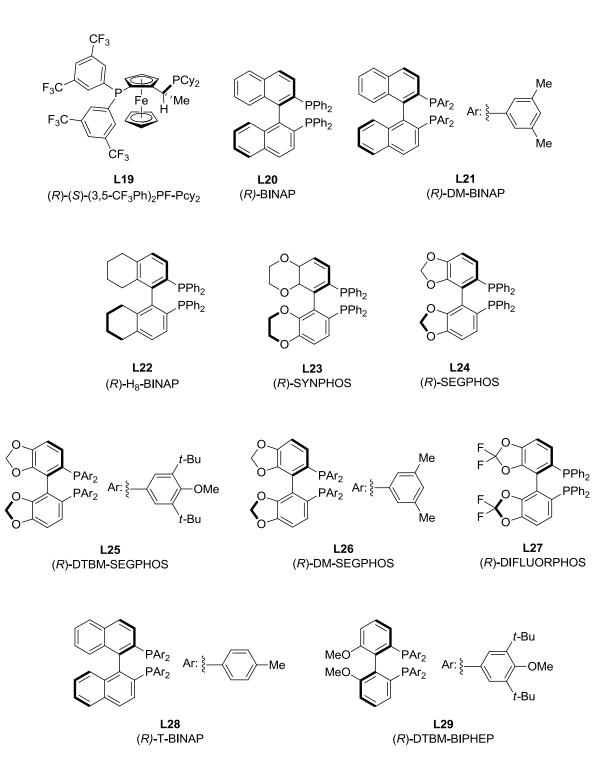
Entry	Pd source	Solvent	Base	3/4 ^{<i>a</i>}	3 yield (%) ^b	3 ee (%) ^c
1	Pd(OAc) ₂	Toluene	<i>i</i> -Pr₂NEt	99/1	nd ^d	nd ^d
2	Pd(OAc)₂	THF	<i>i</i> -Pr₂NEt	99/1	13	93
3	Pd(OAc) ₂	DMF	<i>i</i> -Pr₂NEt	nd ^d	11	93
4	Pd(OAc)₂	Dioxane	<i>i</i> -Pr₂NEt	99/1	37	94
5	Pd(OAc)₂	2-Me-THF	<i>i</i> -Pr₂NEt	99/1	52	94
6	Pd(OAc)₂	TBME ^e	<i>i</i> -Pr₂NEt	nd^d	5	92
7	Pd(OAc)₂	CPME ^f	<i>i</i> -Pr₂NEt	nd ^d	4	93
8	Pd(OAc)₂	BME^g	<i>i</i> -Pr₂NEt	nr ^h	nr ^h	nr ^h
9	Pd(OAc) ₂	2-Me-THF	PMP ⁱ	99/1	15	93
10	Pd(OAc) ₂	2-Me-THF	Li ₂ CO ₃	nr ^h	nr ^h	nr ^h
11	Pd(OAc) ₂	2-Me-THF	Urotropine	nr ^h	nr ^h	nr ^h
12	Pd(OAc) ₂	2-Me-THF	DABCO ⁱ	nd ^d	23	92
13 ^k	Pd(OAc) ₂	2-Me-THF	<i>i</i> -Pr ₂ NEt	99/1	56	93
14′	Pd(OAc) ₂	2-Me-THF	<i>i</i> -Pr ₂ NEt	99/1	54	93
15 ^{/,m}	Pd(OAc) ₂	2-Me-THF	<i>i</i> -Pr ₂ NEt	99/1	42	93
16 ^{<i>l</i>,<i>n</i>}	Pd(OAc) ₂	2-Me-THF	<i>i</i> -Pr ₂ NEt	99/1	31	93
17 [°]	Pd(OAc) ₂	2-Me-THF	<i>i</i> -Pr ₂ NEt	nd ^d	nd ^d	93
18′	Pd(TFA) ₂	2-Me-THF	<i>i</i> -Pr ₂ NEt	99/1	31	93
19 ′	$Pd(CI)_2(CH_3CN)_2$	2-Me-THF	<i>i</i> -Pr ₂ NEt	nr ^h	nr ^h	nr ^h
20 ′	$Pd_2(dba)_3$	2-Me-THF	<i>i</i> -Pr ₂ NEt	99/1	63	92
21 ^{<i>l,p</i>}	$Pd_2(dba)_3$	2-Me-THF	<i>i</i> -Pr₂NEt	99/1	58	93

^{*a*} Determined by ¹H-NMR in the reaction crude; ^{*b*} Isolated yield; ^{*c*} Determined by HPLC; ^{*d*} Not determined; ^{*e*} *t*-butyl methyl ether; ^{*f*} Cyclopentyl methyl ether; ^{*g*} benzyl methyl ether; ^{*h*} No reaction; ^{*i*} 1,2,2,6,6-Pentamethylpiperidine; ^{*j*} 1,4-diazabicyclo[2.2.2]octane; ^{*k*} 72 h; ^{*i*} 5 mol% of Pd and 10 mol% of ligand; ^{*m*} 0.6 M and 30 h; ^{*n*} 0.15 M and 30 h; ^{*o*} 1.0 M; ^{*p*} 0.6 M.



2.2 Ligand screening for 2-aryl-2-methyl-2,3-dihydrofurans


Entry	2	Ligand	2 cons. (%) ^a	3:4 ^b	3 yield (%) ^c	3 ee (%) ^d	4 yield (%) ^c	4 ee (%) ^d
1	2 a	L1	97	66/33	nd ^e	nd ^e	nd ^e	nd ^e
2	2b	L1	99	nd ^e	nd ^e	nd ^e	nd ^e	nd ^e
3	2a	L2	33	99/1	nd ^e	nd ^e	nd ^e	nd ^e
4	2b	L2	99	nd ^e	nd ^e	nd ^e	nd ^e	nd ^e
5	2a	L3	0	nr ^f	nr ^f	nr ^f	nr ^f	nr ^f
6	2b	L3	99	nd ^e	nd ^e	nd ^e	10	36
7	2a	L4	0	nr ^f	nr ^f	nr ^f	nr ^f	nr ^f
8	2b	L4	0	nr ^f	nr ^f	nr ^f	nr ^f	nr ^f
9	2a	L5	7	nr ^f	nr ^f	nr ^f	nr ^f	nr ^f
10	2b	L5	35	10/90	nd	nd	10	85
11	2a	L6	5	nr ^f	nr ^f	nr ^f	nr ^f	nr ^f
12	2b	L6	18	nr ^f	nr ^f	nr ^f	nr ^f	nr ^f
13	2a	L7	0	nr ^f	nr ^f	nr ^f	nr ^f	nr ^f
14	2b	L7	12	10/90	nd ^e	nd ^e	nd ^e	nd ^e
15	2a	L8	15	10/90	nd ^e	nd ^e	nd ^e	nd ^e
16	2b	L8	45	5/95	nd ^e	nd ^e	23	31
17	2a	L9	99	5/95	nd ^e	nd ^e	39	45
18	2b	L9	99	10/90	nd ^e	nd ^e	34	51
19	2a	L10	92	5/95	nd ^e	nd ^e	30	56
20	2b	L10	99	5/95	nd ^e	nd ^e	32	62
21	2a	L11	99	nr ^f	nr ^f	nr ^f	nr ^f	nr ^f
22	2b	L11	99	nd	nd ^e	nd ^e	nd ^e	nd ^e
23	2 a	L12	72	10/90	nd ^e	nd ^e	31	75
24	2b	L12	99	10/90	nd ^e	nd ^e	38	88
25	2 a	L13	99	7/93	nd ^e	nd ^e	31	52
26	2b	L13	75	10/90	nd ^e	nd ^e	35	61
27	2 a	L14	99	nr ^f	nr ^f	nr ^f	nr ^f	nr ^f
28	2b	L14	99	nr ^f	nr ^f	nr ^f	nr ^f	nr ^f

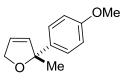

^{*a*} Consumption of ArOTf **2** determined by ¹⁹F-NMR of the crude; ^{*b*} Determined by ¹H-NMR of the crude; ^{*c*} Isolated yield; ^{*d*} Determined by HPLC; ^{*e*} Not determined; ^{*f*} No reaction.

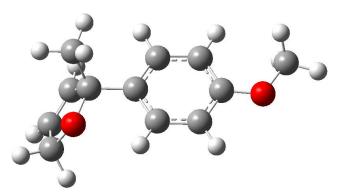
Entry	2	Ligand	2 cons. (%) ^a	3:4 ^b	3 yield (%) ^c	3 ee (%) ^d	4 yield (%) ^c	4 ee (%) ^d
29	2a	L15	99	20/80	nd ^e	nd ^e	19	72
30	2b	L15	99	20/80	nd ^e	nd ^e	15	78
31	2a	L16	99	nd ^e	nd ^e	nd ^e	7	86
32	2b	L16	99	nr ^f	nr ^f	nr ^f	nr ^f	nr ^f
33	2a	L17	99	nd ^e	nd ^e	nd ^e	3	53
34	2b	L17	99	nd ^e	nd ^e	nd ^e	nd ^e	58
35	2a	L18	99	5/95	nd ^e	nd ^e	14	68
36	2b	L18	99	nr ^f	nr ^f	nr ^f	nr ^f	nr ^f
37	2a	L19	99	10/90	nd ^e	nd ^e	12	65
38	2b	L19	99	5/95	nd ^e	nd ^e	17	73
39	2 a	L20	72	65/35	17	36	13	42
40	2b	L20	99	10/90	4	64	65	78
41	2a	L21	97	57/43	42 ^g	17	42 ^{<i>g</i>}	34
42	2b	L21	99	10/90	4	35	39	14
43	2a	L22	99	75/25	48 ^g	69	48 ^{<i>g</i>}	54
44	2b	L22	99	10/90	nd ^e	nd ^e	26	69
45	2a	L23	98	29/71	10	13	14	37
46	2b	L23	99	15/85	nd ^e	nd ^e	39	69
47	2a	L24	99	44/56	21	0	28	13
48	2b	L24	99	5/95	nd ^e	nd ^e	55	93
49	2a	L25	51	14/86	nd ^e	nd ^e	10	95
50	2b	L25	75	15/85	nd ^e	nd ^e	35	97
51	2a	L26	99	32/68	10	2	31	7
52	2b	L26	99	30/70	8	13	28	38
53	2 a	L27	24	57/43	nd ^e	nd ^e	nd ^e	nd ^e
54	2b	L27	99	5/95	nd ^e	nd ^e	59	97
55	2 a	L28	66	74/26	nd ^e	nd ^e	nd ^e	35
56	2b	L28	99	10/90	nd ^e	nd ^e	41	77
57	2 a	L29	66	nr ^f	nr ^f	nr ^f	nr ^f	nr ^f
58	2b	L29	58	10/90	nd ^e	nd ^e	nd ^e	97

^{*a*} Consumption of ArOTf **2** by ¹⁹F-NMR of the crude; ^{*b*} Determined by ¹H-NMR of the crude; ^{*c*} Isolated yield; ^{*d*} Determined by HPLC; ^{*e*} Not determined; ^{*f*} No reaction; ^{*g*} Combined isolated yield of **3** and **4**.

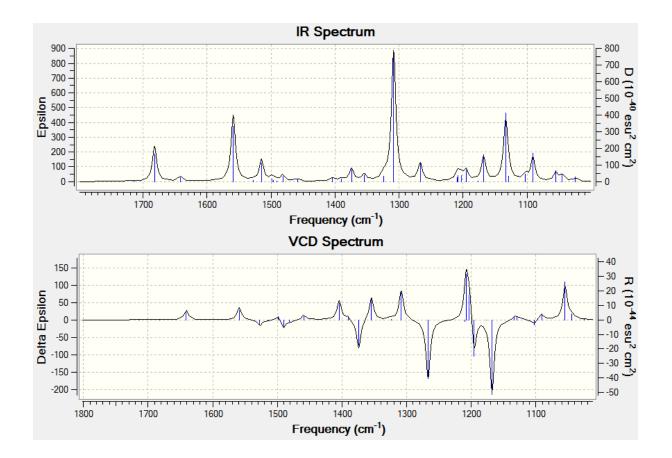
3 Vibrational circular dichroism (VCD) measurements

IR and VCD measurements

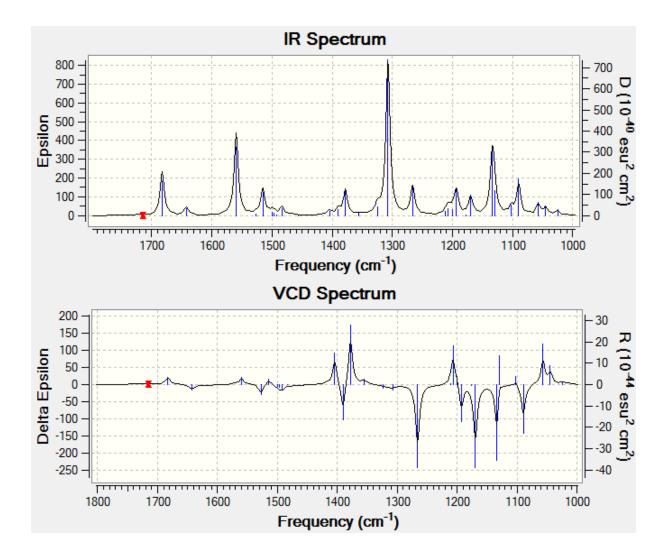

IR and vibrational circular dichroism (VCD) spectra were recorded on a Bruker PMA 50 accessory coupled to a Tensor 27 Fourier transform infrared spectrometer. A photoelastic modulator (Hinds PEM 90) set at I/4 retardation was used to modulate the handedness of the circular polarized light. Demodulation was performed by a lock-in amplifier (SR830 DSP). An optical low-pass filter (< 1800 cm-1) in front of the photoelastic modulator was used to enhance the signal/noise ratio. Spectra were recorded with a transmission cell equipped with CaF₂ windows and a 0.2 mm Teflon spacer. For measurements solutions in CD_2Cl_2 were prepared. The solvent was measured under identical conditions and subtracted to from the VCD spectrum of the compound in order to eliminate artifacts. Samples were measured at a resolution of 4 cm⁻¹ by averaging about 24'000 scans for both the sample and the solvent. Spectra are presented without further data processing.


IR and VCD calculations

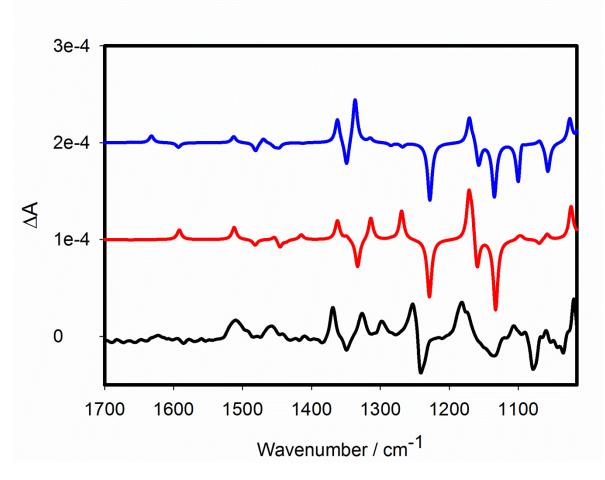
The geometry optimizations, vibrational frequencies, IR absorption and VCD intensities were calculated with Density Functional Theory (DFT) using the B3PW91 functional and a 6-31G(d,p) basis set. Frequencies were scaled by a factor of 0.97. IR absorption and VCD spectra were constructed from calculated dipole and rotational strengths assuming Lorentzian band shape with a half-width at half maximum of 4 cm⁻¹. All calculations were performed using Gaussian09.⁵


⁵ Gaussian 09, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian, Inc., Wallingford CT, 2010.


3.1 (R)-2-(4-methoxyphenyl)-2-methyl-2,5-dihydrofuran (3ab)

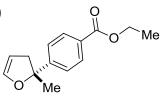


File Name	bizet1	
File Type	.log	
Calculation Type	FREQ	
Calculation Method	RB3PW91	
Basis Set	6-31G(d,p)	
Charge	0	
Spin	Singlet	
E(RB3PW91)	-615.89744326	a.u.
RMS Gradient Norm	0.00000565	a.u.
Imaginary Freq	0	
Dipole Moment	2.2896	Debye
Point Group	C1	

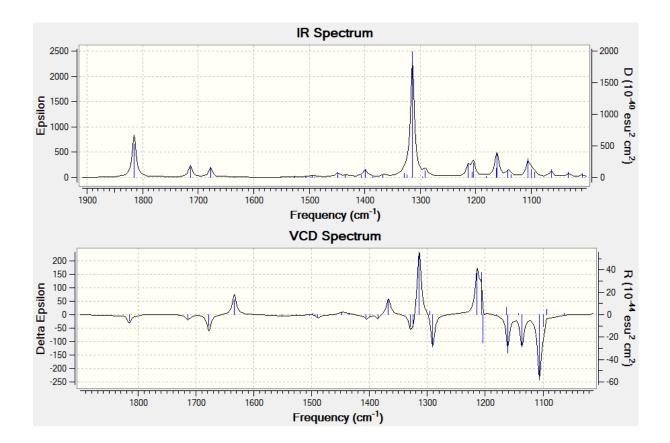


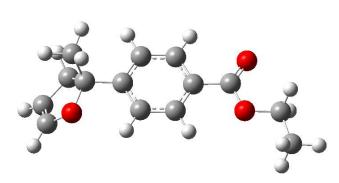
File Name	bizet2	
File Type	.log	
Calculation Type	FREQ	
Calculation Method	RB3PW91	
Basis Set	6-31G(d,p)	
Charge	0	
Spin	Singlet	
E(RB3PW91)	-615.89769655	a.u.
RMS Gradient Norm	0.00000144	a.u.
Imaginary Freq	0	
Dipole Moment	1.1160	Debye
Point Group	C1	

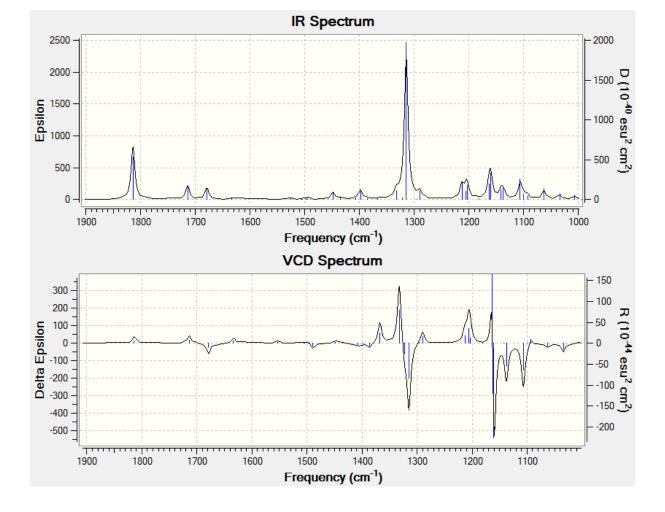
IR spectra: black: experiment (8 microliter in 200 microliter CD_2Cl_2), red and blue: calculated (two conformers).

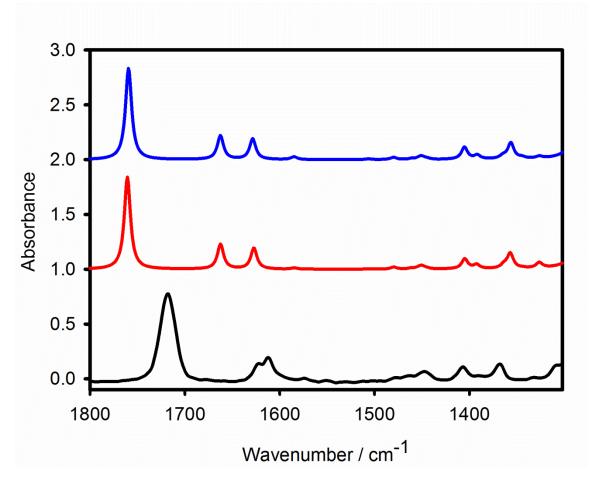


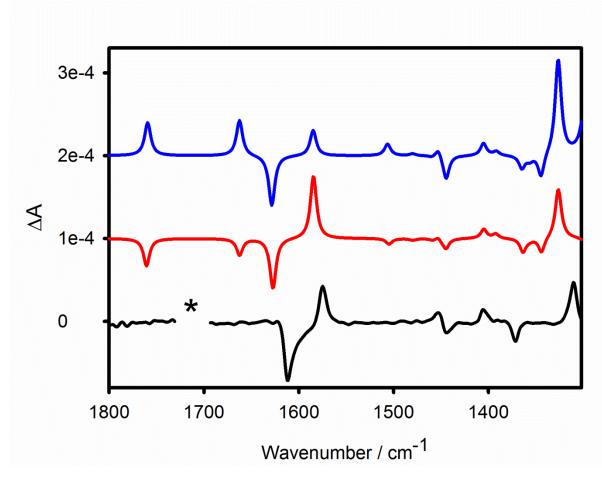
VCD spectra: black: experiment (8 microliter in 200 microliter CD_2Cl_2), red and blue: calculated (two conformers).


VCD spectra: black: experiment (8 microliter in 200 microliter CD_2Cl_2), red: calculated, mixture of 40% conformer 1 and 60% conformer 2.

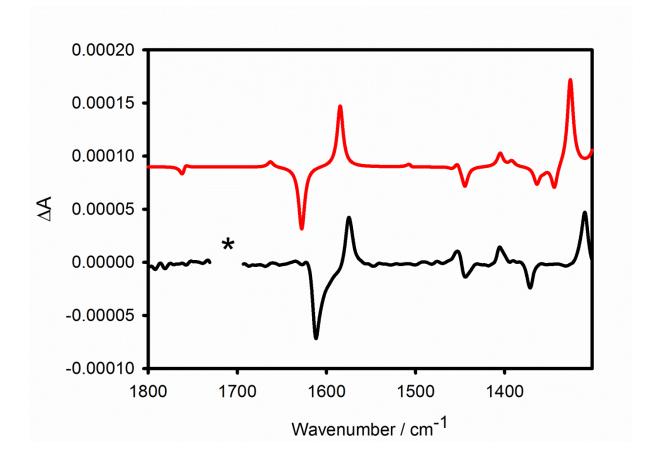

3.2 (R)-2-(4-ethoxycarbonylphenyl)-2-methyl-2,3-dihydrofuran (4ap)




gustavo					
File Name	gustavob11				
File Type	.log				
Calculation Type	FREQ				
Calculation Method	RB3PW91				
Basis Set	6-31G(d,p)				
Charge	0				
Spin	Singlet				
E(RB3PW91)	-768.52500474	a.u.			
RMS Gradient Norm	0.00000242	a.u.			
Imaginary Freq	0				
Dipole Moment	2.9782	Debye			
Point Group	C1				



gustavo					
File Name	gustavob 12				
File Type	.log				
Calculation Type	FREQ				
Calculation Method	RB3PW91				
Basis Set	6-31G(d,p)				
Charge	0				
Spin	Singlet				
E(RB3PW91)	-768.52516140	a.u.			
RMS Gradient Norm	0.00000187	a.u.			
Imaginary Freq	0				
Dipole Moment	1.6217	Debye			
Point Group	C1				



IR spectra: black: experiment (1 microliter in 200 microliter CD_2Cl_2), red and blue: calculated (two conformers).

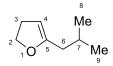
VCD spectra: black: experiment (3 microliter in 200 microliter CD_2Cl_2), red and blue: calculated (two conformers). The region marked by the asterisks could not be measured at this concentration due to strong absorption in this region.

VCD spectra: black: experiment (3 microliter in 200 microliter CD₂Cl₂), red: calculated, mixture of 60% conformer 1 and 40% conformer 2. The region marked by the asterisks could not be measured at this concentration due to strong absorption in this region.

Conclusion: Quite good agreement between experiment and calculations for a mixture of both conformers. Absolute configuration of the measured sample is the same as the one of the calculated enantiomer.

4 Experimental procedures and characterization data

4.1 General procedure for the synthesis of 5-alkyl-2,3-dihydrofuran (in a 2-Me-THF solution) (GP1)


To a mixture of 2,3-dihydrofuran (2.72 mL, 36 mmol, 1 equiv.) and TMEDA (0.54 mL, 3.6 mmol, 0.1 equiv.) at room temperature in a water bath was added dropwise *n*-butyllithium (1.6 M, 22.5 mL, 36 mmol, 1 equiv.) in solution in hexane over 15 min. Over the course of addition, the reaction became light yellow with formation of an off-white precipitate. The reaction was then stirred 2 h at room temperature, then concentrated under reduced pressure and the resulting solid was dissolved in dried and degassed 2-Me-THF (5 mL). The resulting brown solution was cooled again to 0 °C and the appropriate alkyl iodide (36 mmol, 1 equiv.) was added dropwise over 15 min with vigorous stirring. The solution was stirred at room temperature for 3 h and then distilled to dryness using a dry ice cooled condenser to give a colorless liquid. The solution is then refluxed over sodium for 4 h while the mixture became blue. After stirring at room temperature overnight, the solution was distilled to give a colorless solution of 5-substituted-2,3-dihydrofuran **1** in 2-Me-THF as a colorless liquid. The concentration of **1** was determined by ¹H NMR using 1,3-di-tert-butyl-2-methoxy-5-methylbenzene as internal reference.

5-Ethyl-2,3-dihydrofuran (1b)

Prepared according to **GP1** using ethyl iodide as electrophile. Isolated by distillation (44% yield, 3.7 M in 2-Me-THF). ¹H-NMR (C_6D_6 , 300 MHz): δ (ppm) = 1.00 (t, ${}^{3}J_{H-H}$ = 7.5 Hz, 3H, H-7), 2.06 (ddq, ${}^{3}J_{H-H}$ = 7.5 Hz, ${}^{4}J_{H-H}$ = 3.2 Hz, ${}^{5}J_{H-H}$ = 1.8 Hz, 2H, H-6), 2.32 (ddq, ${}^{3}J_{H-H}$ = 9.4 Hz, ${}^{3}J_{H-H}$ = 4.1 Hz, ${}^{5}J_{H-H}$ = 2.0 Hz, 2H, H-3), 4.09 (t, ${}^{3}J_{H-H}$ = 9.3 Hz, 2H, H-2), 4.44-4.46 (m, 1H, H-4); ${}^{13}C{}^{1}H$ -NMR (C_6D_6 , 75 MHz): δ (ppm) = 11.4 (C-7), 21.6 (C-6), 30.3 (C-3), 69.8 (C-2), 92.5 (C-4), 161.1 (C-5); GC-MS (EI): ($C_6H_{10}O$), 98.1 (100, M⁺), 69.1 (30, M⁺ – 29), 57.1 (86, M⁺ – 41); IR spectrum (2-MeTHF) (cm⁻¹) = 2970, 1668, 1462, 1377, 1165, 1090, 1008, 932, 898, 717.

5-Propyl-2,3-dihydrofuran

Prepared according to **GP1** using propyl iodide as electrophile. Isolated by distillation (51% yield, 3.3 M in 2-Me-THF). ¹H-NMR (C₆D₆, 400 MHz): δ (ppm) = 0.85 (t, ³J_{H-H} = 7.4 Hz, 3H, H-8), 1.52 (hex, ³J_{H-H} = 7.4 Hz, 2H, H-7), 2.07 (t, ³J_{H-H} = 7.5 Hz, 2H, H-6), 2.33 (m, 2H, H-3), 4.09 (t, ³J_{H-H} = 9.3 Hz, 2H, H-2), 4.47-4.49 (m, 1H, H-4); ¹³C{¹H}-NMR (C₆D₆, 100 MHz): δ (ppm) = 13.9 (C-8), 20.4 (C-7), 26.2 (C-6 + C-3), 69.7 (C-2), 93.6 (C-4), 159.4 (C-5); **GC-MS (EI)**: (C₇H₁₂O), 112.1 (41, M⁺), 97.1 (92, M⁺ – 15), 84.9 (27, M⁺ – 28), 69.0 (26, M⁺ – 43), 55.1 (100, M⁺ – 57); **IR spectrum (2-MeTHF)** (cm⁻¹) = 2960, 1667, 1460, 1376, 1258, 1165, 1003, 963, 935, 719.

5-isobutyl-2,3-dihydrofuran (1c)

Prepared according to **GP1** using isobutyl iodide as electrophile. Isolated by distillation (25% yield, 2.0 M in 2-Me-THF). ¹**H-NMR (C₆D₆, 400 MHz)**: δ (ppm) = 0.89 (d, ³J_{H-H} = 6.5 Hz, 6H, H-8 + H-9), 1.89-1.96 (m, 1H, H-7), 1.98-1.99 (m, 2H, H-6), 2.30-2.36 (m, 2H, H-3), 4.07 (t, ³J_{H-H} = 9.3 Hz, 2H, H-2), 4.47-4.48 (m, 1H, H-4); ¹³C{¹H}-NMR (C₆D₆, 100 MHz): δ (ppm) = 22.7 (C-8 + C-9), 26.5 (C-7), 30.4 (C-3), 37.6 (C-6), 69.7 (C-2), 94.7 (C-4), 158.6 (C-5); **GC-MS (EI)**: (C₈H₁₄O), 126.1 (27, M⁺), 111.1 (93, M⁺ – 15), 84.1 (24, M⁺ – 42), 69.1 (100, M⁺ – 57), 55.1 (23, M⁺ – 71); **IR spectrum (2-MeTHF)** (cm⁻¹) = 2960, 2278, 1667, 1457, 1330, 1171, 1089, 1005, 936, 812.

4.2 Procedures for the synthesis of 5-alkyl-2,3-dihydrofuran (neat)

5-(methoxymethyl)-2,3-dihydrofuran (1d)

To a solution of sodium hydride (720 mg, 30 mmol, 2 equiv.) in dry THF (20 mL) at 0 °C was added dropwise 5-(methanolyl)-2,3-dihydrofuran (1.5 g, 15 mmol, 1 equiv.) over 5 min. The reaction was then stirred for 2 h at room temperature. The solution was cooled again to 0 °C and methyl iodide (1.9 mL, 30 mmol, 2 equiv.) was added dropwise over 15 min. The solution was stirred for 2 h at room temperature. The reaction was carefully quenched with water, extracted with diethyl ether, dried over magnesium sulfate, filtered and concentrated under reduced pressure. The residue was

distilled with Kugelrohr distillation set to afford 5-(methoxymethyl)-2,3-dihydrofuran (1.0 g, 60%) as a colorless oil.

¹**H-NMR (C**₆**D**₆, **400 MHz)**: δ (ppm) = 2.21-2.26 (m, 1H, H-3), 3.14 (s, 3H, H-8), 3.86 (m, 2H, H-6), 4.05 (t, ³*J*_{H-H} = 9.4 Hz, 2H, H-2), 4.75-4.76 (m, 1H, H-4); ¹³C{¹H}-NMR (C₆**D**₆, **100 MHz)**: δ (ppm) = 30.1 (C-3), 58.1 (C-8), 67.5 (C-6), 70.1 (C-2), 97.2 (C-4), 156.2 (C-5); **GC-MS (EI)**: (C₆H₁₀O₂), 114.1 (100, M⁺), 99.0 (81), 81.2 (12), 72.1 (21), 58.1 (36); **IR spectrum (neat)** (cm⁻¹) = 2902, 1776, 1670, 1452, 1186, 1049, 999, 957, 926, 895, 721.

5-(methanolyl)-2,3-dihydrofuran (1e)

To a mixture of 2,3-dihydrofuran (3.8 mL, 50 mmol, 1 equiv.) in dry THF (50 mL) at room temperature in a water bath was added dropwise *n*-butyllithium (1.6 M, 31.3 mL, 50 mmol, 1 equiv.) in solution in hexane over 15 min. The reaction was then stirred 2 h at room temperature. The solution was cooled to 0 °C and paraformaldehyde (2.4 g, 80 mmol, 1.6 equiv.) was added portionwise over 5 min. The solution was then refluxed for 2 h. After cooling down to room temperature, iced water (10 mL) was added to the mixture. The organic phase was collected, while the aqueous phase was extracted 5 times with dichloromethane. Combined organic phases were dried over magnesium sulfate, filtered and concentrated under reduced pressure. The residue was distilled with Kugelrohr distillation set to afford 5-(methanolyl)-2,3-dihydrofuran (3.0 g, 60%) as a colorless oil.

¹**H-NMR (C₆D₆, 400 MHz)**: δ (ppm) = 2.23-2.28 (m, 2H, H-3), 3.01 (bs, 1H, H-7), 4.05 (t, ³J_{H-H} = 9.5 Hz, 2H, H-2), 4.07 (s, 2H, H-6), 4.73 (s, 1H, H-4); ¹³C{¹H}-NMR (C₆D₆, 100 MHz): δ (ppm) = 30.0 (C-3), 58.1 (C-6), 70.3 (C-2), 95.6 (C-4), 158.4 (C-5); **GC-MS (EI)**: (C₅H₈O₂), 100.1 (6, M⁺), 84.1 (100, M⁺ – 16), 71.1 (10, M⁺ – 29), 56.1 (18, M⁺ – 44); **IR spectrum (neat)** (cm⁻¹) = 3419, 2877, 1674, 1263, 1179, 1058, 1024, 999, 929, 893, 732.

5-(4-methylpent-3-en-1-yl)-2,3-dihydrofuran (1f)

To a mixture of 2,3-dihydrofuran (1.13 mL, 15 mmol, 1 equiv.) and TMEDA (0.22 mL, 1.5 mmol, 0.1 equiv.) in dry THF (30 mL), *n*-butyllithium (1.6 M, 9.4 mL, 15 mmol, 1 equiv.) in solution in hexane

was added dropwise over 15 min at room temperature. The reaction was stirred for 2 h at room temperature. The solution was cooled to 0 °C and 5-bromo-2-methylpent-2-ene⁶ (1 mL, 7.5 mmol, 0.5 equiv.) was added dropwise with vigorous stirring over 5 min. The solution was stirred at room temperature overnight. The remaining traces of 5-bromo-2-methylpent-2-ene were removed by refluxing the solution over small pieces of sodium for 4 h. Then the reaction was diluted with diethyl ether (20 mL), filtered over a short pad of Celite[®] and concentrated under reduced pressure. The residue was distilled with Kugelrohr distillation set to afford 5-(4-methylpent-3-en-1-yl)-2,3-dihydrofuran (520 mg, 46%) as a colorless oil.

¹**H-NMR (C**₆**D**₆, **400 MHz)**: δ (ppm) = 1.52 (s, 3H, H-10), 1.63 (s, 3H, H-11), 2.19-2.23 (m, 2H, H-6), 2.26-2.36 (m, 4H, H-7 + H-3), 4.09 (t, ³*J*_{H-H} = 9.3 Hz, 2H, H-2), 4.51-4.52 (m, 1H, H-4), 5.17-5.21 (m, 1H, H-8); ¹³C{¹H}-NMR (C₆D₆, **100 MHz)**: δ (ppm) = 17.7 (C-10), 25.8 (C-11), 25.9 (C-7), 28.7 (C-6), 30.4 (C-3), 69.8 (C-2), 93.7 (C-4), 124.4 (C-8), 131.8 (C-9), 159.3 (C-5); GC-MS (EI): (C₁₀H₁₆O), 152.1 (35, M⁺), 137.1 (25, M⁺ – 15), 84.1 (77, M⁺ – 68), 69.1 (100, M⁺ – 83), 55.1 (29, M⁺ – 97); **IR spectrum (neat)** (cm⁻¹) = 2917, 1667, 1445, 1376, 1246, 1162, 1003, 958, 930, 902, 718.

$$2$$
 10 5 6 7 8 9

5-benzyl-2,3-dihydrofuran (1g)

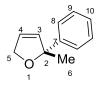
To a mixture of 2,3-dihydrofuran (1.13 mL, 15 mmol, 1 equiv.) and TMEDA (0.22 mL, 1.5 mmol, 0.1 equiv.) in dry THF (30 mL) at room temperature in a water bath was added dropwise *n*-butyllithium (1.6 M, 9.4 mL, 15 mmol, 1 equiv.) in solution in hexane over 15 min. The reaction was then stirred for 2 h at room temperature. The solution was cooled to 0 °C and benzyl bromide (1.8 mL, 15 mmol, 1 equiv.) was added dropwise with vigorous stirring over 15 min. Then, the solution was stirred at room temperature overnight. The remaining traces of benzyl bromide were removed by refluxing the solution over small pieces of sodium for 4 h. Then the reaction was diluted with diethyl ether (20 mL), filtered over a short pad of Celite® and concentrated under reduced pressure. The residue was distilled with Kugelrohr distillation set to afford 5-benzyl-2,3-dihydrofuran (1.2 g, 48%, 95% purity) as a colorless oil.

¹**H-NMR (C₆D₆, 400 MHz)**: δ (ppm) = 2.22-2.28 (m, 2H, H-3), 3.34 (s, 2H, H-6), 4.03 (t, ³J_{H-H} = 9.3 Hz, 2H, H-2), 4.41-4.42 (m, 1H, H-4), 7.04-7.08 (m, 1H, H-10), 7.12-7.16 (m, 2H, H-9), 7.20-7.21 (m, 2H, H-8); ¹³C{¹H}-NMR (C₆D₆, 100 MHz): δ (ppm) = 30.3 (C-3), 35.1 (C-6), 70.1 (C-2), 95.4 (C-4), 126.6 (C-10),

⁶ Prepared according to B. D. Schwartz, D. P. Tilly, R. Heim, S. Wiedemann, C. M. Williams and P. V. Bernhardt, *Eur. J. Org. Chem.* 2006, 3181.

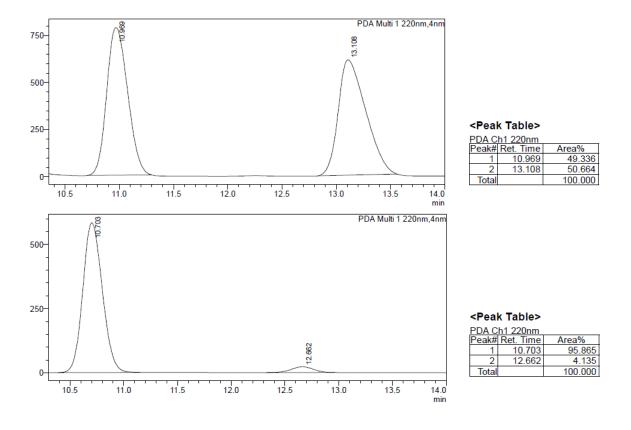
128.6 (C-9), 129.4 (C-8), 138.4 (C-7), 158.5 (C-5); **GC-MS (EI):** ($C_{11}H_{12}O$), 160.1 (100, M⁺), 118.0 (100, M⁺ - 42), 104.1 (45, M⁺ - 56), 90.1 (88, M⁺ - 70); **IR spectrum (neat)** (cm⁻¹) = 2895, 1666, 1494, 1454, 1375, 1256, 1156, 1002, 944, 699.

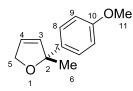
4.3 General procedure for the asymmetric intermolecular Heck reaction with neat 5-alkyl-2,3dihydrofurans (GP2)


In a glovebox, a 5 mL Young valve Schlenk was charged with $Pd_2(dba)_3$ (4.57 mg, 0.005 mmol, 2.5 mol%), the appropriate chiral ligand (0.02 mmol, 10 mol%) and 0.68 mL of degassed 2-Me-THF. The Schlenk was taken outside the glovebox, connecting to a two-manifold line and the mixture was stirred at r.t. for 15 min. Next, PhCF₃ (i.e. internal standard; 29.2 mg, 0.2 mmol, 1 equiv.), ArOTf (0.2 mmol, 1 equiv.), ^{*i*}Pr₂NEt (0.105 ml, 0.6 mmol, 3 equiv.) and neat 5-alkyl-2,3-dihydrofuran (1 mmol, 5 equiv.) were added consecutively under a flow of N₂ gas. The sealed reaction tube was immerged in a 100 °C pre-heated oil bath for 48-72 h. After cooling to r.t., the reaction mixture was poured into pentane (5 mL) under vigorous stirring, and the resulting precipitate was removed passing the solution trough a short pad of Celite[®]. The filtrate was concentrated to dryness to give an oil which was directly subjected to flash chromatography (Cyclohexane:AcOEt).

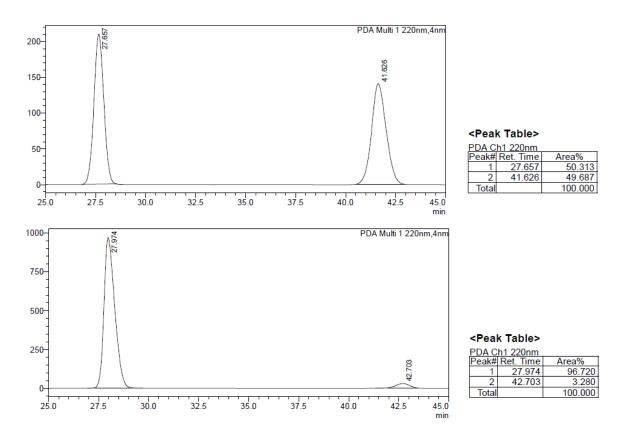
The **large scale experiment** described on Figure 2 of the manuscript was performed according to GP2 using 5-methyl-2,3-dihydrofuran (3.87 mL, 42.5 mmol, 5 equiv.), 4-cyanophenyl trifluoromethanesulfonate (2.13 g, 8.5 mmol, 1 equiv.), $Pd_2(dba)_3$ (192 mg, 0.21 mmol, 2.5 mol%), (*R*)-**L2** (518 mg, 0.85 mmol, 10 mol%), ^{*i*}Pr₂NEt (4.44 ml, 25.5 mmol, 3 equiv.) in 2-Me-THF (29 mL) and the reaction run for 60 h.

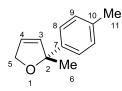
4.4 General procedure for the asymmetric intermolecular Heck reaction with 5-alkyl-2,3dihydrofuran in a 2-Me-THF solution (GP3)


For 5-alkyl-2,3-dihydrofurans in 2-Me-THF solutions the overall concentration of the reaction is maintained to 0.3 M (i.e. volume of the 5-alkyl-2,3-dihydrofuran in 2-Me-THF + volume of 2-Me-THF added in the glovebox to prepare the catalyst, V_{Tot} = 0.68 mL).

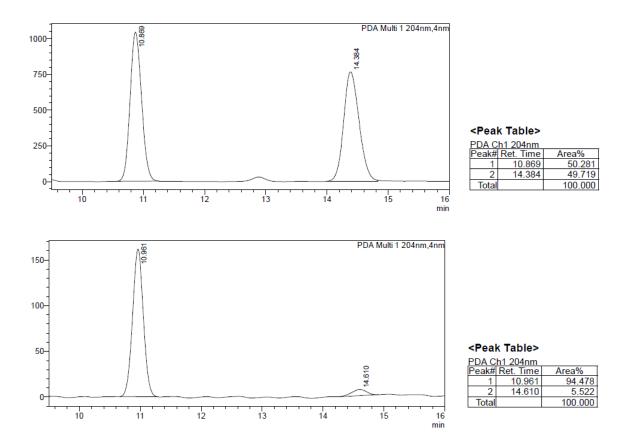

4.5 Characterization data of 2-aryl-2-methyl-2,5-dihydrofurans

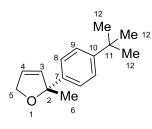
(R)-2-methyl-2-phenyl-2,5-dihydrofuran (3aa)


Prepared according to **GP2** using 5-methyl-2,3-dihydrofuran (**1a**). Isolated by column chromatography (Cyclohexane:AcOEt 80:1) as a pale yellow oil (27% yield, 92% *ee*) with $R_F = 0.67$ (Cyclohexane:AcOEt 10:1); ¹**H-NMR (C₆D₆, 400 MHz)**: δ (ppm) = 1.63 (s, 3H, H-6), 4.53 (ddd, ²J_{H-H} = 12.9 Hz, ³J_{H-H} = 2.4 Hz, ⁴J_{H-H} = 1.6 Hz, 2H, H-5), 4.55 (ddd, ²J_{H-H} = 12.9 Hz, ³J_{H-H} = 2.4 Hz, ⁴J_{H-H} = 1.6 Hz, 2H, H-5), 4.55 (ddd, ²J_{H-H} = 12.9 Hz, ³J_{H-H} = 2.4 Hz, ⁴J_{H-H} = 1.6 Hz, 1H, H-5'), 5.39 (dt, ³J_{H-H} = 6.0 Hz, ⁴J_{H-H} = 1.6 Hz, 1H, H-3), 5.72 (dt, ³J_{H-H} = 6.0 Hz, ³J_{H-H} = 2.4 Hz, 1H, H-4), 6.83 (m, 2H, H-9), 7.35 (m, 2H, H-8); ¹³C{¹H}-NMR (C₆D₆, 100 MHz): 28.8 (C-6), 74.7 (C-5), 90.8 (C-2), 125.10 (C-3), 125.15 (C-8), 126.89 (C-10), 128.50 (C-9), 134.55 (C-4), 147.36 (C-7); MS (ESI): C₁₁H₁₂OLi, 167.1 [M+Li]⁺; IR spectrum (neat) (cm⁻¹) = 2973, 2925, 2849, 1600, 1492, 1444, 1367, 1347, 1237, 1134, 1083, 1067, 1017, 904, 863, 762, 696, 710; [α]²³_D = + 108.2 (*c* 0.83, CH₂Cl₂); HPLC: OJ-H, 220 nm, Hexane:*i*PrOH, 98:2, 1 mL/min, 30 °C, t_{R1} = 10.7 and t_{R2} = 12.6 min.

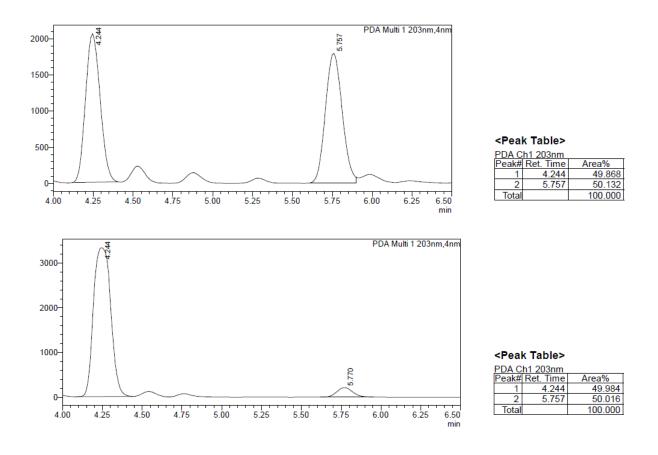


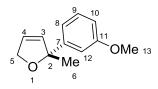
(R)-2-(4-methoxyphenyl)-2-methyl-2,5-dihydrofuran (3ab)


Prepared according to **GP2** using 5-methyl-2,3-dihydrofuran (**1a**). Isolated by column chromatography (Cyclohexane:AcOEt 60:1) as a pale yellow oil (64% yield, 93% *ee*) with $R_F = 0.67$ (Cyclohexane:AcOEt 10:1); ¹H-NMR (C_6D_6 , 400 MHz): δ (ppm) = 1.63 (s, 3H, H-6), 3.32 (s, 3H, H-11), 4.53 (ddd, ² $J_{H+H} = 12.9$ Hz, ³ $J_{H+H} = 2.4$ Hz, ⁴ $J_{H+H} = 1.6$ Hz, 2H, H-5), 4.55 (ddd, ² $J_{H+H} = 12.9$ Hz, ³ $J_{H+H} = 2.4$ Hz, ⁴ $J_{H+H} = 1.6$ Hz, 2H, H-5), 4.55 (ddd, ² $J_{H+H} = 12.9$ Hz, ³ $J_{H+H} = 2.4$ Hz, ⁴ $J_{H+H} = 1.6$ Hz, 1H, H-3), 5.72 (dt, ³ $J_{H+H} = 6.0$ Hz, ³ $J_{H+H} = 2.4$ Hz, 1H, H-4), 6.83 (m, 2H, H-9), 7.35 (m, 2H, H-8); ¹³C{¹H}-NMR (C_6D_6 , 100 MHz): δ (ppm) = 28.7 (C-6), 54.8 (C-11), 74.6 (C-5), 90.5 (C-2), 113.9 (C-9), 124.8 (C-3), 126.4 (C-8), 134.9 (C-4), 139.4 (C-7), 159.0 (C-10); HRMS (ESI positive) calculated for C₁₂H₁₅O₂, 191.1067 [M+H]⁺, found 191.1058; IR spectrum (neat) (cm⁻¹) = 2969, 1610, 1509, 1457, 1299, 1241, 1176, 1017, 829, 704; [α]²³_D = + 137.1 (*c* 0.63, CH₂Cl₂); HPLC: OJ-H, 220 nm, Hexane:/PrOH, 98:2, 1 mL/min, 30 °C, t_{R1} = 27.6 and t_{R2} = 41.6 min.

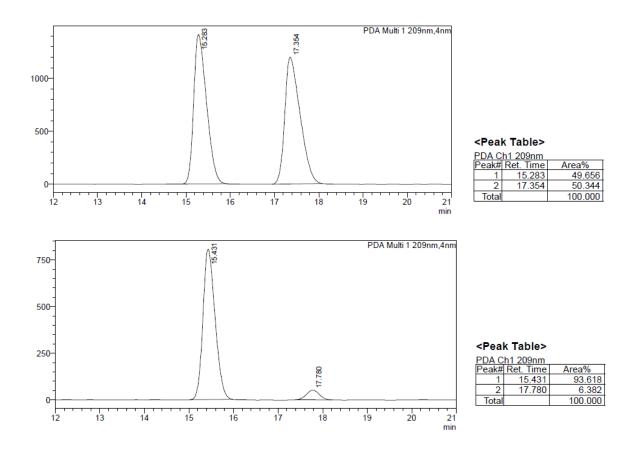


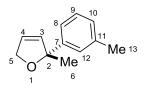
(R)-2-methyl-2-(p-tolyl)-2,5-dihydrofuran (3ad)


Prepared according to **GP2** using 5-methyl-2,3-dihydrofuran (**1a**). Isolated by column chromatography (Cyclohexane:AcOEt 70:1) as a pale yellow oil (47% yield, 92% *ee*) with $R_F = 0.58$ (Cyclohexane:AcOEt 10:1); ¹**H-NMR (C₆D₆, 400 MHz)** δ (ppm) = 1.62 (s, 3H, H-6), 2.13 (s, 3H, H-11), 4.52 (ddd, ²J_{H-H} = 12.9 Hz, ³J_{H-H} = 2.4 Hz, ⁴J_{H-H} = 1.7 Hz, 1H, H-5), 4.59 (ddd, ²J_{H-H} = 12.9 Hz, ³J_{H-H} = 2.4 Hz, ⁴J_{H-H} = 6.0 Hz, ⁴J_{H-H} = 1.6 Hz, 1H, H-3), 5.73 (dt, ³J_{H-H} = 6.0 Hz, ³J_{H-H} = 2.4 Hz, 1H, H-4), 7.04 (m, 2H, H-9), 7.36 (m, 2H, H-8); ¹³C{¹H}-NMR (C₆D₆, 100 MHz): δ (ppm) = 21.0 (C-11), 28.8 (C-6), 74.7 (C-5), 90.7 (C-2), 124.9 (C-3), 125.1 (C-8 or C-9), 128.7 (C-8 or C-9), 134.8 (C-4), 136.1 (C-10), 144.5 (C-7); HRMS (ESI positive) calculated for C₁₂H₁₃O, 173.0961 [M-H]⁺, found 173.0939; IR spectrum (neat) (cm⁻¹) = 2973, 1511, 1240, 1078, 1017, 814, 726, 701; [α]²³_D = + 240.7 (*c* 0.23, CH₂Cl₂); HPLC : OJ-H, 204 nm, Hexane:*i*PrOH, 98:2, 1 mL/min, 30 °C, t_{R1} = 10.8 and t_{R2} = 14.3 min.

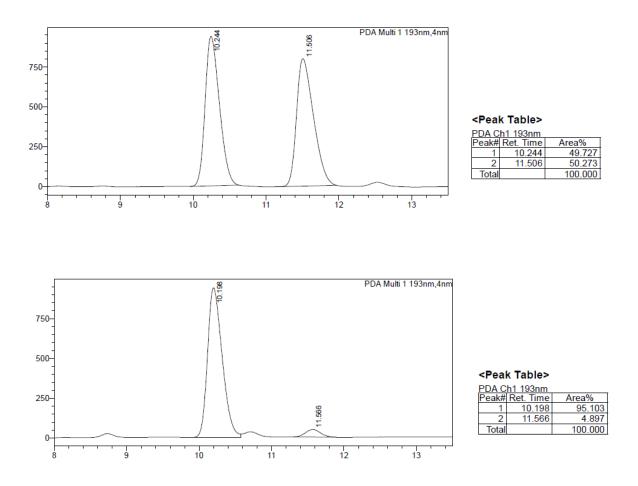


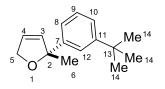
(R)-2-(4-(tert-butyl)phenyl)-2-methyl-2,5-dihydrofuran (3ae)


Prepared according to **GP2** using 5-methyl-2,3-dihydrofuran (**1a**). Isolated by column chromatography (Cyclohexane:AcOEt 60:1) as a pale yellow oil (65 % yield, 89% *ee*) with $R_F = 0.50$ (Cyclohexane:AcOEt 10:1); ¹H-NMR(C₆D₆, 400 MHz): δ (ppm) = 1.24 (s, 9H, H-12), 1.65 (s, 3H, H-6), 4.54 (ddd, ²J_{H-H} = 12.9 Hz, ³J_{H-H} = 2.4 Hz, ⁴J_{H-H} = 1.6 Hz, 1H, H-5), 4.61 (ddd, ²J_{H-H} = 12.9 Hz, ³J_{H-H} = 2.4 Hz, ⁴J_{H-H} = 1.6 Hz, 1H, H-5), 4.61 (ddd, ²J_{H-H} = 12.9 Hz, ³J_{H-H} = 2.4 Hz, ⁴J_{H-H} = 1.6 Hz, 1H, H-3), 5.76 (dt, ³J_{H-H} = 6.0 Hz, ³J_{H-H} = 2.4 Hz, 1H, H-4), 7.32 (m, 2H, H-9), 7.43 (m, 2H, H-8); ¹³C{¹H}-NMR(C₆D₆, 100 MHz): δ (ppm) = 28.6 (C-6), 31.2 (C-12), 34.1 (C-11), 74.5 (C-5), 90.5 (C-2), 124.7 (C-3), 124.7 (C-8), 125.1 (C-9), 134.5 (C-4), 144.2 (C-7), 149.1 (C-11); HRMS (ESI positive) calculated for C₁₅H₂₁O, 217.1587 [M+H]⁺, found 217.1596; IR spectrum (neat) (cm⁻¹) = 2961, 1082, 1015, 836, 727, 702, 569; [α]²³_D = +84.7 (*c* 0.62, CH₂Cl₂); HPLC: IC, 203 nm, Hexane:/PrOH, 98:2, 1 mL/min, 30 °C, t_{R1} = 4.2 and t_{R2} = 5.7 min.

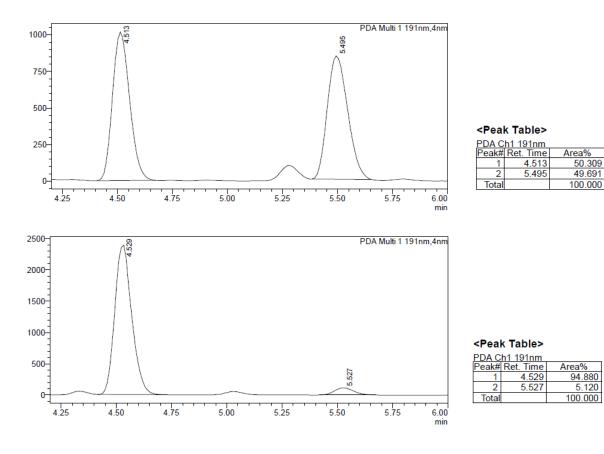


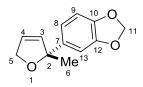
(R)-2-(3-methoxyphenyl)-2-methyl-2,5-dihydrofuran (3af)


Prepared according to **GP2** using 5-methyl-2,3-dihydrofuran (**1a**). Isolated by column chromatography (Cyclohexane:AcOEt 60:1) as a pale yellow oil (48% yield, 88% *ee*) with $R_F = 0.50$ (Cyclohexane:AcOEt 10:1); ¹**H-NMR (C₆D₆, 400 MHz)**: δ (ppm) = 1.61 (s, 3H, H-6), 3.36 (s, 3H, H-13), 4.50 (ddd, ²J_{H-H} = 12.9 Hz, ³J_{H-H} = 2.4 Hz, ⁴J_{H-H} = 1.6 Hz, 1H, H-5), 4.57 (ddd, ²J_{H-H} = 12.9 Hz, ³J_{H-H} = 2.4 Hz, ⁴J_{H-H} = 1.6 Hz, 1H, H-3), 5.72 (dt, ³J_{H-H} = 6.0 Hz, ³J_{H-H} = 2.4 Hz, 1H, H-4), 6.70 (ddd, ³J_{H-H} = 8.1 Hz, ⁴J_{H-H} = 2.6 Hz, ⁴J_{H-H} = 0.9 Hz, 1H, H-8), 7.01 (ddd, ³J_{H-H} = 7.7 Hz, ⁴J_{H-H} = 1.6 Hz, 1H, H-10), 7.14 (t, ³J_{H-H} = 7.9 Hz, 1H, H-9), 7.24 (dd, ⁴J_{H-H} = 2.6 Hz, ⁴J_{H-H} = 1.6 Hz, 1H, H-12); ¹³C{¹H}-NMR(C₆D₆, 100 MHz): δ (ppm) = 28.6 (C-6), 54.3 (C-13), 74.3 (C-5), 90.5 (C-2), 110.9 (C-9), 111.8 (C-8), 117.1 (C-10), 124.7 (C-3), 129.1 (C-12), 134.1 (C-4), 148.7 (C-7), 160.0 (C-11); HRMS (ESI positive) calculated for C₁₂H₁₄O₂Li, 197.1148 [M+Li]⁺, found 197.1144; IR spectrum (neat) (cm⁻¹) = 2969, 1601, 1583, 1483, 1432, 1264, 1209, 1080, 1044, 1018, 782, 717, 695; [α]²³_D = + 72.6 (*c* 0.55, CH₂Cl₂); HPLC: OJ-H, 209 nm, Hexane:*i*PrOH, 98:2, 1 mL/min, 30 °C, t_{R1} = 15.2 and t_{R2} = 17.3 min.

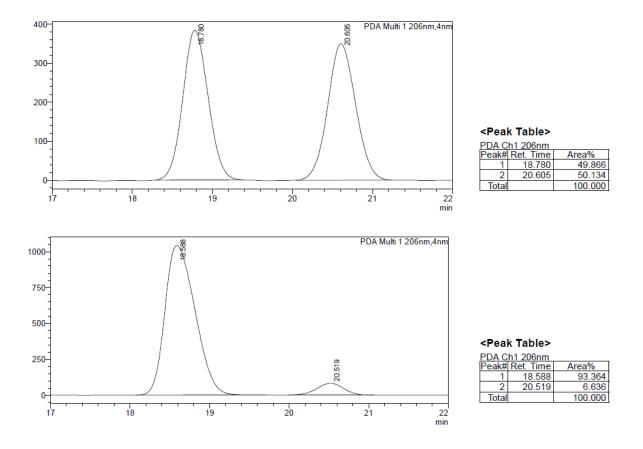


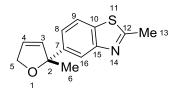
(R)-2-methyl-2-(m-tolyl)-2,5-dihydrofuran (3ag)


Prepared according to **GP2** using 5-methyl-2,3-dihydrofuran (**1a**). Isolated by column chromatography (Cyclohexane:AcOEt 75:1) as a pale yellow oil (37% yield, 91% *ee*) with $R_F = 0.52$ (Cyclohexane:AcOEt 10:1); ¹H-NMR (C_6D_6 , 400 MHz): δ (ppm) = 1.63 (s, 3H, H-6), 2.17 (s, 3H, H-13), 4.53 (ddd, ² $J_{H-H} = 12.9$ Hz, ³ $J_{H-H} = 2.4$ Hz, ⁴ $J_{H-H} = 1.6$ Hz, 2H, H-5), 4.60 (ddd, ² $J_{H-H} = 12.9$ Hz, ³ $J_{H-H} = 2.4$ Hz, ⁴ $J_{H-H} = 1.6$ Hz, 2H, H-5), 4.60 (ddd, ² $J_{H-H} = 12.9$ Hz, ³ $J_{H-H} = 2.4$ Hz, ⁴ $J_{H-H} = 1.6$ Hz, 1H, H-3), 5.72 (dt, ³ $J_{H-H} = 6.0$ Hz, ³ $J_{H-H} = 2.5$ Hz, 1H, H-4), 6.93 (m, 1H, H-10), 7.26 (m, 1H, H-8), 7.35 (m, 1H, H-12); ¹³C{¹H}-NMR (C_6D_6 , 100 MHz): δ (ppm) = 21.6 (C-13), 29.0 (C-6), 74.7 (C-5), 90.9 (C-2), 122.3 (C-8), 125.0 (C-3), 125.8 (C-12), 127.6 (C-10), 128.4 (C-9), 134.6 (C-4), 137.8 (C-11), 147.3 (C-7); HRMS (ESI positive) calculated for C₁₂H₁₃O 173.0961 [M-H]⁺, found 173.0936; IR spectrum (neat) (cm⁻¹) = 2974, 2847, 1606, 1485, 1346, 1260, 1189, 1076, 1018, 784, 715, 698; [α]²³_D = + 93.5 (*c* 0.55, CH₂Cl₂); HPLC: OJ-H, 203 nm, Hexane:/PrOH, 99.5:0.5, 1 mL/min, 30 °C, t_{R1} = 10.2 and t_{R2} = 11.5 min.

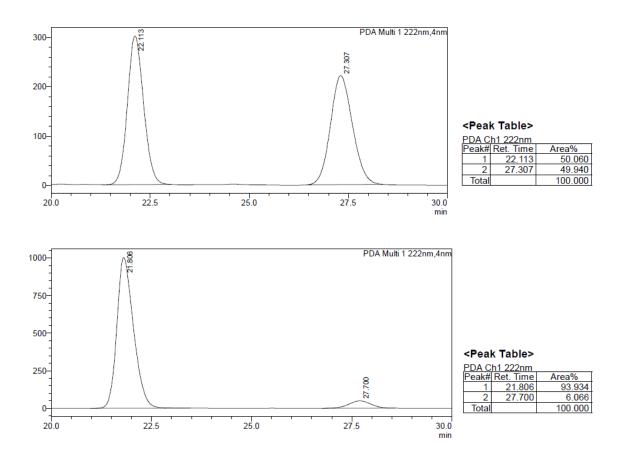


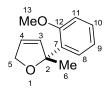
(R)-2-(3-(tert-butyl)phenyl)-2-methyl-2,5-dihydrofuran (3ah)


Prepared according to **GP2** using 5-methyl-2,3-dihydrofuran (**1a**). Isolated by column chromatography (Cyclohexane:AcOEt 60:1) as a pale yellow oil (56% yield, 90% *ee*) with $R_F = 0.62$ (Cyclohexane:AcOEt 10:1); ¹**H-NMR (C₆D₆, 400 MHz)**: δ (ppm) = 1.27 (s, 9H, H-14), 1.65 (s, 3H, H-6), 4.55 (ddd, ²J_{H-H} = 13.0 Hz, ³J_{H-H} = 2.4 Hz, ⁴J_{H-H} = 1.6 Hz, 1H, H-5), 4.62 (ddd, ²J_{H-H} = 13.0 Hz, ³J_{H-H} = 2.4 Hz, ⁴J_{H-H} = 1.6 Hz, 1H, H-5), 4.62 (ddd, ²J_{H-H} = 13.0 Hz, ³J_{H-H} = 2.4 Hz, ⁴J_{H-H} = 1.6 Hz, 1H, H-3), 5.79 (dt, ³J_{H-H} = 6.0 Hz, ³J_{H-H} = 2.4 Hz, 1H, H-4), 7.21-7.25 (m, 3H, H-8, H-10 and H-12), 7.70 (m, 1H, H-9); ¹³C{¹H}-NMR (C₆D₆, 100 MHz): δ (ppm) = 28.9 (C-6), 31.3 (C-14), 34.6 (C-13), 74.4 (C-5), 90.4 (C-2), 121.5 (C-9), 122.2, 123.7 and 128.0 (C-8, C-10 and C-12), 124.8 (C-3), 134.5 (C-4), 146.8 (C-7), 150.9 (C-11); HRMS (ESI positive) calculated for C₁₅H₂₁O, 217.1587 [M+H]⁺, found 217.1581; IR spectrum (neat) (cm⁻¹) = 2962, 1601, 1364, 1225, 1077, 1019, 794, 732, 708; [α]²³_D = + 96.4 (*c* 0.61, CH₂Cl₂); HPLC: IC, 191 nm, Hexane:/PrOH, 99.5:0.5, 1 mL/min, 30 °C, t_{R1} = 4.5 and t_{R2} = 5.4 min).

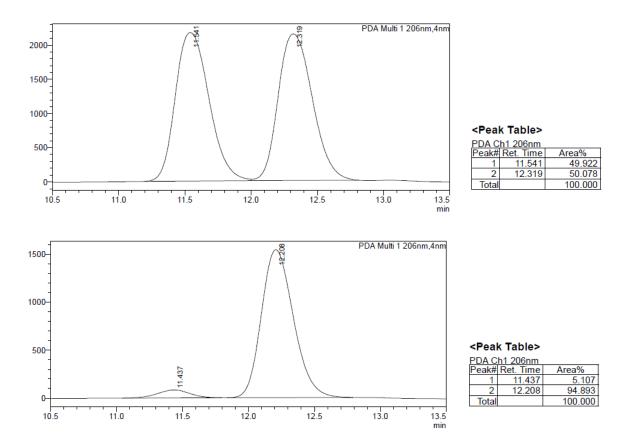


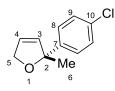
(R)-2-methyl-2-(3,4-methylenedioxyphenyl)-2,5-dihydrofuran (3ai)


Prepared according to **GP2** using 5-methyl-2,3-dihydrofuran (**1a**). Isolated by column chromatography (Cyclohexane:AcOEt 60:1) as a pale yellow oil (54% yield, 88% *ee*) with $R_F = 0.47$ (Cyclohexane:AcOEt 10:1); ¹**H-NMR (C₆D₆, 400 MHz)**: δ (ppm) = 1.55 (s, 3H, H-6), 4.44 (ddd, ² $J_{H-H} = 13.0 Hz$, ³ $J_{H-H} = 6.1 Hz$, ⁴ $J_{H-H} = 1.6 Hz$, 2H, H-5), 4.53 (ddd, ² $J_{H-H} = 13.0 Hz$, ³ $J_{H-H} = 6.1 Hz$, ⁴ $J_{H-H} = 1.6 Hz$, 2H, H-5), 4.53 (ddd, ² $J_{H-H} = 13.0 Hz$, ³ $J_{H-H} = 6.1 Hz$, ⁴ $J_{H-H} = 1.6 Hz$, 1H, H-5'), 5.32 (s, 2H, H-11), 5.33 (m, 1H, H-3), 5.62 (dt, ³ $J_{H-H} = 6.0 Hz$, ³ $J_{H-H} = 2.4 Hz$, 1H, H-4), 6.68 (d, ³ $J_{H-H} = 8.0 Hz$, 1H, H-9), 6.80 (dd, ³ $J_{H-H} = 8.0 Hz$, ⁴ $J_{H-H} = 1.7 Hz$ 1H, H-8), 7.06 (d, ⁴ $J_{H-H} = 1.7 Hz$, 1H, H-13); ¹³C{¹H}-NMR (C₆D₆, 100 MHz): δ (ppm) = 28.7 (C-6), 74.6 (C-5), 90.6 (C-2), 100.8 (C-11), 106.4 (C-13), 108.1 (C-9), 118.1 (C-8), 125.0 (C-3) 134.6 (C-4), 141.6 (C-7), 146.8 (C-10), 148.2 (C-12); HRMS (ESI positive) calculated for C₁₂H₁₃O₃, 205.0859 [M+H]⁺, found 205.0858; IR spectrum (neat) (cm⁻¹) = 1504, 1484, 1432, 1346, 1240, 1078, 1036, 1017, 938, 809, 730, 710; [α]²³_D = + 86.3 (*c* 0.90, CH₂Cl₂); HPLC: OJ-H, 206 nm, Hexane:*i*PrOH, 98:2, 1 mL/min, 30 °C, t_{R1} = 18.7 and t_{R2} = 20.6 min.

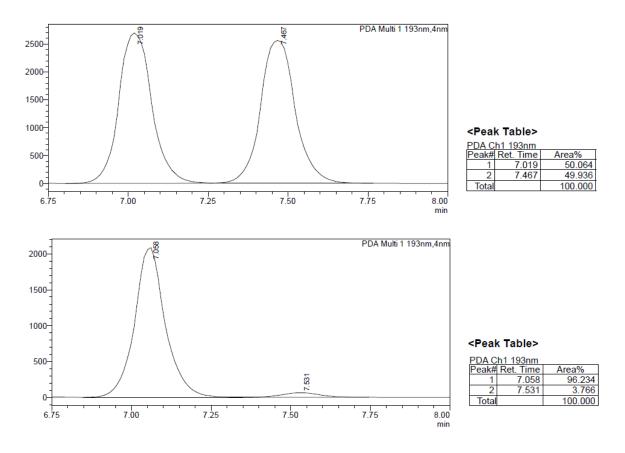


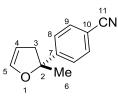
(R)-2-methyl-2-(2-methyl-5-benzo[d]thiazolyl)- 2,5-dihydrofuran (3aj)


Prepared according to **GP2** using 5-methyl-2,3-dihydrofuran (**1a**). Isolated by column chromatography (Cyclohexane:AcOEt 10:1) as a colorless oil (50% yield, >95% purity, 88% *ee*) with $R_F = 0.2$ (Cyclohexane:AcOEt 4:1); ¹**H-NMR (C₆D₆, 400 MHz)**: δ (ppm) = 1.60 (s, 3H, H-6), 2.35 (s, 3H, H-13), 4.47 (ddd, ²J_{H-H} = 13.1 Hz, ³J_{H-H} = 2.5 Hz, ³J_{H-H} = 1.6 Hz, 1H, H-5), 4.55 (ddd, ²J_{H-H} = 13.1 Hz, ³J_{H-H} = 2.5 Hz, ³J_{H-H} = 1.6 Hz, 1H, H-5), 4.55 (ddd, ²J_{H-H} = 13.1 Hz, ³J_{H-H} = 2.5 Hz, ³J_{H-H} = 1.6 Hz, 1H, H-4), 7.36 (dd, ³J_{H-H} = 6.0 Hz, ⁴J_{H-H} = 1.7 Hz, 1H, H-3), 5.69 (dt, ³J_{H-H} = 6.0 Hz, ³J_{H-H} = 2.4 Hz, 1H, H-4), 7.36 (dd, ³J_{H-H} = 8.4 Hz, ⁴J_{H-H} = 1.8 Hz, 1H, H-8), 7.46 (d, ³J_{H-H} = 8.4 Hz, 1H, H-9), 8.29 (d, ⁴J_{H-H} = 1.8 Hz, 1H, H-16); ¹³C{¹H}-NMR (C₆D₆, 100 MHz): δ (ppm) = 19.8 (C-13), 29.0 (C-6), 74.8 (C-5), 90.8 (C-2), 119.4 (C-16), 121.2 (C-9), 122.4 (C-8), 125.3 (C-3), 134.5 (C-4), 134.6 (C-10), 145.8 (C-7), 154.8 (C-15), 166.5 (C-12); HRMS (EI positive) calculated for C₃H₁₄NOS, 232.0791 [M+H]⁺, found 232.0794; IR spectrum (neat) (cm⁻¹) = 2973, 2925, 1621, 1525, 1417, 1154, 1053, 879, 813, 703, 643; [α]²³_D = +88.0 (*c* 1.09, CH₂Cl₂); HPLC: OJ-H, 206 nm, Hexane:*i*-PrOH, 98:2, 1 mL/min, 30 °C, t_{R1} = 22.1 and t_{R2} = 27.3 min.



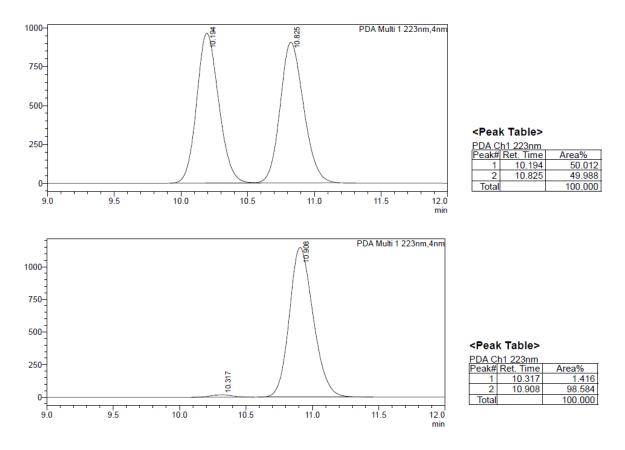
(R)-2-(2-methoxyphenyl)-2-methyl-2,5-dihydrofuran (3ak)

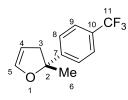

Prepared according to **GP2** using 5-methyl-2,3-dihydrofuran (**1a**). Isolated by column chromatography (Cyclohexane:AcOEt 80:1) as a colorless oil (53% yield, 90% *ee*) with $R_F = 0.63$ (Cyclohexane:AcOEt 10:1); ¹**H-NMR (C₆D₆, 400 MHz)**: δ (ppm) = 2.87 (s, 3H, H-6), 3.24 (s, 3H, H-13), 4.52 (ddd, ²J_{H+H} = 12.8 Hz, ³J_{H+H} = 2.6 Hz, ⁴J_{H+H} = 1.6 Hz, 1H, H-5), 4.63 (ddd, ²J_{H+H} = 12.8 Hz, ³J_{H+H} = 2.6 Hz, ⁴J_{H+H} = 1.6 Hz, 1H, H-5), 4.63 (ddd, ²J_{H+H} = 12.8 Hz, ³J_{H+H} = 2.6 Hz, ⁴J_{H+H} = 1.6 Hz, 1H, H-3), 6.52 (m, 2H, H-4 and H-11), 6.98 (td, ³J_{H+H} = 7.5 Hz, ⁴J_{H+H} = 1.1 Hz, 1H, H-9), 7.09 (td, ³J_{H+H} = 7.3 Hz, ⁴J_{H+H} = 1.8 Hz, 1H, H-10), 8.02 (dd, ³J_{H+H} = 7.6 Hz, ⁴J_{H+H} = 1.8 Hz, 1H, H-8); ¹³C{¹H</sup>}-**NMR (C₆D₆, 100 MHz)**: δ (ppm) = 27.8 (C-6), 54.6 (C-13), 73.8 (C-5), 90.4 (C-2), 111.2 (C-11), 121.2 (C-9), 124.6 (C-3), 126.2 (C-8), 128.1 (C-10), 134.1 (C-4), 135.4 (C-7), 155.4 (C-12); **IR spectrum (neat)** (cm⁻¹) = 2928, 2867, 1727, 1598, 1583, 1484, 1435, 1362, 1321, 1279, 1236, 1179, 1143, 1111, 1079, 1063, 1019, 865, 811, 786, 752, 706, 651; [α]²³_D = +148.4 (*c* 0.83, CH₂Cl₂); **HPLC:** OJ-H, 206 nm, Hexane:*i*-PrOH, 99:1, 0.5 mL/min, 30 °C, t_{R1} = 11.5 and t_{R2} = 12.3 min.



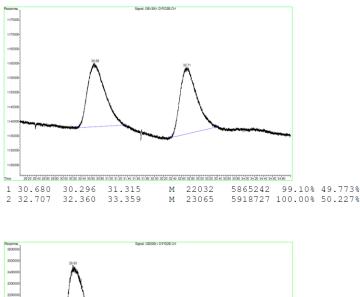
(R)-2-(2-chlorophenyl)-2-methyl-2,5-dihydrofuran (3al)

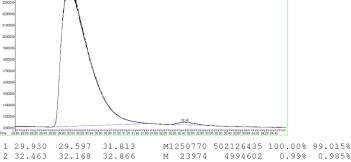
Prepared according to **GP2** using 5-methyl-2,3-dihydrofuran (**1a**). Isolated by column chromatography (Cyclohexane:AcOEt 60:1) as a colorless oil (25% yield, 92% *ee*) with $R_F = 0.6$ (Cyclohexane:AcOEt 10:1); ¹**H-NMR (C₆D₆, 400 MHz)**: δ (ppm) = 1.46 (s, 3H, H-6), 4.38 (ddd, ²J_{H-H} = 13.0 Hz, ³J_{H-H} = 2.4 Hz, ⁴J_{H-H} = 1.6 Hz, 1H, H-5), 4.50 (ddd, ²J_{H-H} = 13.0 Hz, ³J_{H-H} = 2.4 Hz, ⁴J_{H-H} = 1.6 Hz, 1H, H-5), 5.55 (dt, ³J_{H-H} = 6.0 Hz, ³J_{H-H} = 2.4 Hz, 1H, H-4), 7.11 (m, 4H, H-8 and H-9); ¹³C{¹H}-NMR (C₆D₆, 100 MHz): δ (ppm) = 28.6 (C-6), 74.7 (C-5), 90.3 (C-2), 125.3 (C-3), 126.6 (C-8 or C-9), 128. 6 (C-8 or C-9), 132.7 (C-10), 134.0 (C-4), 145.8 (C-7); **IR spectrum** (neat) (cm⁻¹) = 2923, 1720, 1489, 1083, 1012, 826, 730, 696, 578; [α]²³_D = +110.1.0 (*c* 0.4, CH₂Cl₂); HPLC: OJ-H, 193 nm, Hexane:*i*-PrOH, 98:2, 1 mL/min, 30 °C, t_{R1} = 7.0 and t_{R2} = 7.4 min.

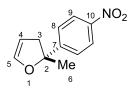



4.6 Characterization data of 2-aryl-2-methyl-2,3-dihydrofurans

(R)-2-(4-cyanophenyl)-2-methyl-2,3-dihydrofuran (4ac)

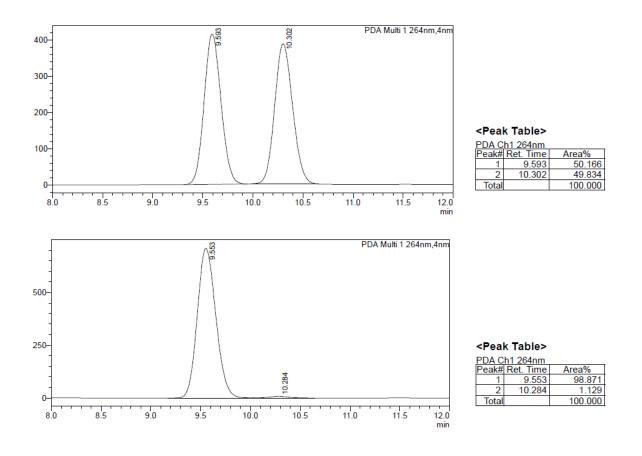

Prepared according to **GP2** using 5-methyl-2,3-dihydrofuran (**1a**). Isolated by column chromatography (Cyclohexane:AcOEt 60:1) as a pale yellow oil (59% yield, 97% *ee*) with $R_F = 0.42$ (Cyclohexane:AcOEt 10:1); ¹**H-NMR (C₆D₆, 400 MHz)**: δ (ppm) = 1.29 (s, 3H, H-6), 2.32 (m, 2H, H-3), 4.51 (m, 1H, H-4), 6.10 (m, 1H, H-5), 6.95 (m, 2H, H-8), 7.04 (m, 2H, H-9); ¹³C{¹H}-NMR (C₆D₆, 100 **MHz)**: δ (ppm) = 28.8 (C-6), 44.1 (C-3), 86.7 (C-2), 98.4 (C-4), 111,3 (C-10), 118.8 (C-11), 125.3 (C-8), 132.1 (C-9), 144.4 (C-5), 152.70 (C-7); **HRMS (ESI positive)** calculated for C₁₂H₁₁NO, 185.08325[M]⁺, found 185.08352; **IR spectrum (neat)** (cm⁻¹) = 2927, 2228, 1624, 1607, 1503, 1294, 1160, 1053, 978, 835, 712, 581; [α]²³_D = + 24.2 (*c* 1.05, CH₂Cl₂); **HPLC:** OJ-H, 223 nm, Hexane:*i*PrOH, 98:2, 1 mL/min, 30 °C, t_{R1} = 10.1 and t_{R2} = 10.8 min.

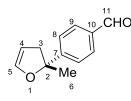




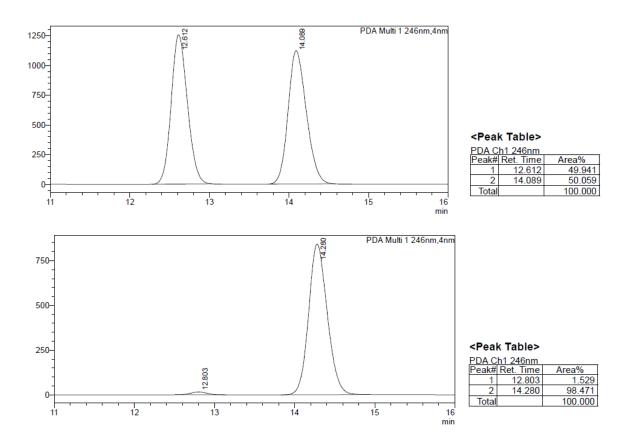
(R)-2-methyl-2-(4-(trifluoromethyl)phenyl)-2,3-dihydrofuran (4am)

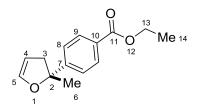
Prepared according to **GP2** using 5-methyl-2,3-dihydrofuran (**1a**). Isolated by column chromatography (Cyclohexane:AcOEt 10:1) as a colorless oil (51% yield, 98% *ee*) with $R_F = 0.44$ (Cyclohexane:AcOEt 10:1); ¹**H-NMR (C₆D₆, 400 MHz)**: δ (ppm) = 1.38 (s, 3H, H-6), 2.39 (dt, ²J_{H-H} = 15.1 Hz, ³J_{H-H} = 2.5 Hz, 1H, H-3), 2.45 (dt, ²J_{H-H} = 15.1 Hz, ³J_{H-H} = 2.5 Hz, 1H, H-3'), 4.55-4.57 (m, 1H, H-4), 6.15-6.17 (m, 1H, H-5), 7.15-7.17 (m, 2H, H-8), 7.35-7.37 (m, 2H, H-9); ¹³C{¹H}-NMR (C₆D₆, 100 MHz): δ (ppm) = 29.2 (C-6), 44.3 (C-3), 86.9 (C-2), 98.5 (C-4), 125.07 (q, ¹J_{C-F} = 271.8 Hz, C-11), 125.3 (C-8), 125.5 (q, ³J_{C-F} = 3.8 Hz, C-9), 129.2 (q, ²J_{C-F} = 32.2 Hz, C-10), 144.5 (C-5), 152.2 (C-7); **GC-MS (EI)**: (C₁₂H₁₁F₃O), 228.1 (45, M⁺), 213.1 (60), 199.1 (83), 159.1 (100), 115.1 (49), 103.0 (22); **IR spectrum (neat)** (cm⁻¹) = 2978, 2935, 2861, 1620, 1450, 1410, 1324, 1161, 1117, 1054, 1014, 978, 919, 841, 704, 607; [α]²³_D = +44.9 (*c* 0.81, CH₂Cl₂); **GC:** Lipodex E, 60-20-1-100-20-170, 45 cm/s, H₂, t_{R1} = 30.7 and t_{R2} = 32.7 min.



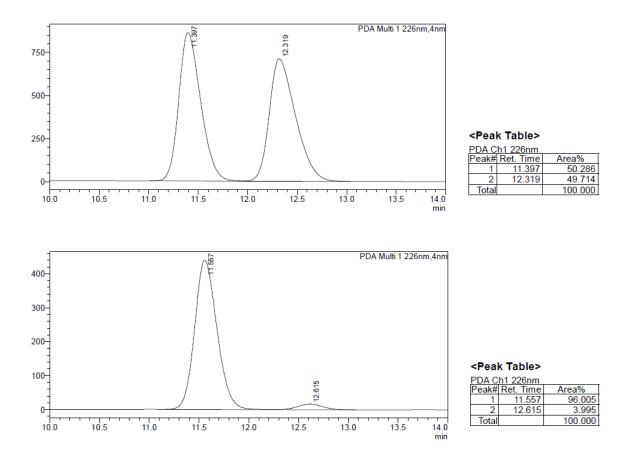


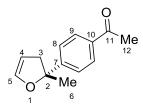
(R)-2-methyl-2-(4-nitrophenyl)-2,3-dihydrofuran (4an)


Prepared according to **GP2** using 5-methyl-2,3-dihydrofuran (**1a**). Isolated by column chromatography (Cyclohexane:AcOEt 75:1) as a pale yellow oil (54% yield, 98% *ee*) with $R_F = 0.54$ (Cyclohexane:AcOEt 10:1); ¹H-NMR (C₆D₆, 400 MHz): δ (ppm) = 1.31 (s, 3H, H-6), 2.34 (m, 2H, H-3 and H-3'), 4.52 (m, 1H, H-4), 6.10 (m, 1H, H-5), 6.97 (m, 2H, H-8), 7.83 (m, 2H, H-9); ¹³C{¹H}-NMR (C₆D₆, 100 MHz): δ (ppm) = 28.9 (C-6), 44.1 (C-3), 86.7 (C-2), 98.5 (C-4), 123.6 (C-9), 125.4 (C-8), 144.4 (C-5), 147.2 (C-10), 154.6 (C-7); HRMS (ESI positive) calculated for C₁₁H₁₁NO₃, 205.2130 [M]⁺, found 205.3; IR spectrum (neat) (cm⁻¹) = 1603, 1518, 1160, 1052, 853, 699; [α]²³_D = +16.1 (*c* 0.81, CH₂Cl₂); HPLC: OD-H, 264 nm, Hexane:*i*PrOH, 99.5:0.5, 1 mL/min, 30 °C, t_{R1} = 9.5 and t_{R2} = 10.3 min.

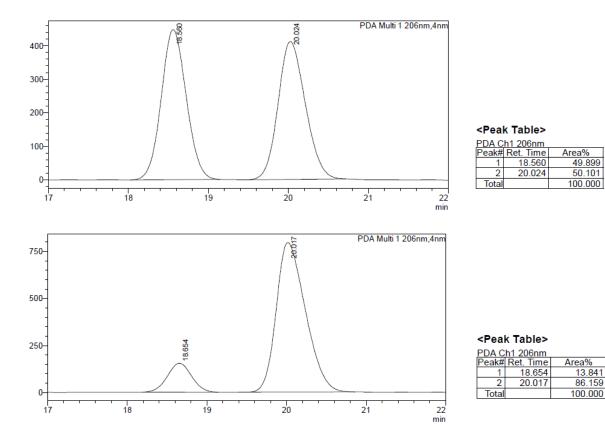


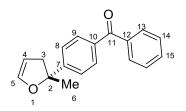
(R)-2-(4-formylphenyl)-2-methyl-2,3-dihydrofuran (4ao)


Prepared according to **GP2** using 5-methyl-2,3-dihydrofuran (**1a**). Isolated by column chromatography (Cyclohexane:AcOEt 60:1) as a pale yellow oil (35% yield, 97% *ee*) with $R_F = 0.48$ (Cyclohexane:AcOEt 10:1); ¹**H-NMR (C₆D₆, 400 MHz)**: δ (ppm) = 1.40 (s, 3H, H-6), 2.41 (dt, ²J_{H-H} = 14.8 Hz, ³J_{H-H} = 2.4 Hz, 1H, H-3), 2.46 (dt, ²J_{H-H} = 14.8 Hz, ³J_{H-H} = 2.4 Hz, 1H, H-3'), 4.55 (m, 1H, H-4), 6.17 (m, 1H, H-5), 7.24 (m, 2H, H-8), 7.56 (m, 2H, H-9), 9.68 (s, 1H, H-11); ¹³C{¹H}-NMR (C₆D₆, **100 MHz)**: δ (ppm) = 29.1 (C-6), 44.2 (C-3), 87.1 (C-2), 98.5 (C-4), 125.3 (C-8), 129.8 (C-9), 135.8 (C-10), 144.5 (C-5), 154.3 (C-10), 190.9 (C-11); MS (ESI): C₁₂H₁₂O₂, 189.3 [M+H]⁺; IR spectrum (neat) (cm⁻¹) = 1698, 1607, 1211, 1161, 1053, 827, 705, 568; $[\alpha]^{23}_{D} = +15.4$ (*c* 0.55, CH₂Cl₂); HPLC: OJ-H, 246 nm, Hexane:*i*PrOH, 98:2, 1 mL/min, 30 °C, t_{R1} = 12.6 and t_{R2} = 14.0 min.

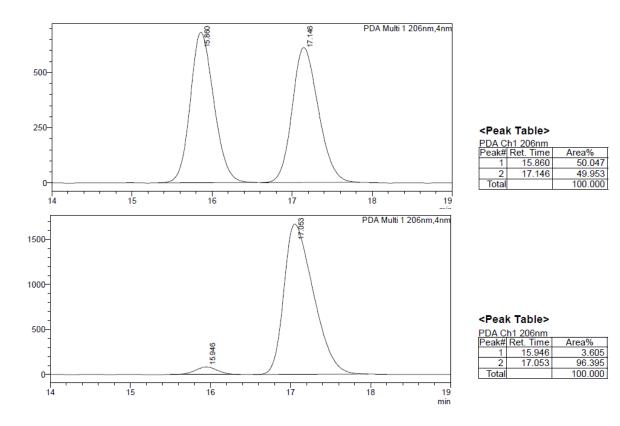


(R)-2-(4-ethoxycarbonylphenyl)-2-methyl-2,3-dihydrofuran (4ap)


Prepared according to **GP2** using 5-methyl-2,3-dihydrofuran (**1a**). Isolated by column chromatography (Cyclohexane:AcOEt 85:1) as a pale yellow oil (40% yield, 92% *ee*) with $R_F = 0.53$ (Cyclohexane:AcOEt 10:1); ¹**H-NMR (C₆D₆, 400 MHz)**: δ (ppm) = 1.03 (t, ³J_{H-H} = 7 Hz, 3H, H-14), 1.44 (s, 3H, H-6), 2.42 (dt, ²J_{H-H} = 15.0 Hz, ³J_{H-H} = 2.4 Hz, 2H, H-3), 2.53 (dt, ²J_{H-H} = 15.0 Hz, ³J_{H-H} = 2.4 Hz, 2H, H-3), 4.14 (c, ³J_{H-H} = 7 Hz, 2H, H-13), 4.56 (m, 1H, H-4), 6.18 (m, 1H, H-5), 7.32 (m, 2H, H-8), 8.19 (m, 2H, H-9); ¹³C{¹H}-NMR(C₆D₆, 100 MHz): δ (ppm) = 13.1 (C-13), 27.9 (C-6), 43.1 (C-3), 59.5 (C-12), 86.0 (C-2), 97.2 (C-4), 123.7 (C-8), 128.6 (C-10), 128.8 (C-9), 143.3 (C-5), 151.9 (C-7), 164.9 (C-11); HRMS (ESI positive) calculated for C₁₄H₁₆O₃, 233.1172 [M+H]⁺, found 233.1167; IR spectrum (neat) (cm⁻¹) = 1714, 1613, 1270, 1162, 1104, 1054, 1019, 858, 773, 705; [α]²³_D = +10.0 (*c* 0.87, CH₂Cl₂); HPLC: OJ-H, 226 nm, Hexane:/PrOH, 98:2, 1 mL/min, 30 °C, t_{R1} = 11.3 and t_{R2} = 12.3 min.

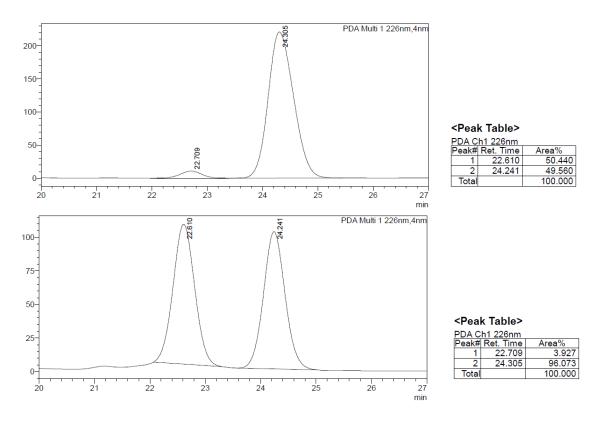


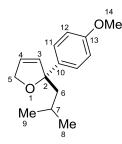
(R)-2-methyl-2-(4-methylcarbonylphenyl)-2,3-dihydrofuran (4aq)


Prepared according to **GP2** using 5-methyl-2,3-dihydrofuran (**1a**). Isolated by column chromatography (Cyclohexane:AcOEt 60:1) as a pale yellow oil (45% yield with 95% purity, 72% *ee*) with $R_F = 0.35$ (Cyclohexane:AcOEt 10:1); ¹H-NMR (C₆D₆, **400** MHz): δ (ppm) = 1.46 (s, 3H, H-6), 2.12 (s, 3H, H-12), 2.44 (dt, ²J_{H-H} = 15.2 Hz, ³J_{H-H} = 2.4 Hz, 2H, H-3), 2.56 (dt, ²J_{H-H} = 15.2 Hz, ³J_{H-H} = 2.4 Hz, 2H, H-3), 4.58 (m, 1H, H-4), 6.21 (m, 1H, H-5), 7.28 (m, 2H, H-8), 7.80 (m, 2H, H-9); ¹³C{¹H}-NMR (C₆D₆, **100** MHz): δ (ppm) = 26.1 (C-12), 29.1 (C-6), 44.3 (C-3), 87.2 (C-2), 98.5 (C-4), 124.9 (C-8), 128.7 (C-9), 136.4 (C-10), 144.6 (C-5), 153.0 (C-7), 196.1 (C-11); HRMS (ESI positive) calculated for C₁₃H₁₅O₂, 203.1067 [M+H]⁺, found 203.1070; IR spectrum (neat) (cm⁻¹) = 1681, 1622, 1607, 1358, 1267, 1161, 1054, 1015, 958, 837, 706, 598; [α]²³_D = + 6.3 (*c* 0.87, CH₂Cl₂); HPLC: OJ-H, 206 nm, Hexane:*i*PrOH, 98:2, 1 mL/min, 30 °C, t_{R1} = 18.5 and t_{R2} = 20.0 min.

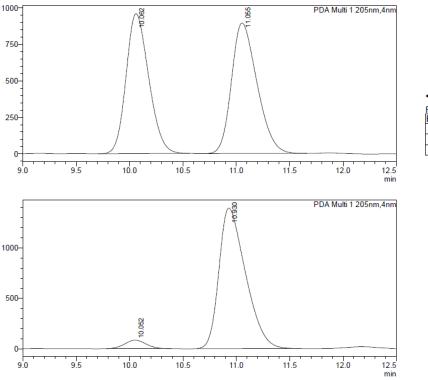
(R)-2-(benzophenone-4-yl)-2-methyl-2,3-dihydrofuran (4ar)

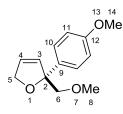
Prepared according to **GP2** using 5-methyl-2,3-dihydrofuran (**1a**). Isolated by column chromatography (Cyclohexane:AcOEt 85:1) as a pale yellow oil (39% yield, 93% *ee*) with $R_F = 0.54$ (Cyclohexane:AcOEt 10:1); ¹**H-NMR (C₆D₆, 400 MHz)**: δ (ppm) = 1.47 (s, 3H, H-6), 2.44 (dt, ²J_{H-H} = 15.0 Hz, ³J_{H-H} = 2.3 Hz, 2H, H-3), 2.58 (dt, ²J_{H-H} = 15.0 Hz, ³J_{H-H} = 2.3 Hz, 2H, H-3'), 4.55 (m, 1H, H-4), 6.20 (m, 1H, H-5), 7.05 (m, 2H, H-14), 7.12 (m, 1H, H-15), 7.28 (m, 2H, H-8), 7.74 (m, 4H, H-9 and H-13); ¹³C{¹H}-NMR (C₆D₆, 100 MHz): δ (ppm) = 29.2 (C-6), 44.3 (C-3), 87.23 (C-2), 98.5 (C-4), 124.7 (C-8), 128.4 (C-14), 130.2 (C-13 or C-9), 130.4 (C-13 or C-9), 132.1 (C-15), 136.8 (C-10), 138.4 (C-12), 144.6 (C-5), 152.4 (C-7), 195.4 (C-11); HRMS (ESI positive) calculated for C₁₈H₁₇O₂, 265.1223 [M+H]⁺, found265.1222; IR spectrum (neat) (cm⁻¹) = 1657, 1604, 1446, 1403, 1372, 1313, 1274, 1161, 1053, 922, 851, 698; [α]²³_D = -4.4 (*c* 0.75, CH₂Cl₂); HPLC: OJ-H, 206 nm, Hexane:/PrOH, 98:2, 1 mL/min, 30 °C, t_{R1} = 15.8 and t_{R2} = 17.1 min.



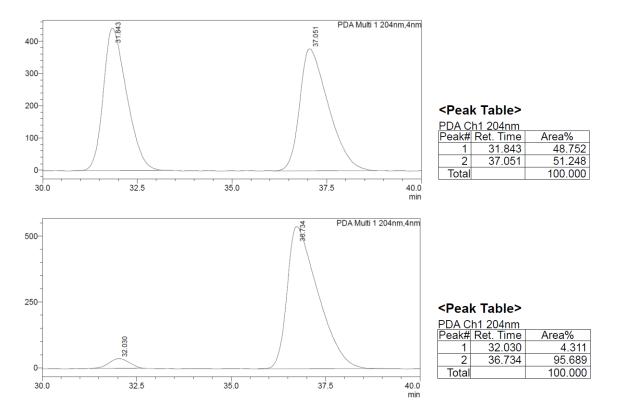

4.7 Characterization data of 2-alkyl-2-aryl-2,5-dihydrofurans

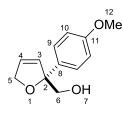
(R)-2-Ethyl-2-(4-methoxyphenyl)-2,5-dihydrofuran (3bb)


Prepared according to **GP3** using 5-ethyl-2,3-dihydrofuran (**1b**). Isolated by column chromatography (Cyclohexane:AcOEt 80:1) as a colorless oil (61% yield, 92% *ee*) with $R_F = 0.17$ (Cyclohexane:AcOEt 10:1); ¹**H-NMR (C₆D₆, 400 MHz)**: δ (ppm) = 0.95 (t, ³J_{H-H} = 7.4 Hz, 3H, H-7), 1.85 (dq, ²J_{H-H} = 14.4 Hz, ³J_H = 7.4 Hz, 1H, H-6), 1.96 (dq, ²J_{H-H} = 14.8 Hz, ³J_{H-H} = 7.4 Hz, 1H, H-6'), 3.33 (s, 3H, H-12), 4.52 (ddd, ²J_{H-H} = 12.9 Hz, ³J_{H-H} = 2.4 Hz, ⁴J_{H-H} = 1.7 Hz, 1H, H-5), 4.57 (ddd, ²J_{H-H} = 12.9 Hz, ³J_{H-H} = 2.4 Hz, ⁴J_{H-H} = 1.7 Hz, 1H, H-5), 5.43 (dt, ³J_{H-H} = 6.1 Hz, ⁴J_{H-H} = 1.7 Hz, 1H, H-3), 5.69 (dt, ³J_{H-H} = 6.1 Hz, ³J_{H-H} = 2.4 Hz, 1H, H-4), 6.82-6.84 (m, 2H, H-10), 7.31-7.35 (m, 2H, H-9); ¹³C{¹H}-NMR (C₆D₆, 100 MHz): δ (ppm) = 8.7 (C-7), 34.9 (C-6), 54.8 (C-12), 75.2 (C-5), 93.8 (C-2), 113.9 (C-10), 125.7 (C-3), 126.5 (C-9), 133.0 (C-4), 138.8 (C-8), 159.0 (C-11); GC-MS (EI): (C₁₃H₁₆O₂), 204.0 (1, M⁺), 175.1 (100, M⁺ – 29), 160.0 (23, M⁺ – 44); **IR spectrum (neat)** (cm⁻¹) = 2966, 2839, 2610, 1509, 1245, 1176, 1083, 1033, 829, 809, 699; [α]²³_D = +115.4 (*c* 1.00, CH₂Cl₂); **HPLC:** OJ-H, 226 nm, Hexane:*i*-PrOH, 98:2, 1 mL/min, 30 °C, t_{R1} = 22.6 and t_{R2} = 24.2 min.

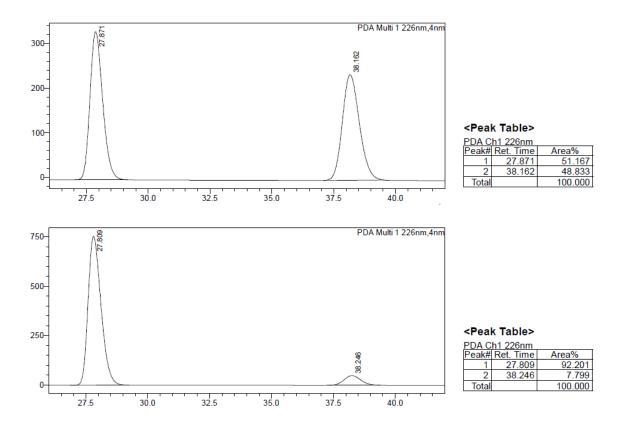

(R)-2-isobutyl-2-(4-methoxyphenyl)-2,5-dihydrofuran (3cb)

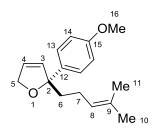
Prepared according to **GP3** using 5-isobutyl-2,3-dihydrofuran (**1c**). Isolated by column chromatography (Cyclohexane:AcOEt 70:1) as a pale yellow oil (44% yield, 91% *ee*) with $R_F = 0.65$ (Cyclohexane:AcOEt 10:1); ¹**H-NMR (C₆D₆, 500 MHz):** δ (ppm) =0.93 (d, ³J_{H+H} = 6.5 Hz, 3H, H-8 or H-9), 1.02 (d, ³J_{H+H} = 6.4 Hz, 3H, H-8 or H-9), 1.75 (dd, ²J_{H+H} = 13.7 Hz, ³J_{H+H} = 6.3 Hz, 3H, H-6), 1.81 (m, 1H, H-7), 1.90 (dd, ²J_{H+H} = 13.7 Hz, ³J_{H+H} = 6.3 Hz, 3H, H-6'), 3.33 (s, 3H, H-14), 4.49 (ddd, ²J_{H+H} = 12.9 Hz, ³J_{H+H} = 2.3 Hz, ⁴J_{H+H} = 1.7 Hz, 1H, H-5), 4.57 (ddd, ²J_{H+H} = 12.9 Hz, ³J_{H+H} = 2.3 Hz, ⁴J_{H+H} = 1.7 Hz, 1H, H-5)', 5.38 (dt, ³J_{H+H} = 6.1 Hz, ⁴J_{H+H} = 1.6 Hz, 1H, H-3), 5.75 (dt, ³J_{H+H} = 6.0 Hz, ³J_{H+H} = 2.4 Hz, 1H, H-4), 6.84 (m, 2H, H-12), 7.32 (m, 2H, H-11); ¹³C{¹H}-NMR(C₆D₆, 125 MHz): δ (ppm) = 24.5 (C-8 or C-9), 24.7 (C-8 or C-9), 25.0 (C-7), 50.6 (C-6), 54.8 (C-14), 74.8 (C-5), 93.8 (C-2), 113.9 (C-12), 125.0 (C-3), 126.3 (C-11), 134.2 (C-4), 139.1 (C-10), 158.8 (C-13); MS (ESI): C₁₅H₂₀O₂, 233.4 [M]⁺; MS (EI positive) calculated for [M]⁺ 233.14, found 233.4; IR spectrum(neat) (cm⁻¹) = 2952, 2837, 1610, 1608, 1463, 1351, 1298, 1245, 1124, 1084, 10396, 530, 831, 807, 735, 701, 651; [α]²³_D = + 100.6 (*c* 0.79, CH₂Cl₂); HPLC: OJ-H, 205 nm, Hexane:*i*PrOH, 98:2, 1 mL/min, 30 °C, t_{R1} = 10.0 and t_{R2} = 11.0 min.


<pea< th=""><th>k Table></th><th></th></pea<>	k Table>														
	PDA Ch1 205nm														
Peak#	Ret. Time	Area%													
1	10.062	48.786													
2	11.055	51.214													
Total		100.000													

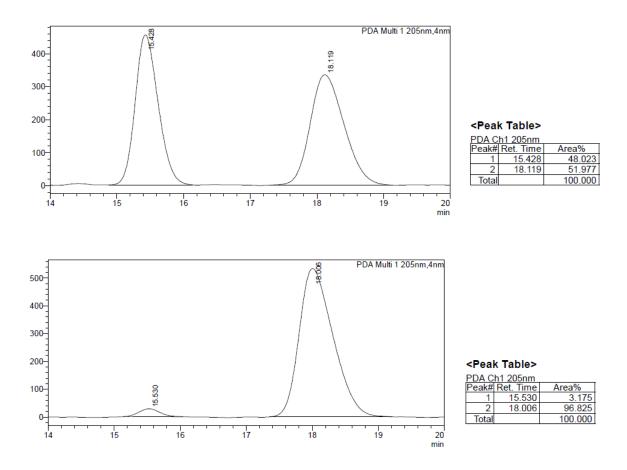

<pea< th=""><th colspan="15"><peak table=""></peak></th></pea<>	<peak table=""></peak>														
PDA C	PDA Ch1 205nm														
Peak#	Ret. Time	Area%													
1	10.052	4.595													
2	10.930	95.405													
Total		100.000													

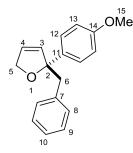
(R)-2-(Methoxymethyl)-2-(4-methoxyphenyl)-2,5-dihydrofuran (3db)


Prepared according to **GP2** using 5-(methoxymethyl)-2,3-dihydrofuran (**1d**). Isolated by column chromatography (Cyclohexane:AcOEt 10:1) as a colorless oil (64% yield, 91% *ee*) with $R_F = 0.35$ (Cyclohexane:AcOEt 2:1); ¹**H-NMR (C₆D₆, 400 MHz)**: δ (ppm) = 3.15 (s, 3H, H-8), 3.32 (s, 3H, H-14), 3.58 (d, ²J_{H-H} = 9.9 Hz, 1H, H-6), 3.61 (d, ²J_{H-H} = 9.9 Hz, 1H, H-6'), 4.52 (ddd, ²J_{H-H} = 12.8 Hz, ³J_{H-H} = 2.5 Hz, ³J_{H-H} = 1.6 Hz, 1H, H-5), 4.67 (ddd, ²J_{H-H} = 12.8 Hz, ³J_{H-H} = 2.4 Hz, ³J_{H-H} = 1.6 Hz, 1H, H-5'), 5.53 (dt, ³J_{H-H} = 6.1 Hz, ⁴J_{H-H} = 1.6 Hz, 1H, H-3), 5.98 (dt, ³J_{H-H} = 6.1 Hz, ³J_{H-H} = 1.6 Hz, 1H, H-4), 6.82-6.86 (m, 2H, H-11), 7.42-7.46 (m, 2H, H-10); ¹³C**[**¹**H]-NMR (C₆D₆, 100 MHz)**: δ (ppm) = 54.8 (C-14), 59.3 (C-8), 75.3 (C-5), 79.8 (C-6), 93.3 (C-2), 113.9 (C-11), 126.9 (C-3), 127.2 (C-10), 131.1 (C-4), 136.4 (C-12), 159.3 (C-9); **GC-MS (EI)**: (C₁₃H₁₆O₃), 221.0 (9, M⁺ + H), 175.1 (100), 160.1 (25), 147.1 (20), 115.1 (21), 91.0 (15), 77.1 (10); **IR spectrum (neat)** (cm⁻¹) = 2931, 2844, 1610, 1510, 1295, 1176, 1106, 1078, 1024, 828, 706; [α]²³_D = +4.3 (*c* 0.87, CH₂Cl₂); **HPLC**: OJ-H, 204 nm, Hexane:*i*-PrOH, 98:2, 1 mL/min, 30 °C, t_{R1} = 31.8 and t_{R2} = 37.1 min.

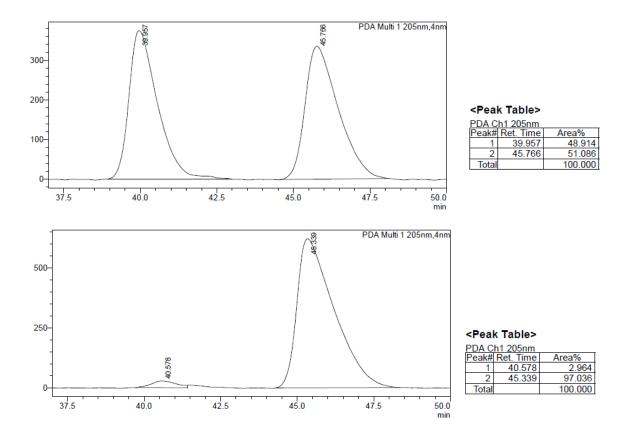


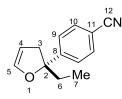
(R)-2-hydroxymethyl-2-(4-methoxyphenyl)-2,5-dihydrofuran (3eb)


Prepared according to **GP2** using 5-(methanolyl)-2,3-dihydrofuran (**1e**). Isolated by column chromatography (Cyclohexane:AcOEt 3:1) as a pale yellow oil (34% yield, 83% *ee*) with $R_F = 0.13$ (Cyclohexane:AcOEt 3:1); ¹H-NMR (C_6D_6 , 400 MHz) δ (ppm) = 1.72 (dd, ${}^3J_{H-H} = 8.1$ Hz, ${}^3J_{H-H} = 5.2$ Hz, 1H, H-7), 3.30 (s, 3H, H-12), 3.70 (dd, ${}^2J_{H-H} = 11.4$ Hz, ${}^3J_{H-H} = 8.0$ Hz, 1H, H-6), 3.77 (dd, ${}^2J_{H-H} = 11.4$ Hz, ${}^3J_{H-H} = 5.0$ Hz, 1H, H-6), 3.77 (dd, ${}^2J_{H-H} = 11.4$ Hz, ${}^3J_{H-H} = 5.0$ Hz, 1H, H-6'), 4.42 (m, 2H, H-5), 5.46 (dt, ${}^3J_{H-H} = 6.1$ Hz, ${}^4J_{H-H} = 1.7$ Hz, 1H, H-3), 5.74 (dt, ${}^3J_{H-H} = 6.2$ Hz, ${}^3J_{H-H} = 2.4$ Hz, 1H, H-4), 6.79 (m, 2H, H-10), 7.24 (m, 2H, H-9); ${}^{13}C{}^{1}H{}$ -NMR (C_6D_6 , 100 MHz): δ (ppm) = 54.8 (C-12), 69.2 (C-6), 75.4 (C-5), 94.4 (C-2), 113.6 (C-10), 126.8 (C-9), 127.3 (C-3), 130.6 (C-4), 135.4 (C-8), 159.4 (C-11); MS (ESI): $C_{12}H_{14}O_3$, 205.1 [M-H]⁺; IR spectrum (neat) (cm⁻¹) = 3437, 2853, 1610, 1510, 1460, 1359, 1247, 1176, 1082, 1038, 941, 881, 829, 732, 702, 633, 591; [α]²³_D = +81.0 (*c* 0.59, CH₂Cl₂); HPLC: IC, 226 nm, Hexane:*i*PrOH, 95:5, 1 mL/min, 30 °C, $t_{R1} = 27.8$ and $t_{R2} = 38.1$ min.



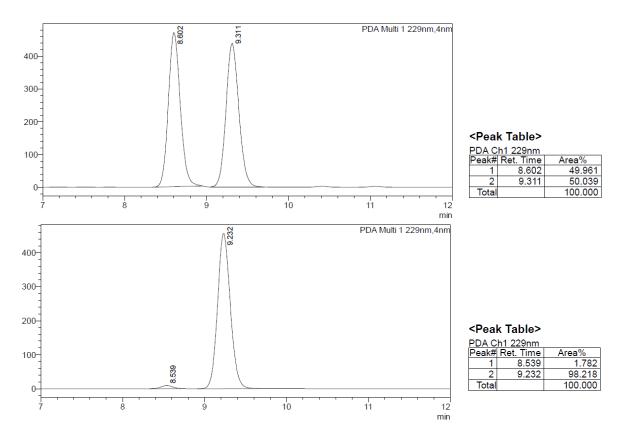
(R)-2-(4-methoxyphenyl)-2-(4-methylpent-3-en-1-yl)-2,5-dihydrofuran (3fb)

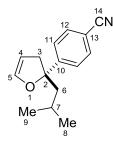

Prepared according to **GP2** using 5-(4-methylpent-3-en-1-yl)-2,3-dihydrofuran (**1f**). Isolated by column chromatography (Cyclohexane:AcOEt 90:1) as a pale yellow oil (43% yield, 94% *ee*) with $R_F = 0.58$ (Cyclohexane:AcOEt 10:1); ¹**H-NMR (C₆D₆, 400 MHz)**: δ (ppm) = 1.54 (s, 3H, H-10 or H-11), 1.65 (s, 3H, H-10 or H-11), 1.96 (m, 1H, H-6), 2.06 (m, 1H, H-6'), 2.22 (m, 2H, H-7), 3.33 (s, 3H, H-16), 4.52 (ddd, ²J_{H-H} = 12.9 Hz, ³J_{H-H} = 2.4 Hz, ⁴J_{H-H} = 1.7 Hz, 1H, H-5), 4.59 (ddd, ²J_{H-H} = 12.9 Hz, ³J_{H-H} = 2.4 Hz, ⁴J_{H-H} = 1.7 Hz, 1H, H-5), 4.59 (ddd, ²J_{H-H} = 12.9 Hz, ³J_{H-H} = 2.4 Hz, ⁴J_{H-H} = 1.7 Hz, 1H, H-5), 4.59 (ddd, ²J_{H-H} = 1.6 Hz, 1H, H-3), 5.74 (dt, ³J_{H-H} = 6.0 Hz, ³J_{H-H} = 2.4 Hz, 1H, H-4), 6.84 (m, 2H, H-14), 7.34 (m, 2H, H-13); ¹³C{¹H}-NMR (C₆D₆, 100 MHz): δ (ppm) = 17.6 (C-10 or C-11), 23.5 (C-7), 25.8 (C-10 or C-11), 42.3 (C-6), 54.8 (C-16), 75.1 (C-5), 93.4 (C-2), 113.9 (C-14), 125.2 (C-8), 125.5 (C-3), 126.4 (C-13), 131.1 (C-9), 133.3 (C-4), 138.8 (C-12), 158.9 (C-15); MS (ESI): C₁₇H₂₂O₂, 259.5 [M+H]⁺; IR spectrum (neat) (cm⁻¹) = 2916, 2840, 1619, 1509, 1159, 1377, 1299, 1243, 1175, 1071, 1031, 828, 808, 701, 575; [α]²³_D = +68.2 (*c* 0.91, CH₂Cl₂); HPLC: OJ-H, 205 nm, Hexane:*i*PrOH, 98:2, 1 mL/min, 30 °C, t_{R1} = 15.4 and t_{R2} = 18.1 min.



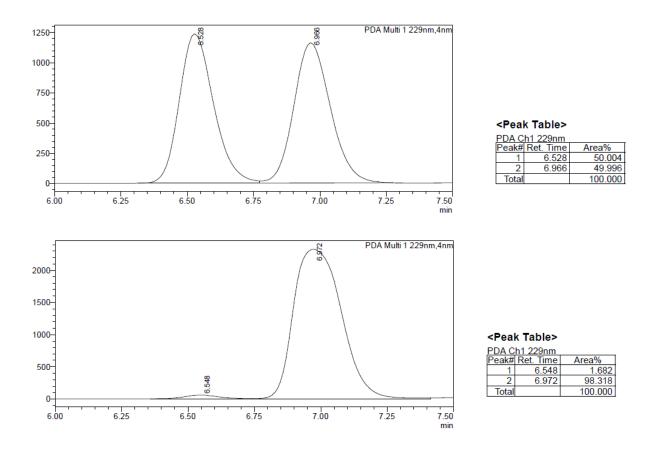
(R)-2-benzyl-2-(4-methoxyphenyl)-2,5-dihydrofuran (3gb)

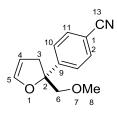
Prepared according to **GP2** using 5-benzyl-2,3-dihydrofuran (**1g**). Isolated by column chromatography (Cyclohexane:AcOEt 70:1) as a pale yellow oil (50% yield, 94% *ee*) with $R_F = 0.50$ (Cyclohexane:AcOEt 10:1); ¹**H-NMR (C₆D₆, 400 MHz**): δ (ppm) = 3.08 (d, ²J_{H-H} = 13.4 Hz, 1H, H-6), 3.23 (d, ²J_{H-H} = 13.4 Hz, 1H, H-6'), 3.31 (s, 3H, H-15), 4.28 (ddd, ²J_{H-H} = 12.8 Hz, ³J_{H-H} = 2.5 Hz, ⁴J_{H-H} = 1.6 Hz, H-5'), 4.40 (ddd, ²J_{H-H} = 12.8 Hz, ³J_{H-H} = 2.5 Hz, ⁴J_{H-H} = 1.6 Hz, H-5'), 5.28 (dt, ³J_{H-H} = 6.1 Hz, ⁴J_{H-H} = 1.6 Hz, H-3), 5.77 (dt, ³J_{H-H} = 6.1 Hz, ³J_{H-H} = 2.5 Hz, H-4), 6.81 (m, 2H, H-13), 7.04 (m, 5H, H-13, H-8 and H-9), 7.30 (m, 2H, H-12); ¹³C{¹H}-NMR (C₆D₆, 100 MHz): δ (ppm) = 48.9 (C-6), 54.7 (C-15), 75.2 (C-5), 93.8 (C-2), 113.8 (C-13), 126.1 (C-3), 126.3 (C-10), 126.7 (C-12), 128.0 (C-8 or C-9), 131.2 (C-8 or C-9), 132.4 (C-4), 138.0 (C-7 or C-11), 138.5 (C-7 or C-11), 159.0 (C-14); MS (ESI): C₁₈H₁₈O₂, 267.5 [M+H]⁺; **IR spectrum (neat)** (cm⁻¹) = 2837, 1605, 1502, 1454, 1346, 1299, 1241, 1174, 1114, 1077, 1035, 994, 953, 903, 837, 813, 724, 695, 637, 568; [α]²³_D = -225.1 (*c* 0.83, CH₂Cl₂); **HPLC:** OJ-H, 205nm, Hexane:*i*PrOH, 98:2, 1 mL/min,30 °C, t_{R1} = 39.9 and t_{R2} = 45.7 min.



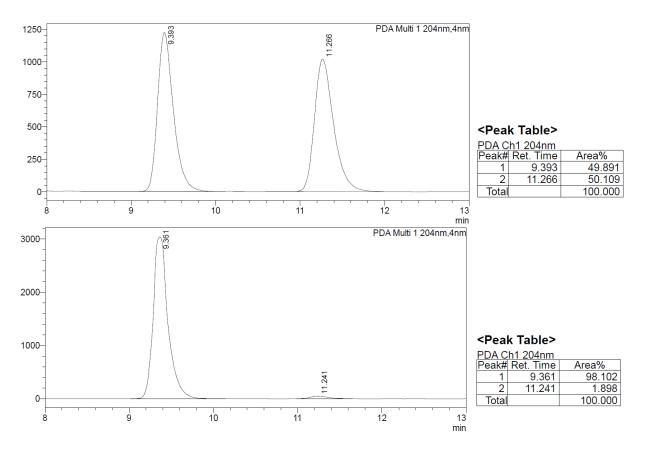

4.8 Characterization data of 2-alkyl-2-aryl-2,3-dihydrofurans

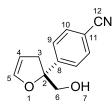
(R)-2-(4-cyanophenyl)-2-ethyl-2,3-dihydrofuran (4bc)


Prepared according to **GP3** using 5-ethyl-2,3-dihydrofuran (**1b**). Isolated by column chromatography (Cyclohexane:AcOEt 80:1) as a colorless oil (63% yield, 96% *ee*) with $R_F = 0.44$ (Cyclohexane:AcOEt 10:1); ¹H-NMR (C₆D₆, 400 MHz): δ (ppm) = 0.67 (t, ³J_{H-H} = 7.3 Hz, 3H, H-7), 1.48 (dq, ²J_{H-H} = 14.5 Hz, ³J_{H-H} = 7.3 Hz, 1H, H-6), 1.68 (dq, ²J_{H-H} = 14.5 Hz, ³J_{H-H} = 7.3 Hz, 1H, H-6'), 2.29 (dt, ²J_{H-H} = 15.2 Hz, ³J_{H-H} = 2.4 Hz, 1H, H-3'), 2.40 (dt, ²J_{H-H} = 15.2 Hz, ³J_{H-H} = 2.4 Hz, 1H, H-3'), 4.50-4.52 (m, 1H, H-4), 6.09-6.10 (m, 1H, H-5), 6.92-6.94 (m, 2H, H-9), 7.03-7.05 (m, 2H, H-10); ¹³C{¹H}-NMR (C₆D₆, 100 MHz): δ (ppm) = 8.2 (C-7), 35.1 (C-6), 42.7 (C-3), 89.6 (C-2), 98.6 (C-4), 111.3 (C-11), 118.9 (C-12), 125.8 (C-9), 132.0 (C-10), 144.5 (C-5), 151.7 (C-8); GC-MS (EI): (C₁₃H₁₃NO), 199.1 (9, M⁺), 170.1 (100), 142.1 (40), 116.1 (30), 115.0 (30), 89.1 (10); IR spectrum (neat) (cm⁻¹) = 2971, 2930, 2229, 1625, 1608, 1155, 1055, 840, 707; [α]²³_D = +33.9 (*c* 1.00, CH₂Cl₂); HPLC: OJ-H, 229 nm, Hexane:*i*-PrOH, 98:2, 1 mL/min, 30 °C, t_{R1} = 8.6 and t_{R2} = 9.3 min.

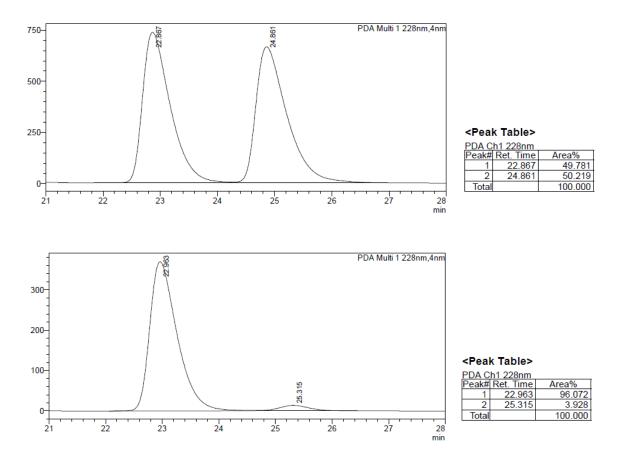


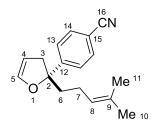
(R)-2-(4-cyanophenyl)-2-isobutyl-2,3-dihydrofuran (4cc)


Prepared according to **GP3** using 5-isobutyl-2,3-dihydrofuran (**1c**). Isolated by column chromatography (Cyclohexane:AcOEt 90:1) as a pale yellow oil (44% yield, 97% *ee*) with $R_F = 0.54$ (Cyclohexane:AcOEt 10:1); ¹**H-NMR (C₆D₆, 400 MHz)**: δ (ppm) = 0.64 (d, ³J_{H-H} = 6.5 Hz, 3H, H-8 or H-9), 0.89 (d, ³J_{H-H} = 6.5 Hz, 3H, H-8 or H-9), 1.45 (m, 2H, H-6 and H-7), 1.65 (dd, ²J_{H-H} = 14.1 Hz, ³J_{H-H} = 6.7 Hz, 1H, H-6'), 2.30 (dt, ²J_{H-H} = 15.2 Hz, ³J_{H-H} = 2.4 Hz, 1H, H-3), 2.42 (dt, ²J_{H-H} = 15.2 Hz, ³J_{H-H} = 2.4 Hz, 1H, H-3'), 4.50 (m, 1H, H-4), 6.00 (m, 1H, H-5), 6.93 (m, 2H, H-11), 7.04 (m, 2H, H-12); ¹³C{¹H}-NMR (C₆D₆, 100 MHz): δ (ppm) = 23.9 (C-8 or C-9), 24.3 (C-8 or C-9), 24.8 (C-7), 44.8 (C-3), 50.6 (C-6), 89.7 (C-2), 98.5 (C-4), 111.1 (C-13), 118.8 (C-14), 125.8 (C-11), 132.0 (C-12), 144.4 (C-5), 152.2 (C-10); MS (ESI): C₁₅H₁₇NO, 226.1 [M-H]⁺. IR spectrum (neat) (cm⁻¹) = 2954, 2910, 2229, 1624, 1608, 1502, 1466, 1387, 1279, 1155, 1123, 1056, 967, 844, 704, 631; [α]²³_D = +37.1 (*c* 0.85, CH₂Cl₂); HPLC: OJ-H, 229 nm, Hexane:*i*PrOH, 98:2, 1 mL/min, 30 °C, t_{R1} = 6.5 and t_{R2} = 6.9 min.

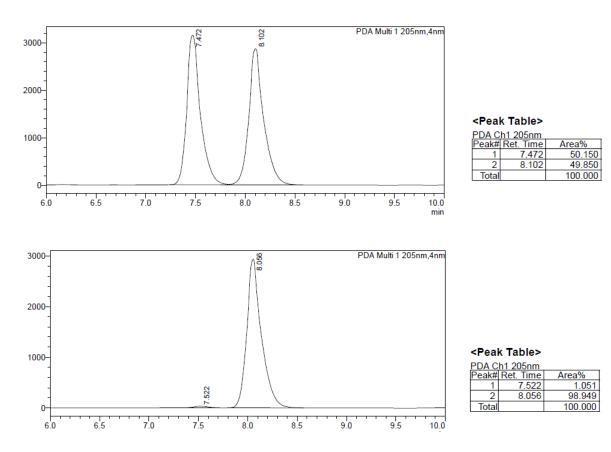


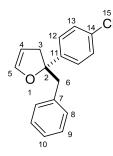
(R)-2-(4-cyanophenyl)-2-(methoxymethyl)-2,3-dihydrofuran (4dc)


Prepared according to **GP2** using 5-(methoxymethyl)-2,3-dihydrofuran (**1d**). Isolated by column chromatography (Cyclohexane:AcOEt 10:1) as a colorless oil (63% yield, 96% *ee*) with $R_F = 0.45$ (Cyclohexane:AcOEt 2:1); ¹**H-NMR (C₆D₆, 400 MHz)**: δ (ppm) = 2.29 (dt, ²J_{H-H} = 15.2 Hz, ³J_{H-H} = 2.4 Hz, H-3), 2.81 (dt, ²J_{H-H} = 15.3 Hz, ³J_{H-H} = 2.4 Hz, 1H, H-3'), 2.98 (s, 3H, H-8), 3.21 (d, ²J_{H-H} = 9.9 Hz, 1H, H-6), 3.25 (d, ²J_{H-H} = 10.0 Hz, 1H, H-6'), 4.56-4.58 (m, 1H, H-4), 6.10-6.12 (m, 1H, H-5), 7.06-7.08 (m, 2H, H-11), 7.11-7.13 (m, 2H, H-10); ¹³C{¹H}-NMR (C₆D₆, 100 MHz): δ (ppm) = 39.4 (C-3), 59.2 (C-8), 77.9 (C-6), 88.7 (C-2), 99.1 (C-4), 111.7 (C-12), 118.9 (C-13), 126.4 (C-10), 131.9 (C-11), 144.6 (C-5), 149.8 (C-9); GC-MS (EI): (C₁₃H₁₃NO₂), 215.1 (3, M⁺), 170.1 (100), 152.0 (14), 142.1 (31), 116.0 (28), 102.0 (12), 89.0 (17); IR spectrum (neat) (cm⁻¹) = 2926, 2228, 1623, 1149, 1108, 1056, 841, 702, 557; [α]²³_D = +38.5 (*c* 0.88, CH₂Cl₂); HPLC: AD-H, 204 nm, Hexane:*i*-PrOH, 98:2, 1 mL/min, 30 °C, t_{R1} = 9.4 and t_{R2} = 11.3 min.

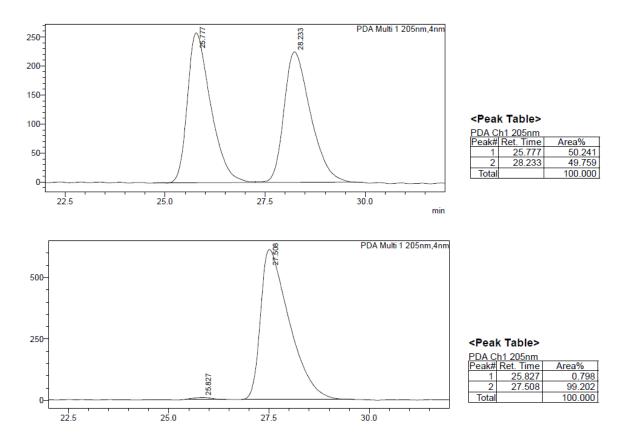


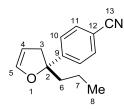
(R)-2-(4-cyanophenyl)-2-hydroxymethyl-2,3-dihydrofuran (4ec)


Prepared according to **GP2** using 5-(methanolyl)-2,3-dihydrofuran (**1e**). Isolated by column chromatography (Cyclohexane:AcOEt 4:1) as a pale yellow oil (37% yield, 92% *ee*) with $R_F = 0.14$ (Cyclohexane:AcOEt 4:1). ¹H-NMR (C₆D₆, 400 MHz) : δ (ppm) = 1.36 (m, 1H, H-7), 2.17 (dt, ²J_{H-H} = 15.2 Hz, ³J_{H-H} = 2.4 Hz, 1H, H-3), 2.65 (dt, ²J_{H-H} = 15.2 Hz, ³J_{H-H} = 2.4 Hz, 1H, H-3'), 3.32 (m, 2H, H-6), 4.51 (m, 2H, H-4), 6.00 (m, 2H, H-5), 6.90 (m, 2H, H-9), 7.00 (m, 2H, H-10); ¹³C{¹H}-NMR(C₆D₆, 100 MHz): δ (ppm) = 38.7 (C-3), 68.4 (C-6), 89.7 (C-2), 99.7 (C-4), 111.8 (C-11), 118.7 (C-12), 126.0 (C-9), 132.0 (C-10), 144.2 (C-5), 149.0 (C-8); MS (ESI): C₁₂H₁₁NO₂, 202.1 [M+H]⁺; IR spectrum (neat) (cm⁻¹) = 3428, 2976, 2864, 2229, 1625, 1609, 1503, 1448, 1383, 1286, 1150, 1113, 1052, 968, 908, 841, 708, 628, 558; [α]²³_D = + 9.7 (*c* 0.90, CH₂Cl₂); HPLC: OD-H, 228 nm, Hexane:*i*PrOH, 95:5, 1 mL/min, 30 °C, t_{R1} = 22.8 and t_{R2} = 24.8 min.

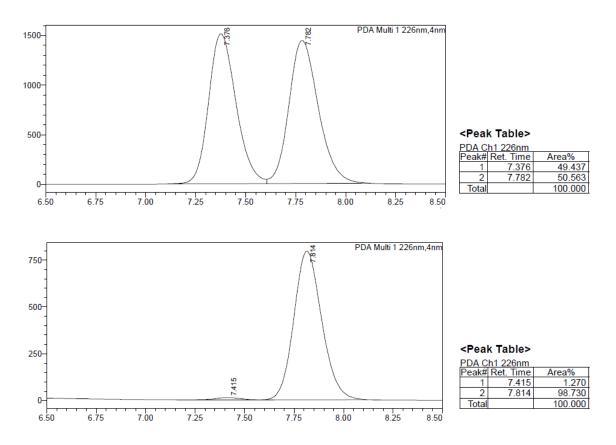


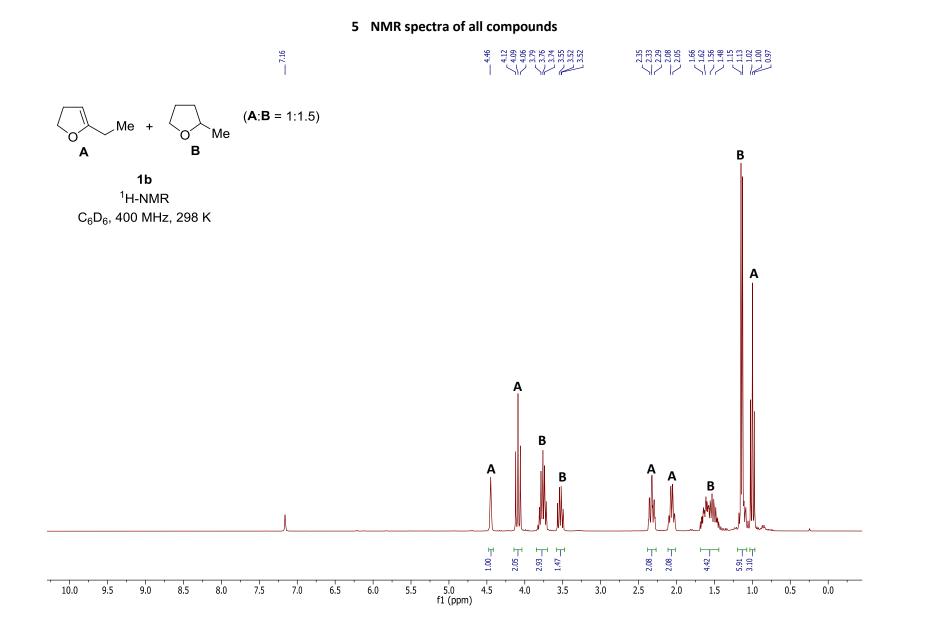
(R)-2-(4-cyanophenyl)-2-(4-methylpent-3-en-1-yl)-2,3-dihydrofuran (4fc)

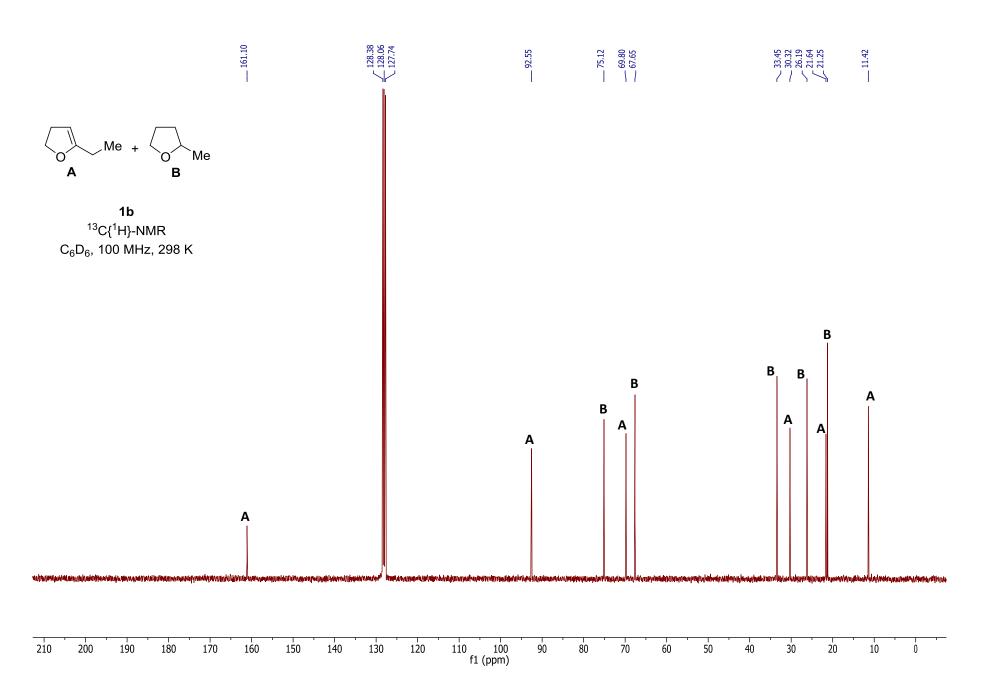

Prepared according to **GP2** using 5-(4-methylpent-3-en-1-yl)-2,3-dihydrofuran (**1f**). Isolated by column chromatography (Cyclohexane:AcOEt 85:1) as a pale yellow oil (58% yield, 98% *ee*) with $R_F = 0.60$ (Cyclohexane:AcOEt 10:1); ¹**H-NMR (C₆D₆, 400 MHz)**: δ (ppm) = 1.42 (s, 3H, H-10 or H-11), 1.60 (H-10 or H-11), 1.75-1.83 (m, 3H, H-6, H-6' and H-7), 2.1 (m, 1H, H-7'), 2.32 (dt, ²J_{H-H} = 15.2 Hz, ³J_{H-H} = 2.4 Hz, 1H, H-3), 2.47 (dt, ²J_{H-H} = 15.2 Hz, ³J_{H-H} = 2.4 Hz, 1H, H-3'), 4.5 (m, 1H, H-4), 5.05 (m, 1H, H-14), 6.1 (m, 1H, H-5), 6.97 (m, 2H, H-13), 7.05 (m, 2H, H-14); ¹³C{¹H}-NMR (C₆D₆, 100 MHz): δ (ppm) = 17.5 (C-10 or C-11), 22.9 (C-7), 25.7 (C-10 or C-11), 42.5 (C-6), 43.2 (C-3), 89.2 (C-2), 98.6 (C-4), 111.2 (C-15), 118.8 (C-16), 124.1 (C-8), 125.7 (C-13), 131.8 (C-9), 132.0 (C-14), 144.5 (C-5), 151.8 (C-12); MS (ESI): C₁₇H₁₉NO, 254.6 [M+H]⁺; **IR spectrum (neat)** (cm⁻¹) = 2921, 2229, 1624, 1609, 1503, 1448, 1407, 1377, 1327, 1147, 1124, 1053, 1016, 965, 930, 882, 842, 775, 706, 560; [α]²³_D = +57.2 (*c* 0.85, CH₂Cl₂); **HPLC:** OJ-H, 205 nm,Hexane:*i*PrOH, 98:2, 1 mL/min, 30 °C, t_{R1} = 7.4 and t_{R2} = 8.1 min.

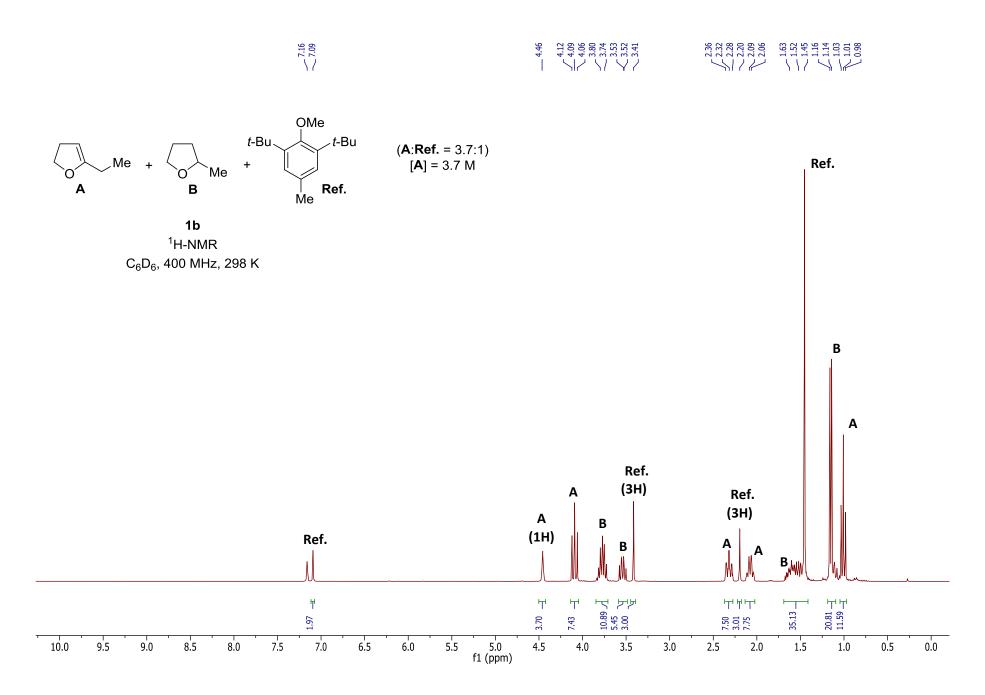


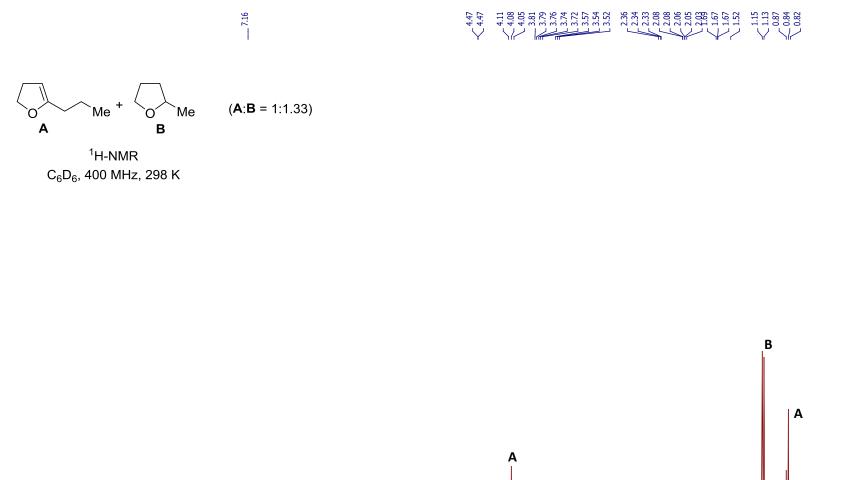
(R)-2-(4-cyanophenyl)-2-benzyl-2,3-dihydrofuran (4gc)

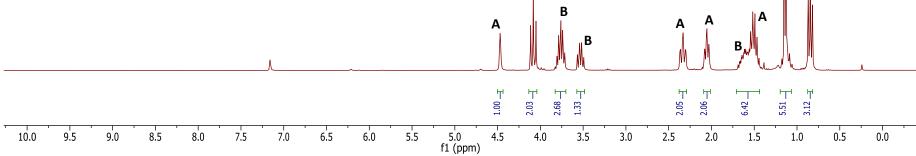

Prepared according to **GP2** using 5-benzyl-2,3-dihydrofuran (**1g**). Isolated by column chromatography (Cyclohexane:AcOEt 80:1) as a pale yellow oil (64% yield, 98% *ee*) with $R_F = 0.45$ (Cyclohexane:AcOEt 10:1); ¹**H-NMR (C₆D₆, 400 MHz)**: δ (ppm) = 2.35 (dt, ²J_{H-H} = 15.1 Hz, ³J_{H-H} = 2.4 Hz, 1H, H-3), 2.55 (dt, ²J_{H-H} = 15.1 Hz, ³J_{H-H} = 2.4 Hz, 1H, H-3'), 2.71 (d, ²J_{H-H} = 13.7 Hz, H-6), 2.92 (d, ²J_{H-H} = 13.7 Hz, H-6'), 4.49 (m, 1H, H-4), 6.05 (m, 1H, H-5), 6.80 (m, 2H, H-12), 6.83 (m, 2H, H-8), 6.95 (m, 2H, H-13), 7.02 (m, 3H, H-9 and H-10); ¹³C{¹H}-NMR(C₆D₆, 100 MHz): δ (ppm) = 42.1 (C-3), 48.0 (C-6), 89.5 (C-2), 99.0 (C-4), 111.3 (C-14), 118.8 (C-15), 126.2 (C-12), 126.9 (C-10), 128.0(C-9), 130.8 (C-8), 131.7 (C-13), 136.1 (C-7), 144.2 (C-5), 151.1 (C-11); MS (ESI): C₁₈H₁₅NO, 262.0 [M+H]⁺; IR spectrum (neat) (cm⁻¹) = 2919, 2228, 1624, 1607, 1497, 1453, 1403, 1333, 1281, 1146, 1055, 994, 970, 843, 753, 698, 628; [α]²³_D= -41.5 (*c* 0.86, CH₂Cl₂); HPLC: OJ-H, 205 nm, Hexane:/PrOH, 98:2, 1 mL/min,30 °C, t_{R1} = 25.7 and t_{R2} = 28.2 min.

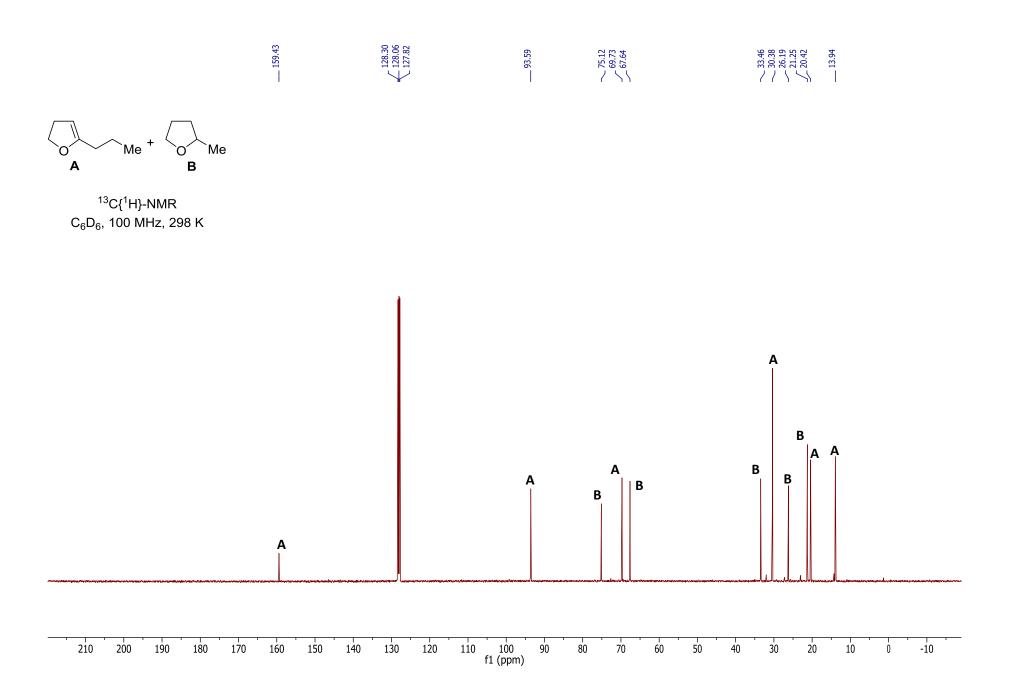


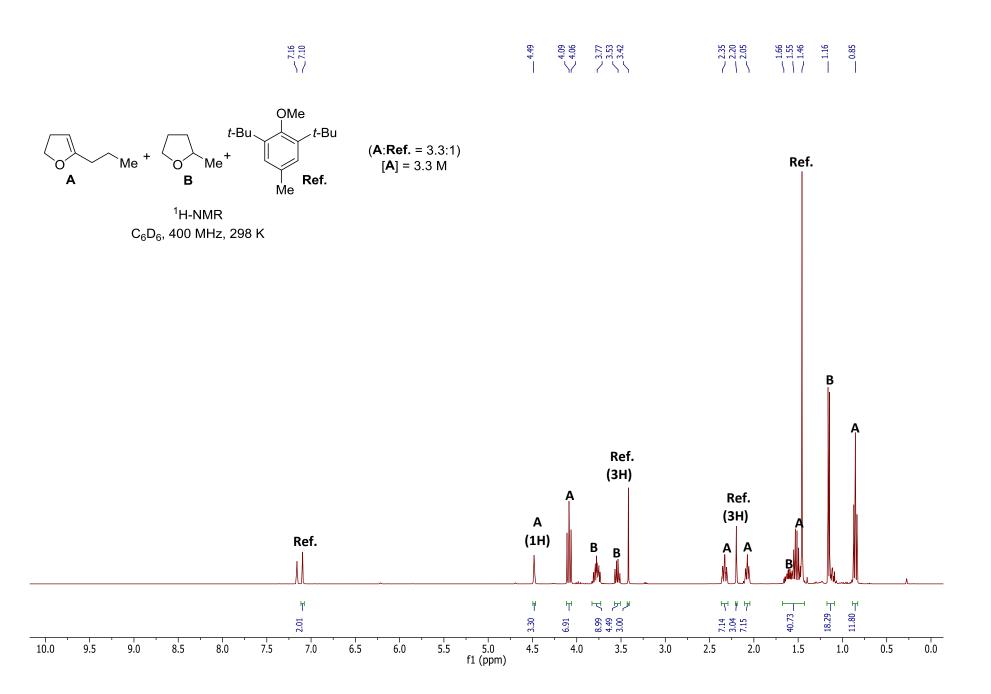


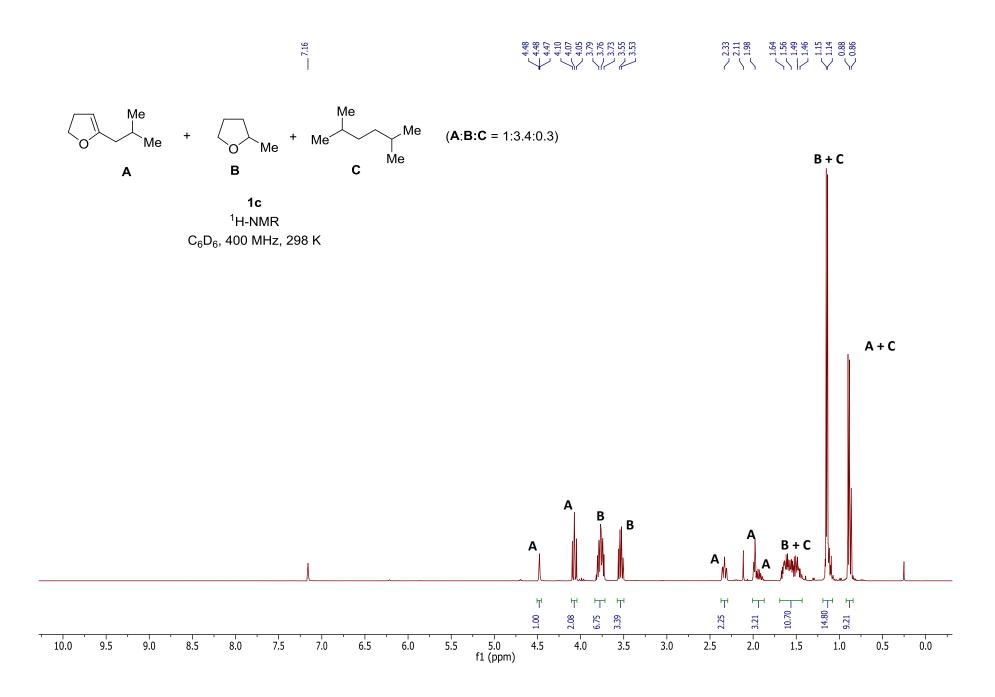

(R)-2-(4-cyanophenyl)-2-propyl-2,3-dihydrofuran

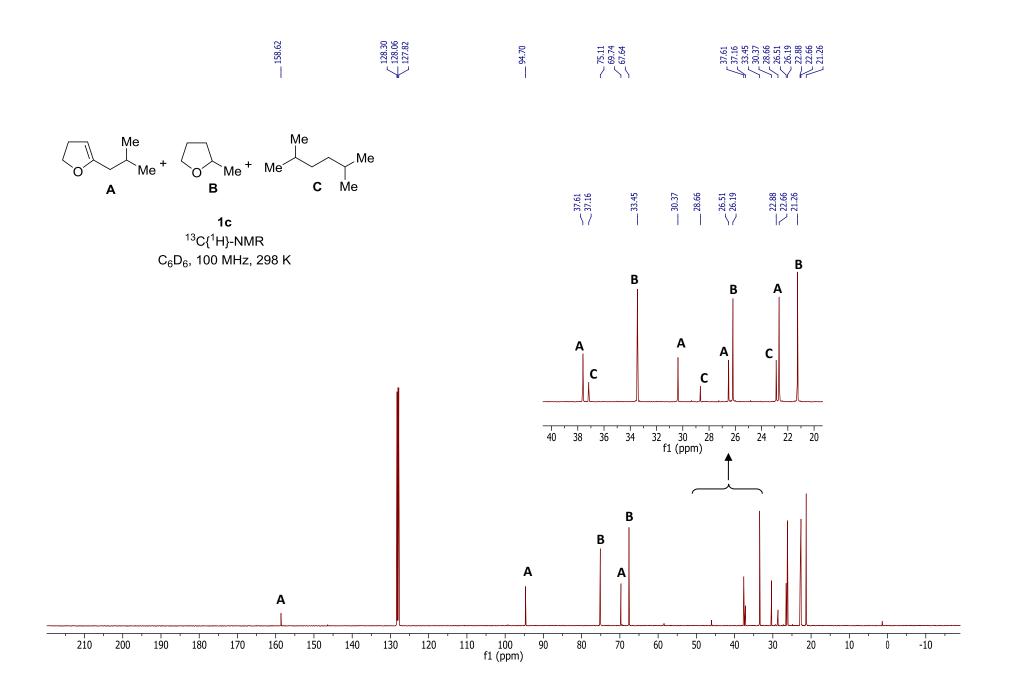

Prepared according to **GP3** using 5-propyl-2,3-dihydrofuran (**xxx**). Isolated by column chromatography (Cyclohexane:AcOEt 80:1) as a colorless oil (66% yield, 96% *ee*) with $R_F = 0.5$ (Cyclohexane:AcOEt 10:1); ¹**H-NMR (C₆D₆, 400 MHz)**: δ (ppm) = 0.72 (t, ³J_{H-H} = 7.3 Hz, 3H, H-8), 0.89-0.99 (m, 1H, H-7), 1.25-1.32 (m, 1H, H-7'), 1.46 (ddd, ²J_{H-H} = 13.6 Hz, ³J_{H-H} = 11.7 Hz, ³J_{H-H} = 4.5 Hz, 1H, H-6), 1.65 (ddd, ²J_{H-H} = 13.7 Hz, ³J_{H-H} = 11.6 Hz, ³J_{H-H} = 4.6 Hz, 1H, H-6'), 2.31 (dt, ²J_{H-H} = 15.2 Hz, ³J_{H-H} = 2.4 Hz, 1H, H-3), 2.42 (dt, ²J_{H-H} = 15.2 Hz, ³J_{H-H} = 2.4 Hz, 1H, H-3'), 4.51-4.53 (m, 1H, H-4), 6.09-6.11 (m, 1H, H-5), 6.93-6.96 (m, 2H, H-10), 7.04-7.07 (m, 2H, H-11); ¹³C{¹H}-NMR (C₆D₆, 100 MHz): δ (ppm) = 14.3 (C-8), 17.4 (C-7), 43.2 (C-3), 44.7 (C-6), 89.4 (C-2), 98.5 (C-4), 111.3 (C-12), 118.9 (C-13), 125.8 (C-10), 132.0 (C-11), 144.5 (C-5), 152.06 (C-9); GC-MS (EI): (C₁₄H₁₅NO), 213.1 (11, M⁺), 170.1 (100), 154.0 (23), 142.1 (40), 127.1 (13), 116.0 (33), 102.0 (10); IR spectrum (neat) (cm⁻¹) = 2958, 2872, 2280, 1624, 1608, 1457, 1155, 1051, 842, 704, 557; [α]²³_D = +42.4 (*c* 0.41, CH₂Cl₂); HPLC: OJ-H, 226 nm, Hexane:*i*-PrOH, 98:2, 1 mL/min, 30°C, t_{R1} = 7.4 and t_{R2} = 7.8 min.

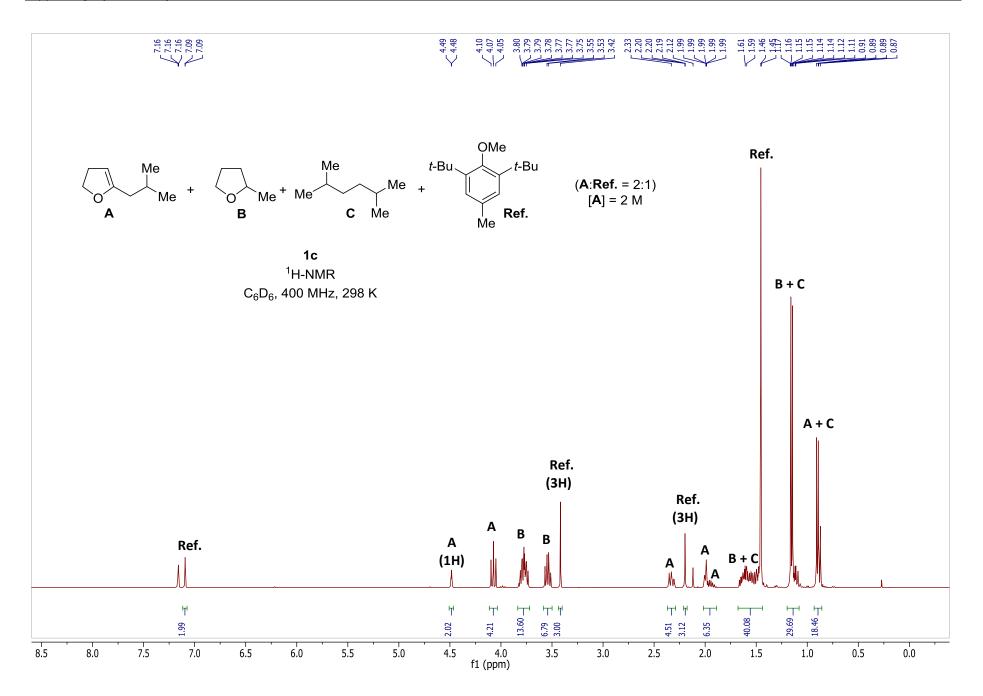


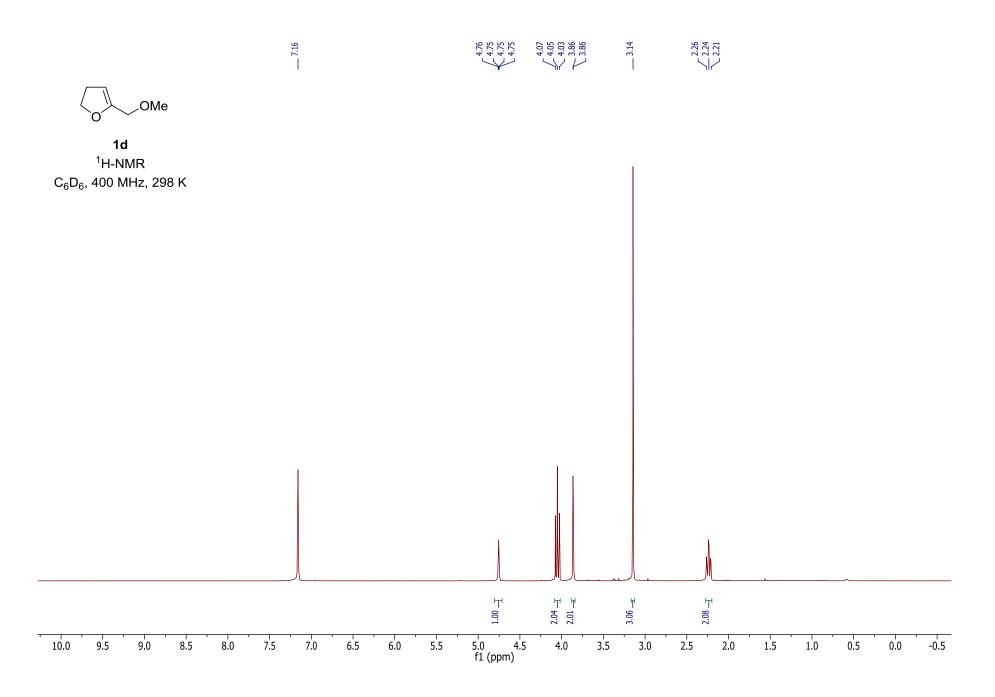


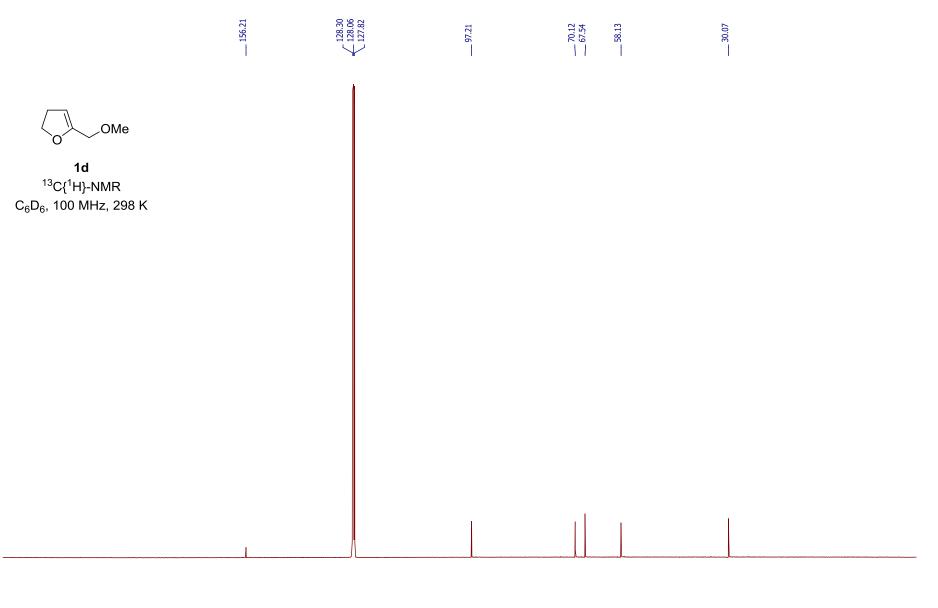


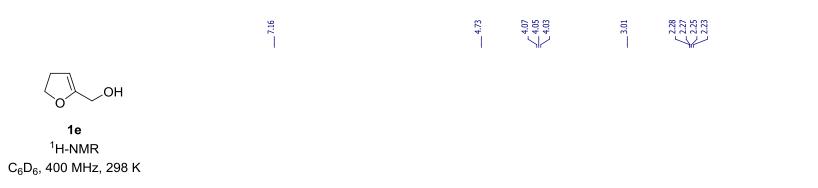


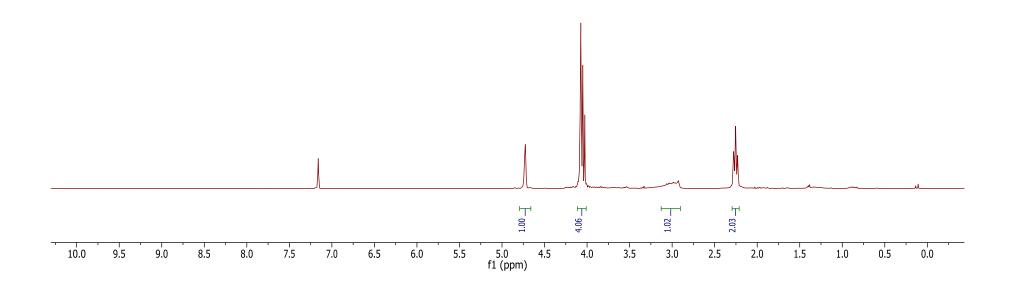


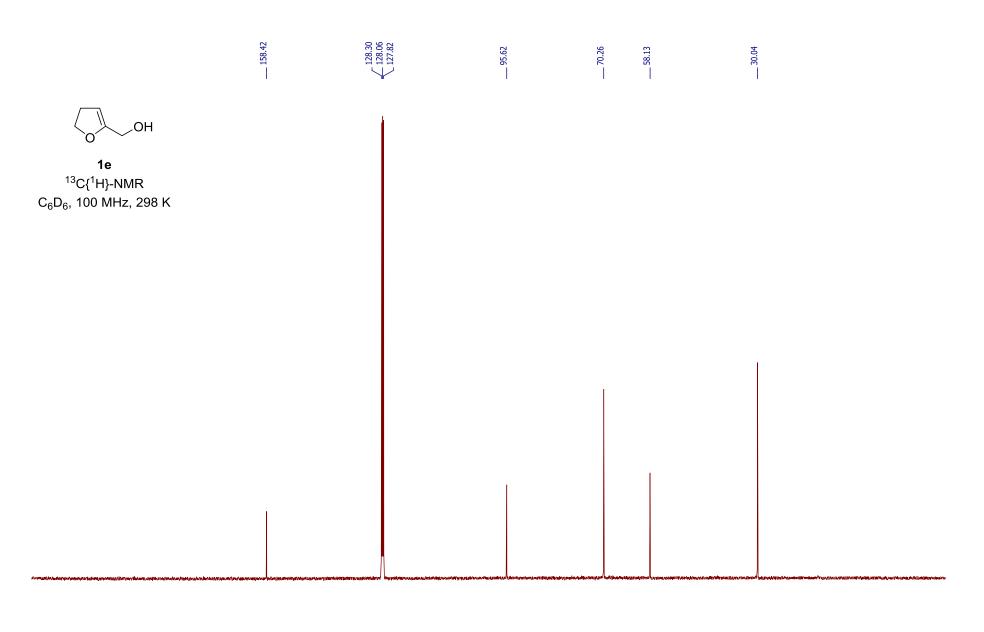


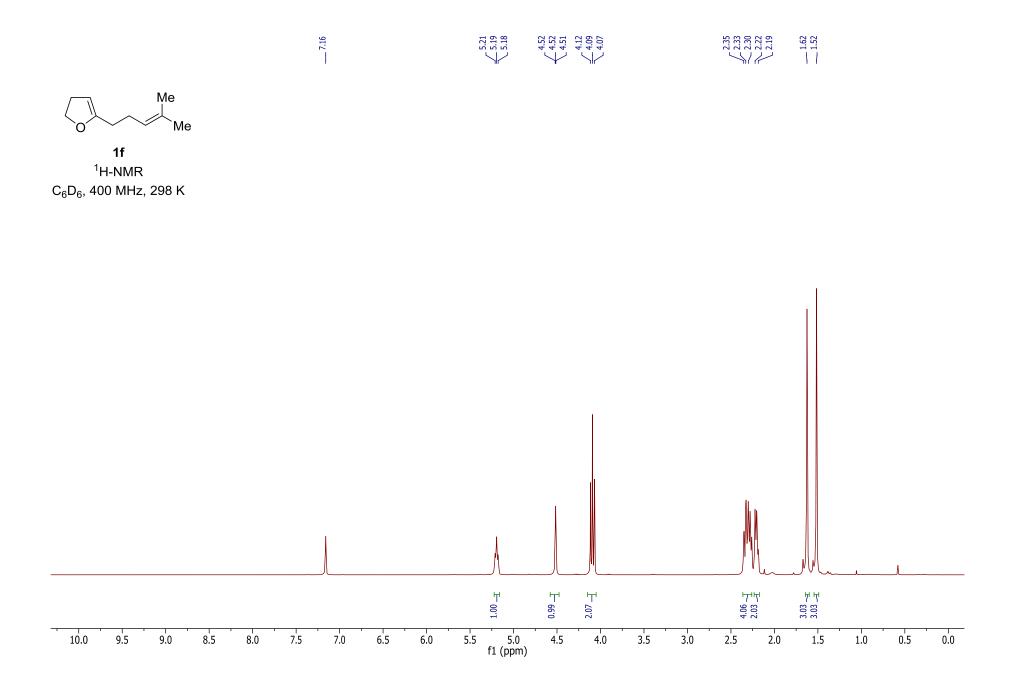


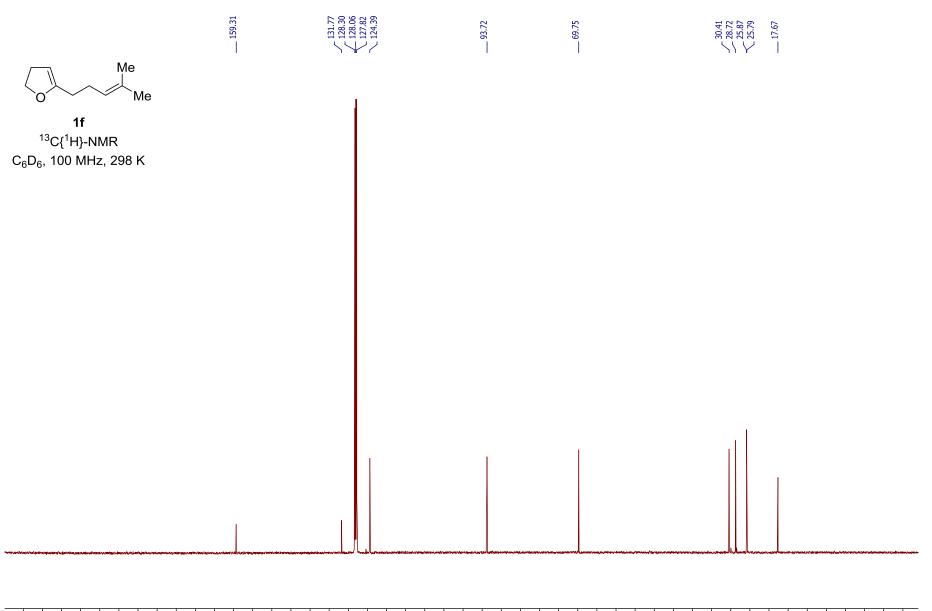


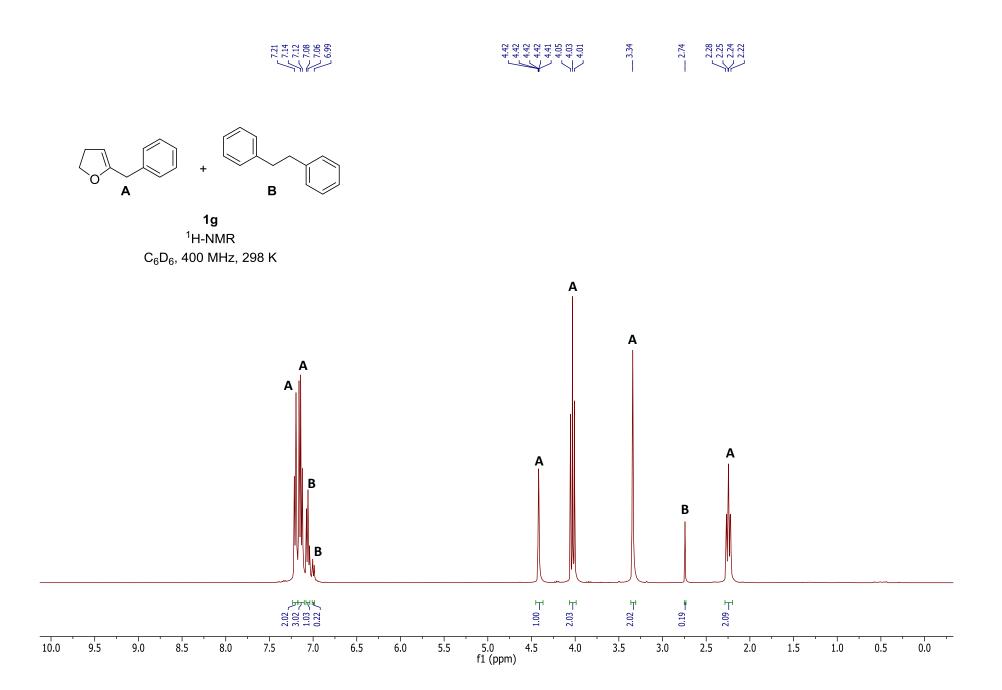


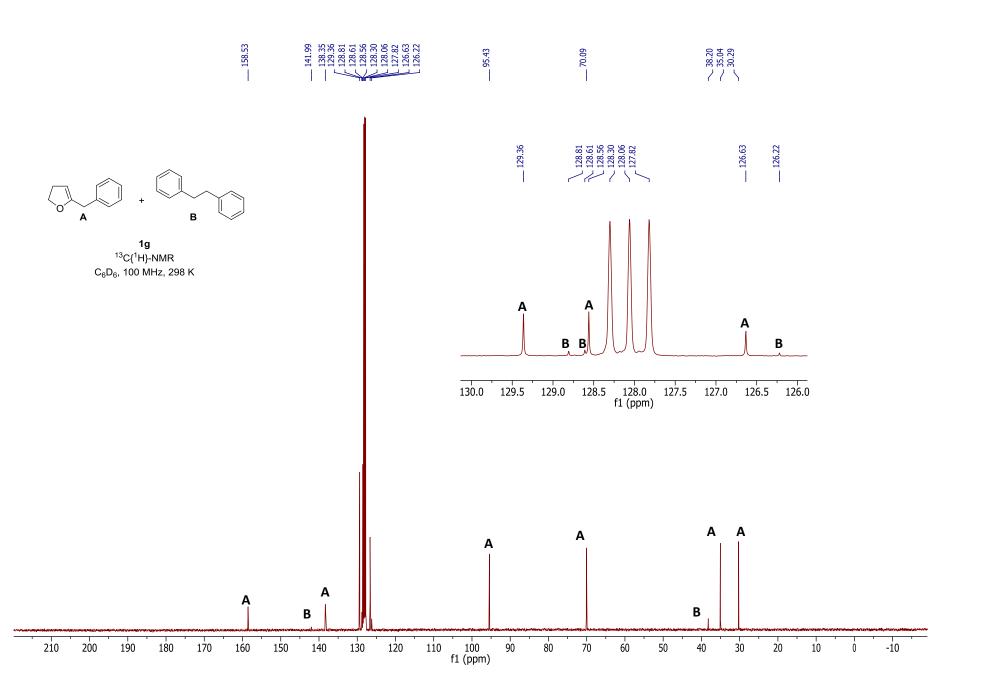


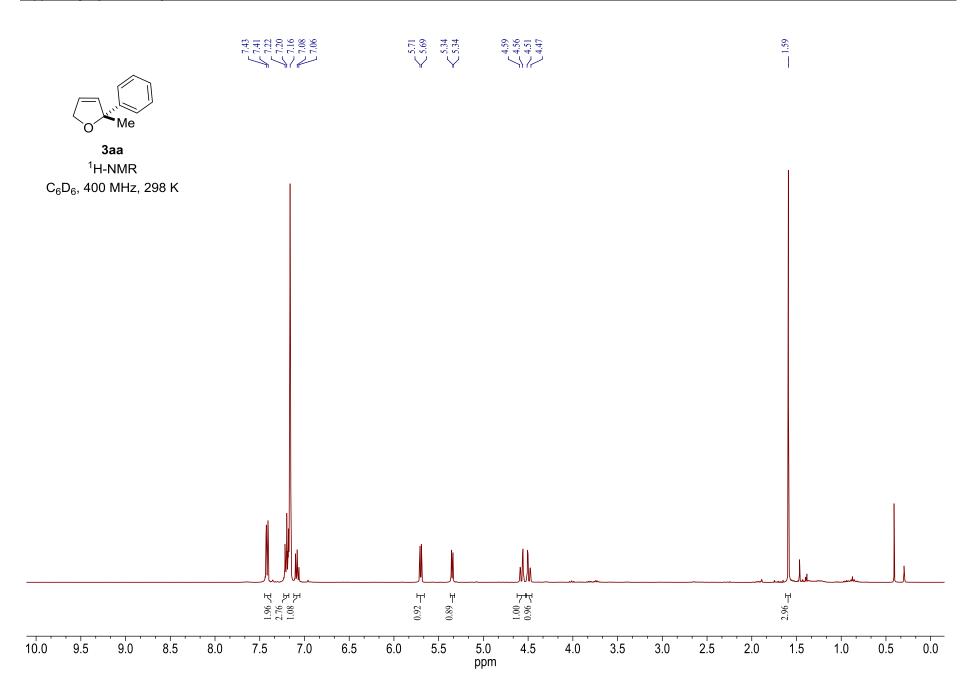


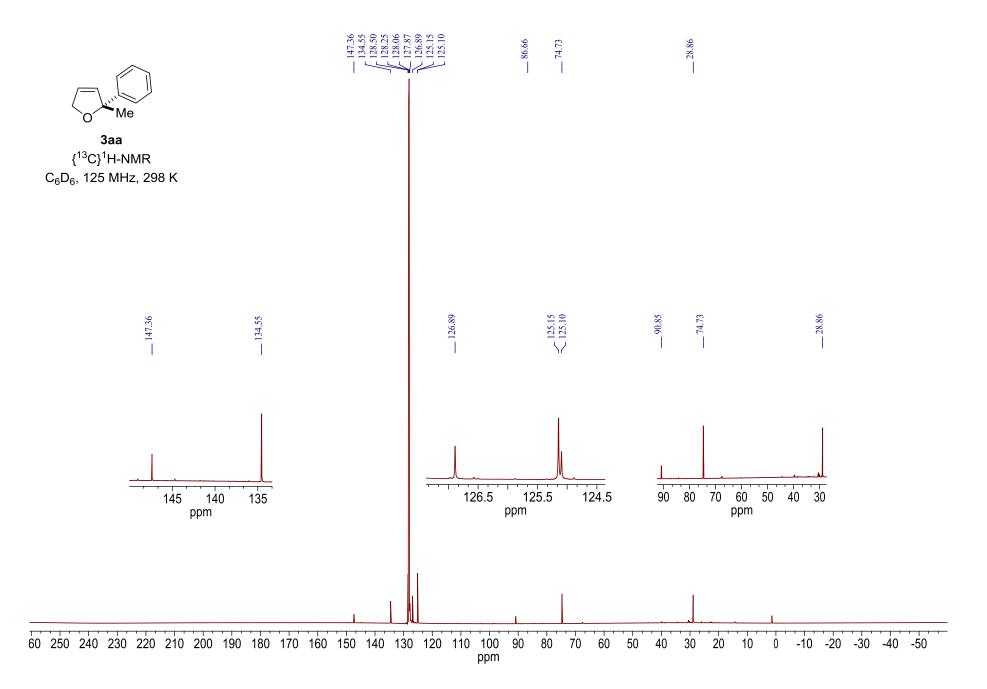

					·																	
210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10
											f1 (ppm)											

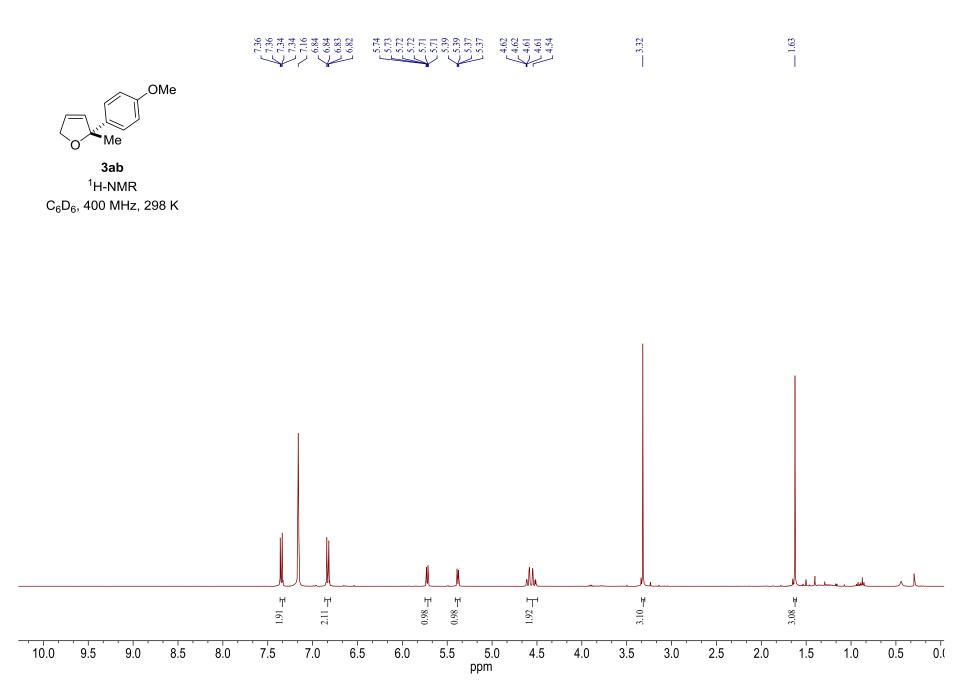


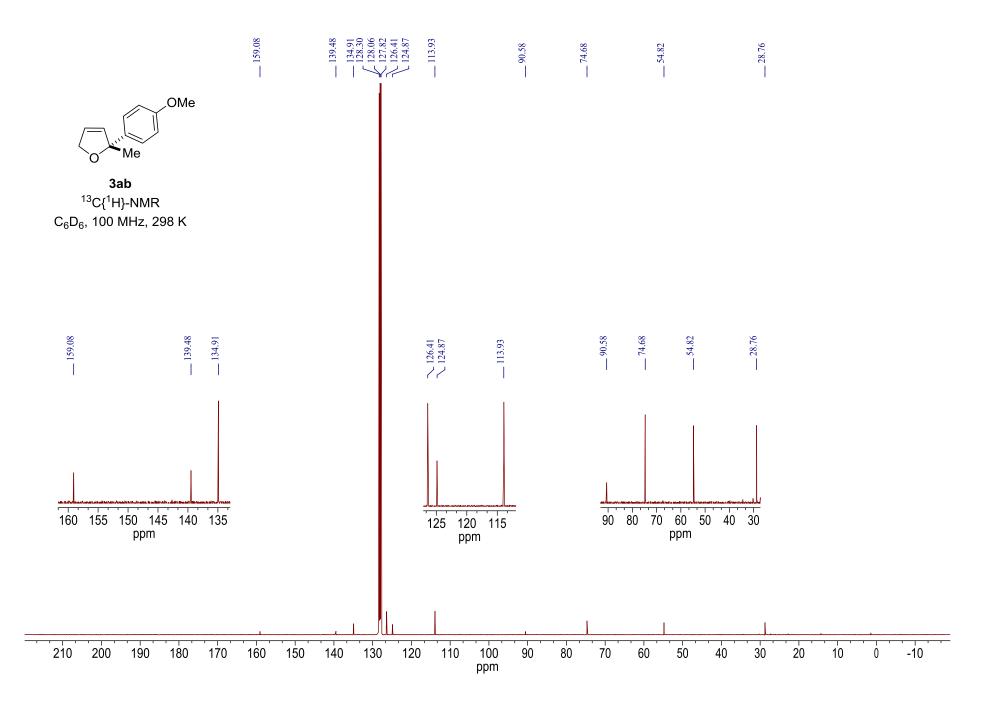


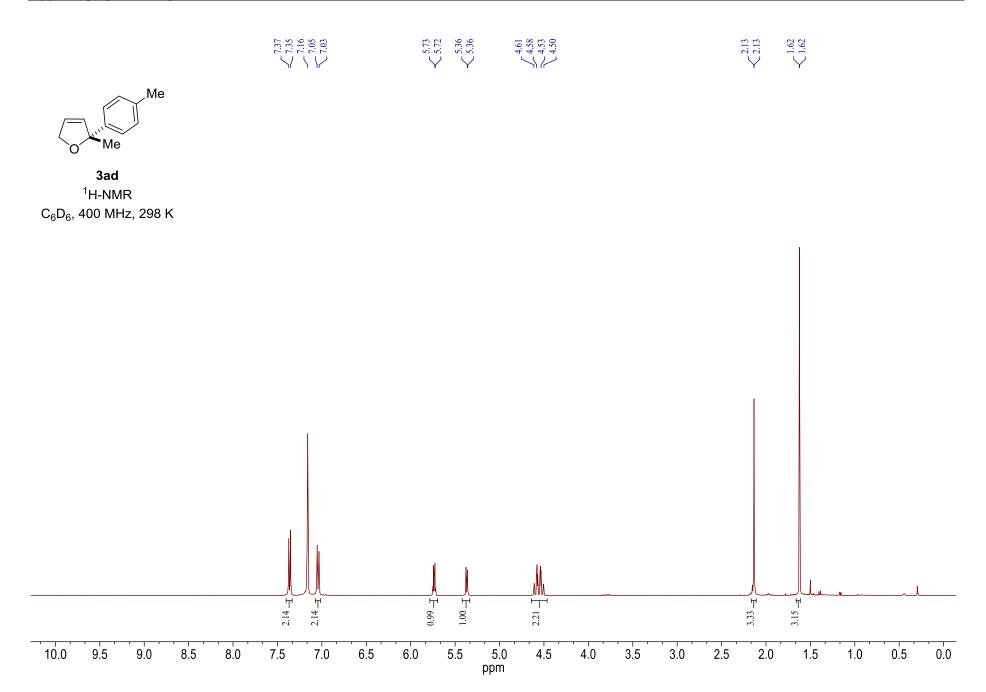

		·			·		· · · ·	· · · ·	· · · ·	·			·	·	· · ·	·	·	·	·			
210	200	190	180	170	160	150	140	130	120	110	100 f1 (ppm)	90	80	70	60	50	40	30	20	10	0	-10

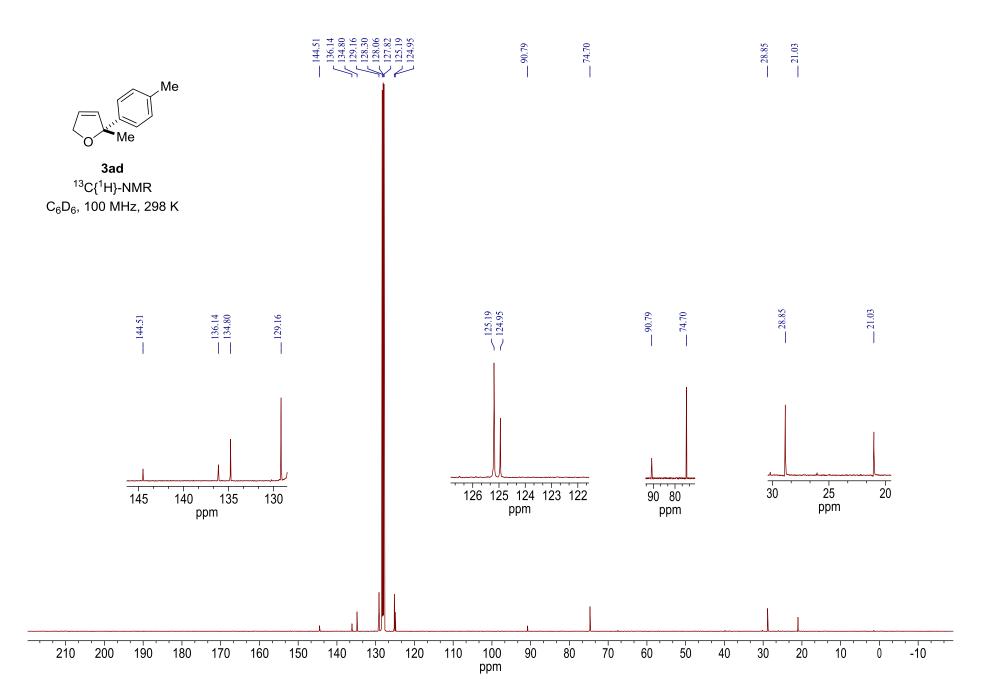


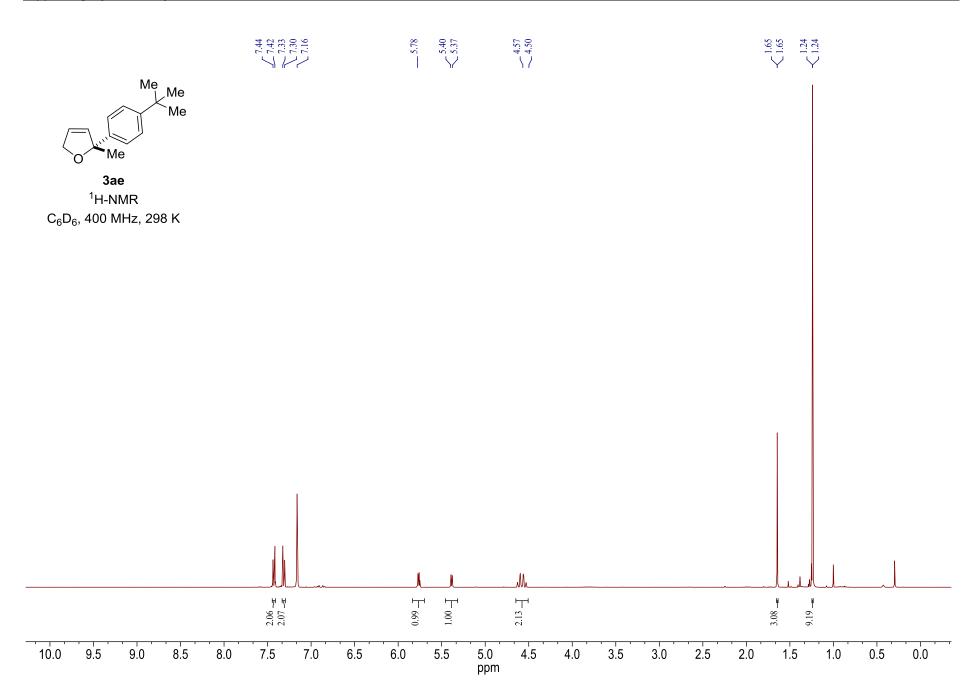


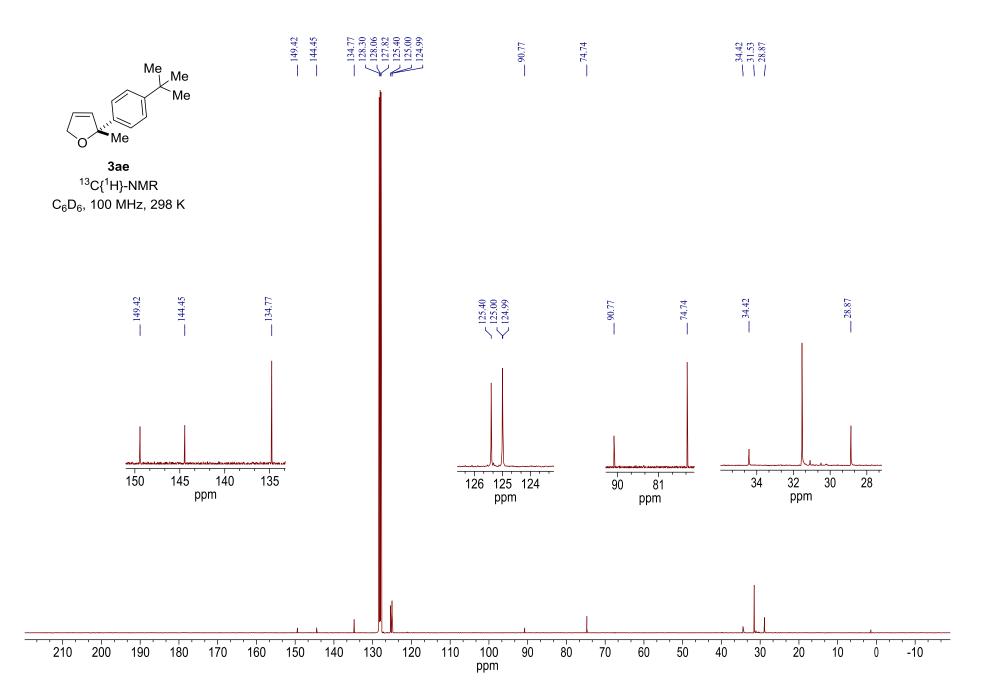

	'		- I I	- I I	· · · ·	- I I	· · · ·						· · ·	·	·				'	'		· · · · ·
210	200	190	180	170	160	150	140	130	120	110	100 f1 (ppm)	90	80	70	60	50	40	30	20	10	0	-10

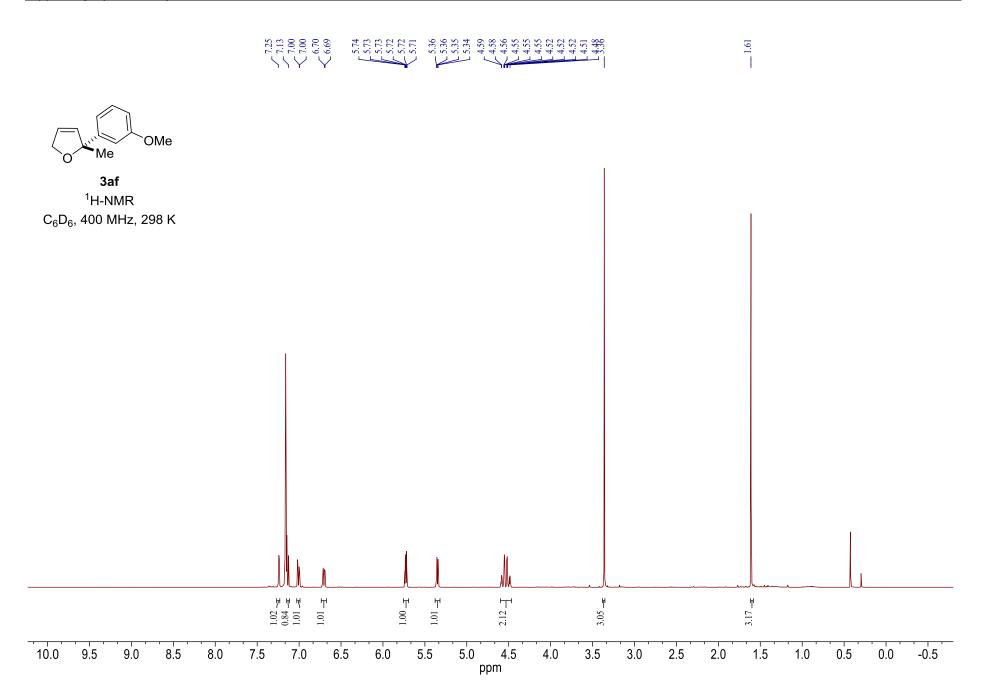


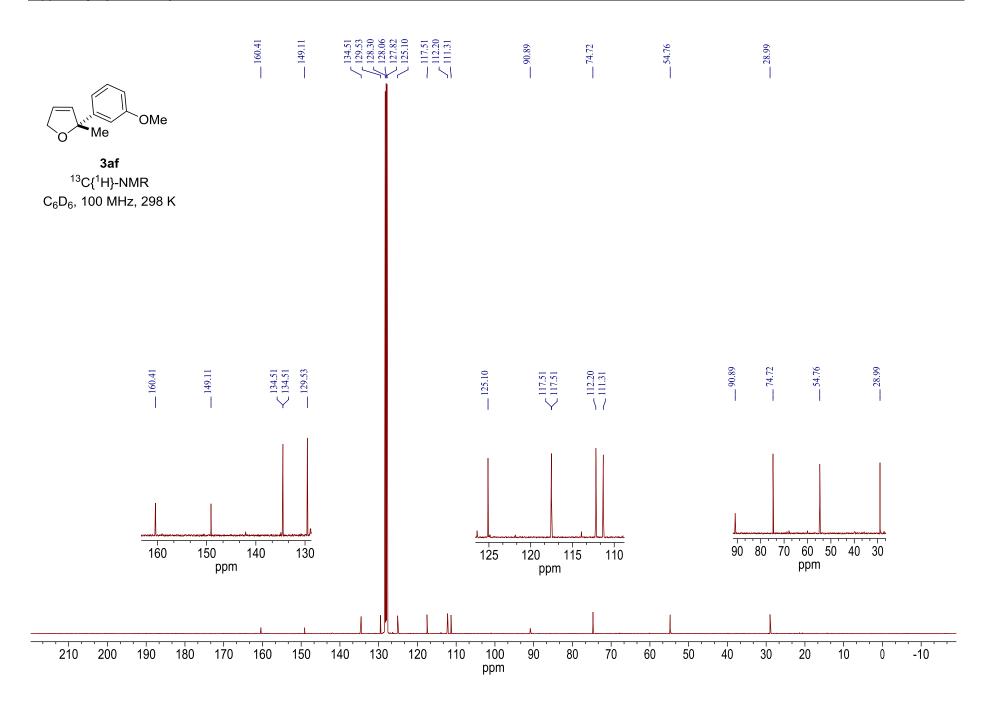


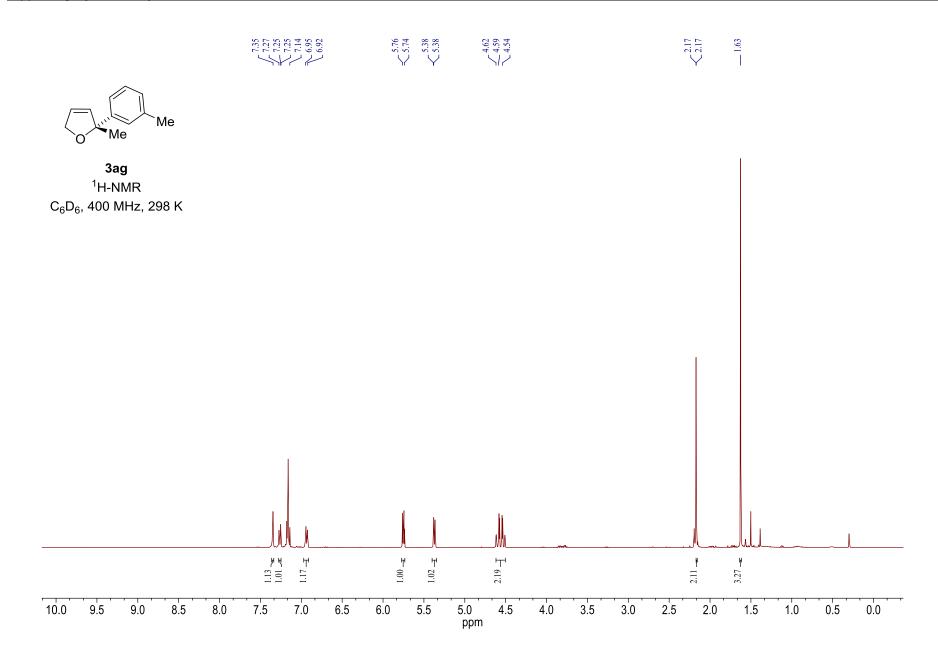


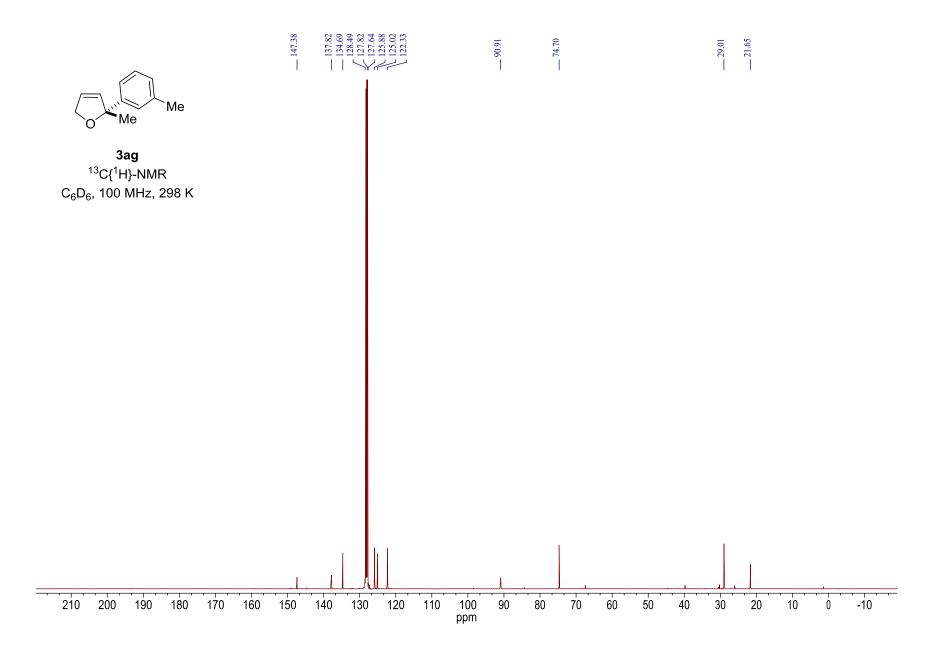


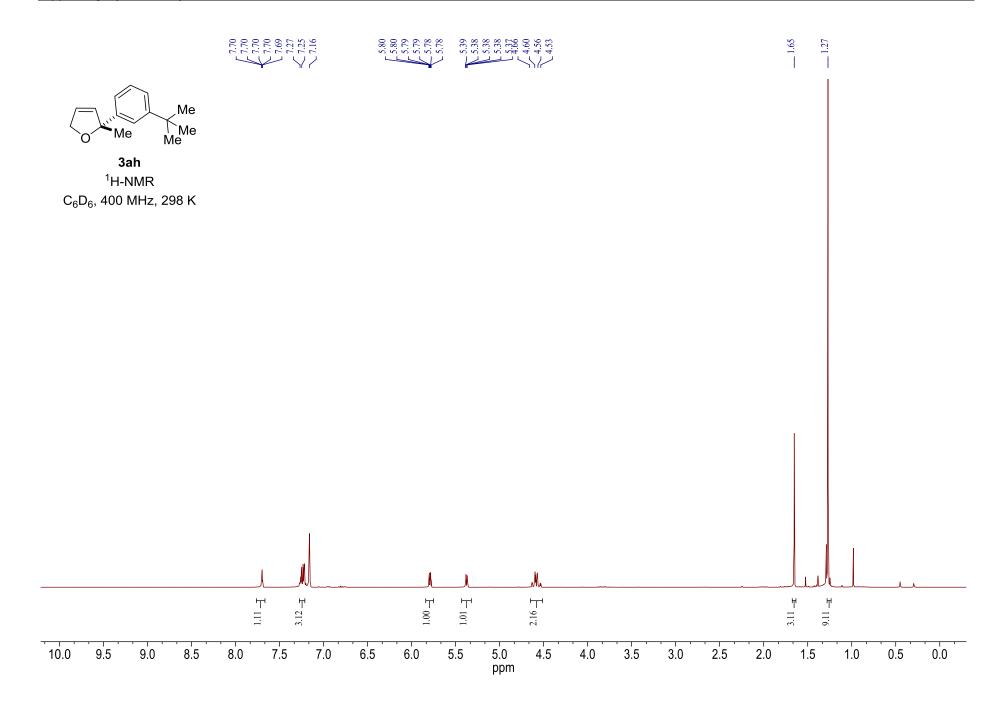


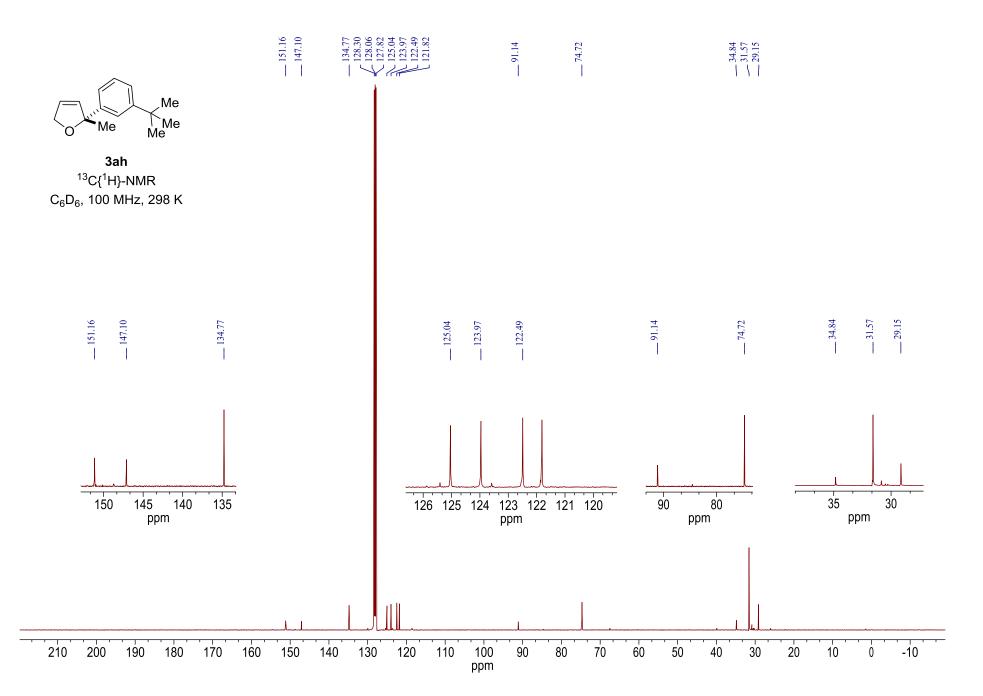


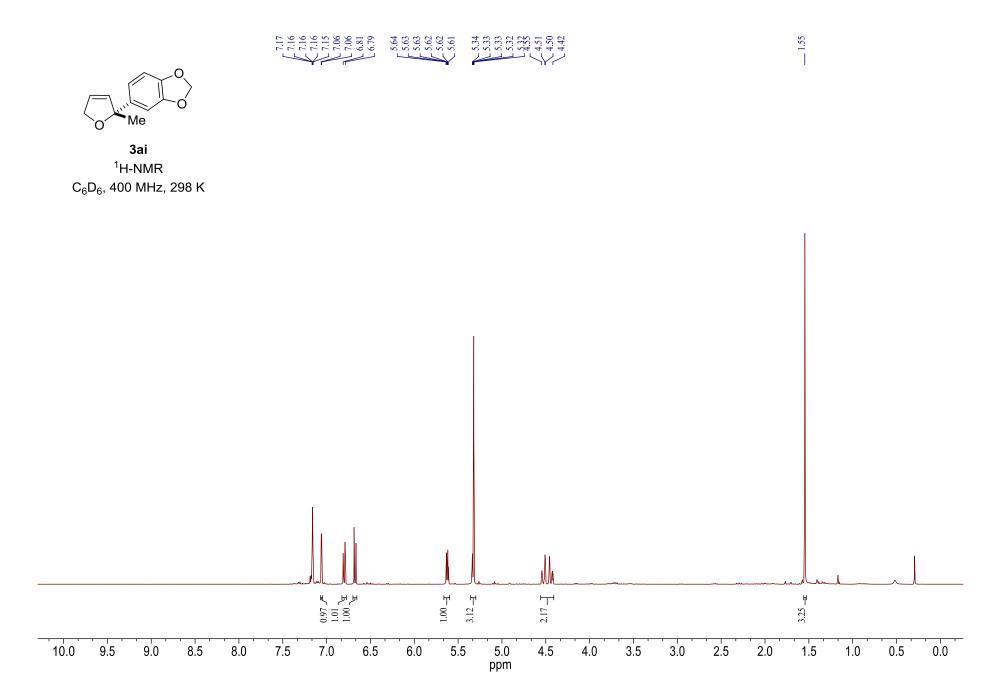


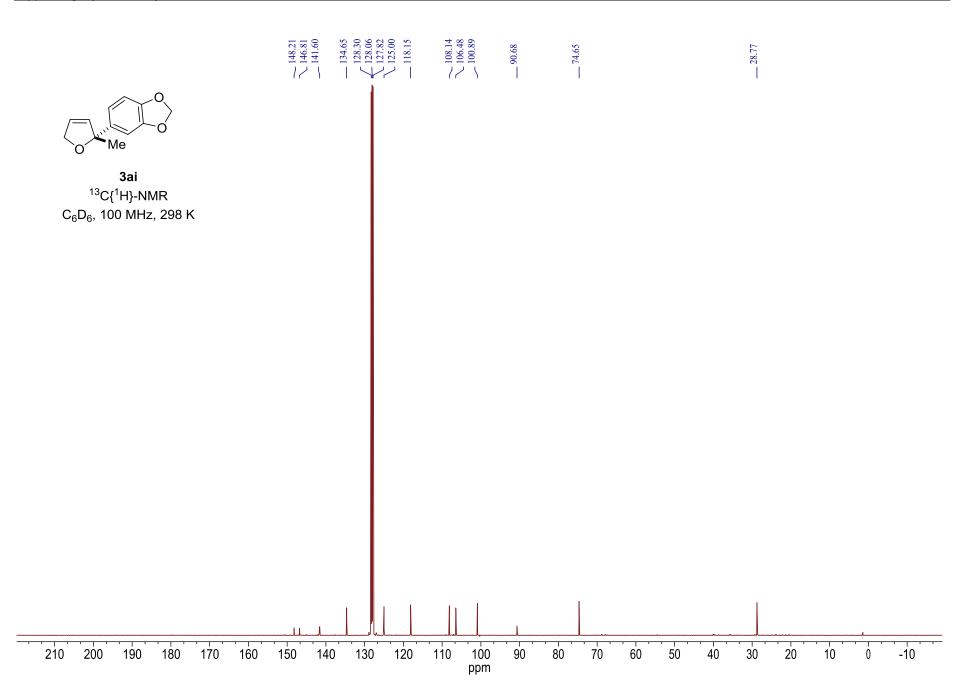


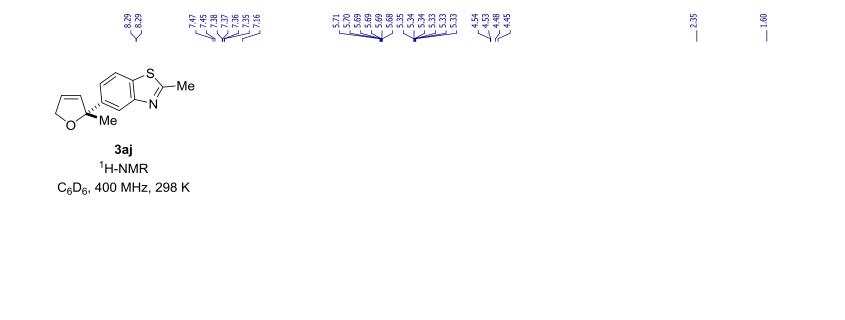


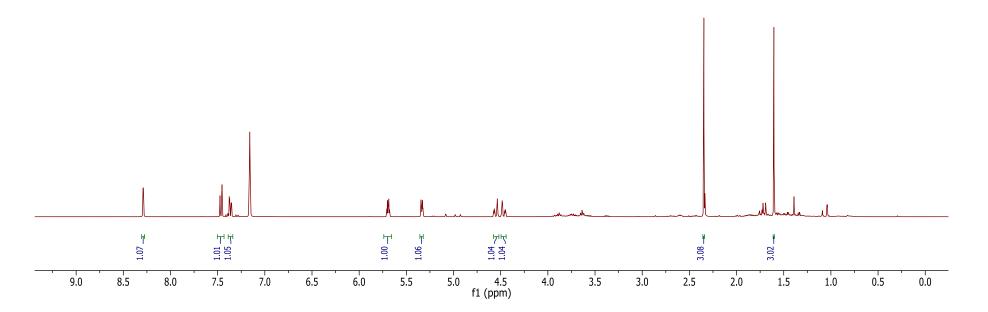


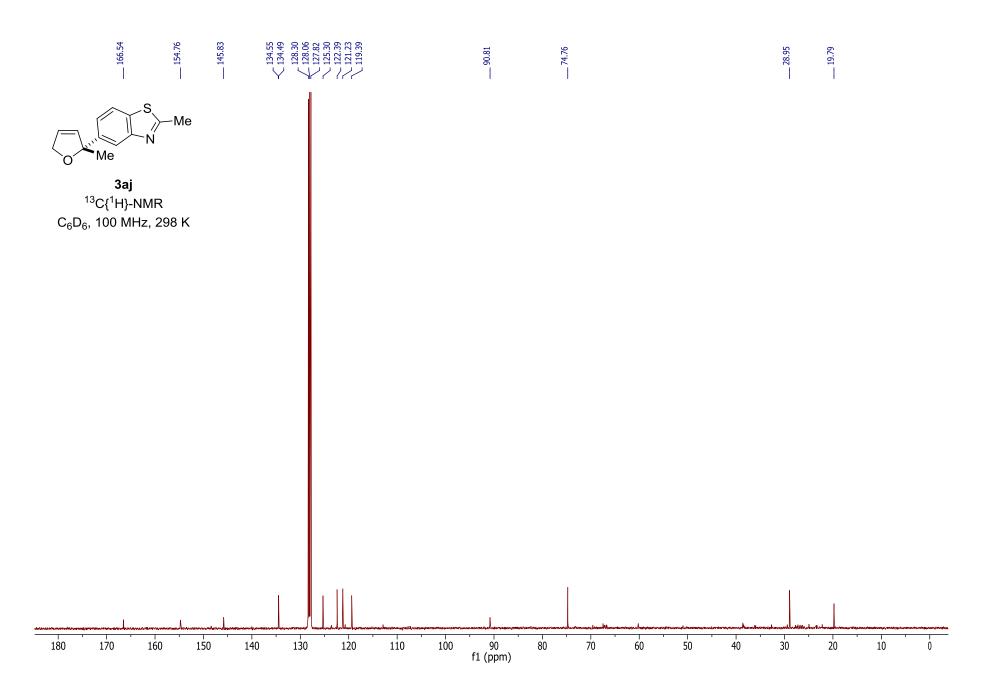


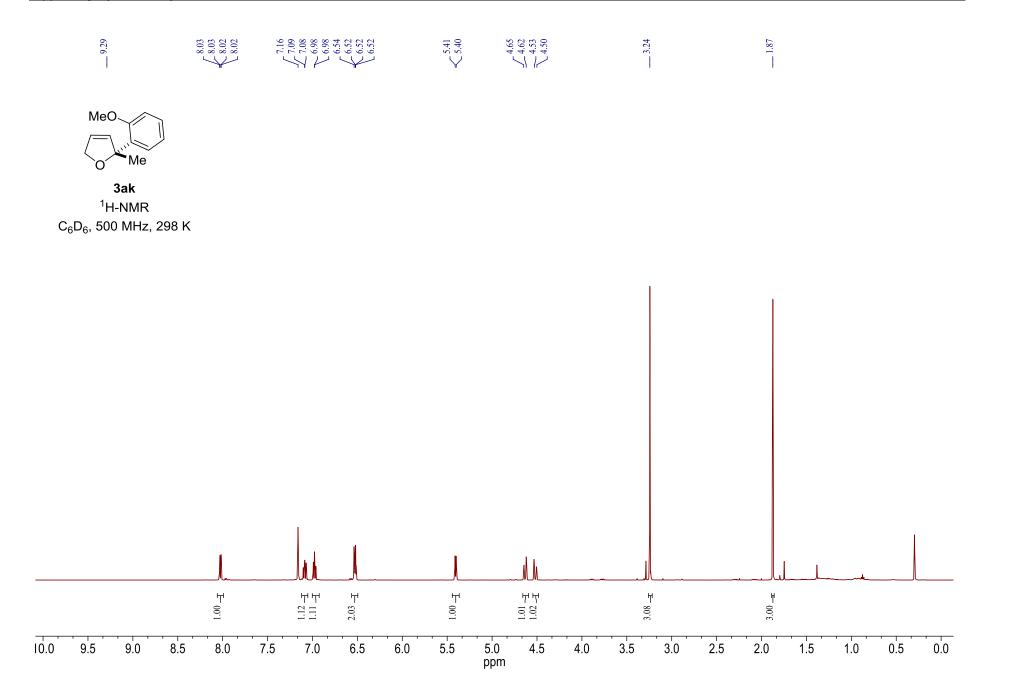


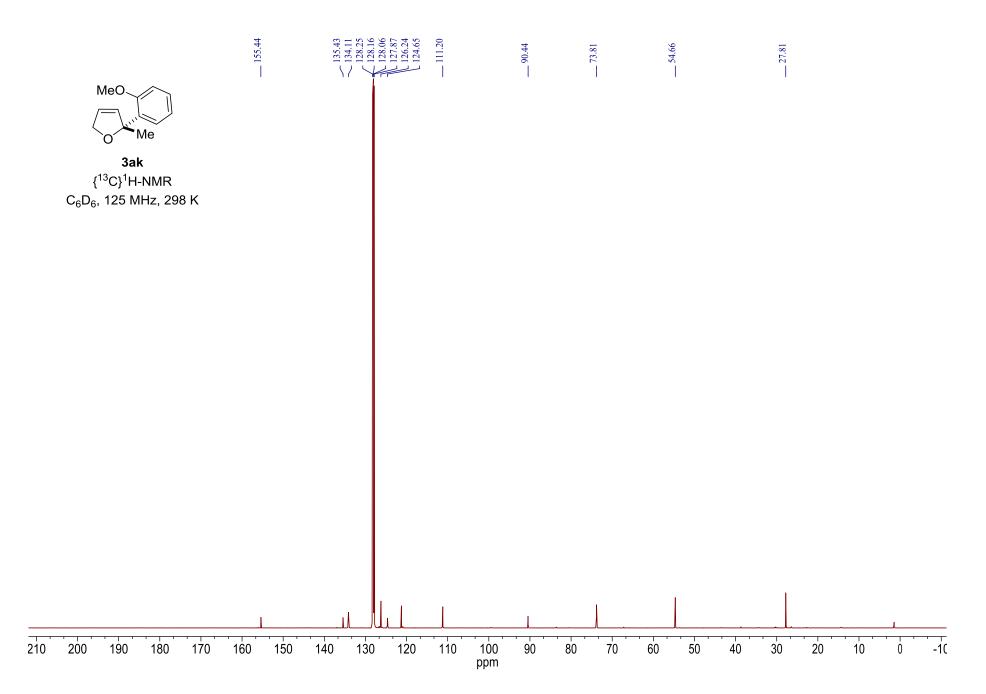


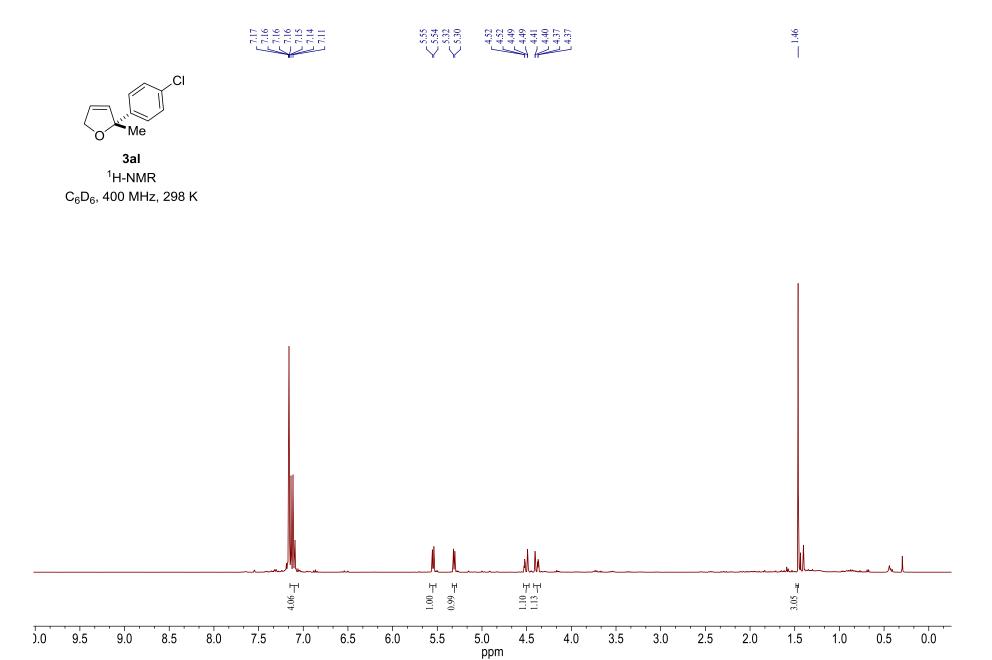


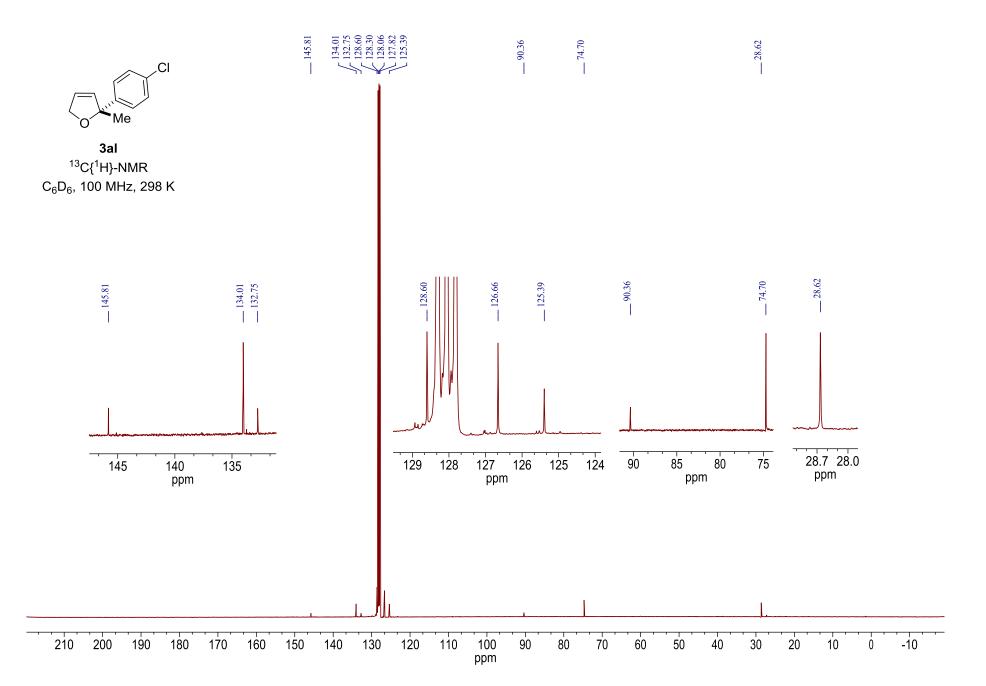


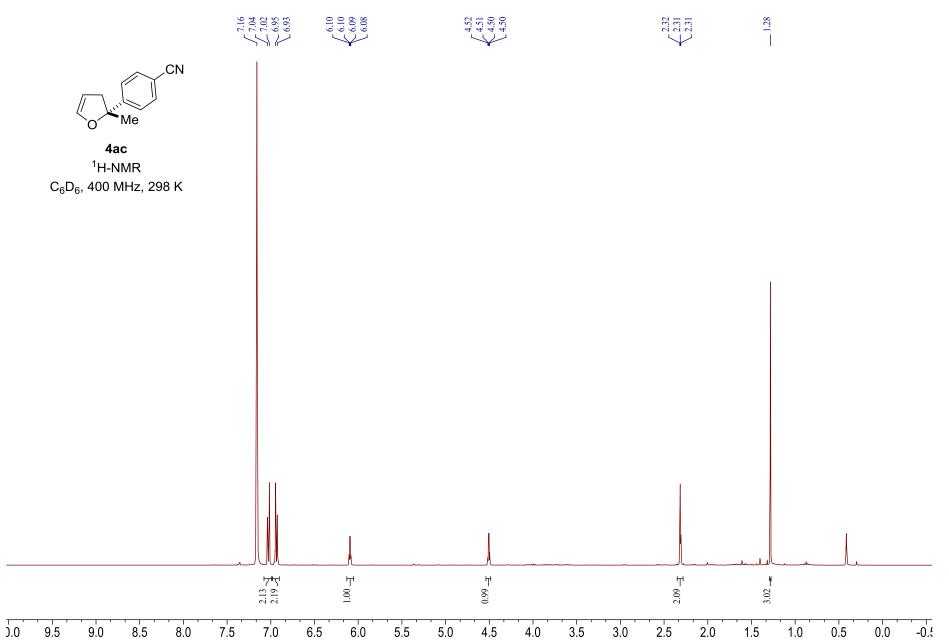


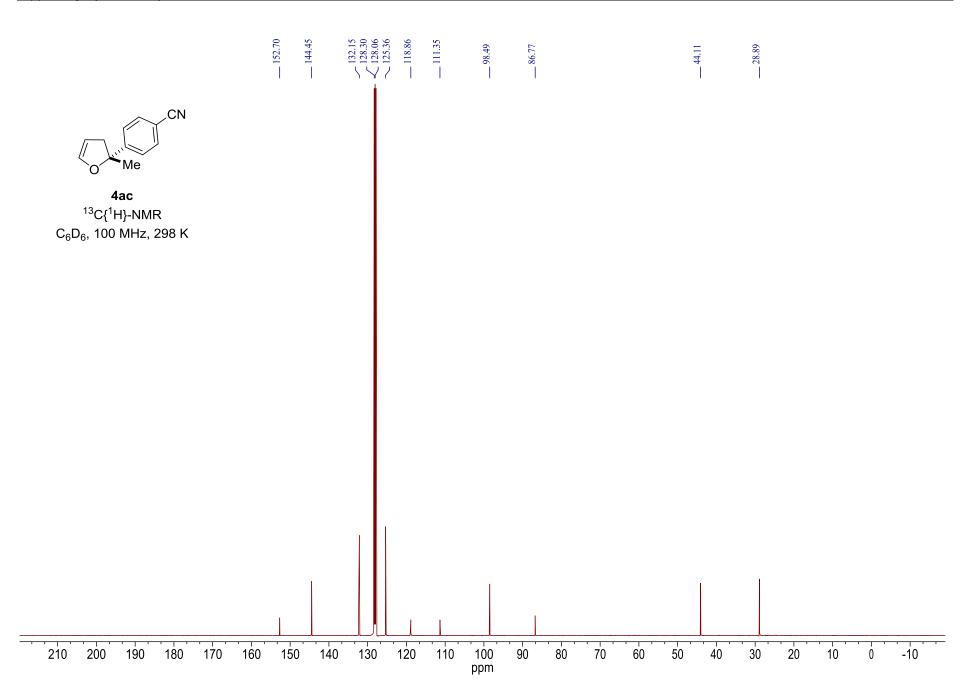


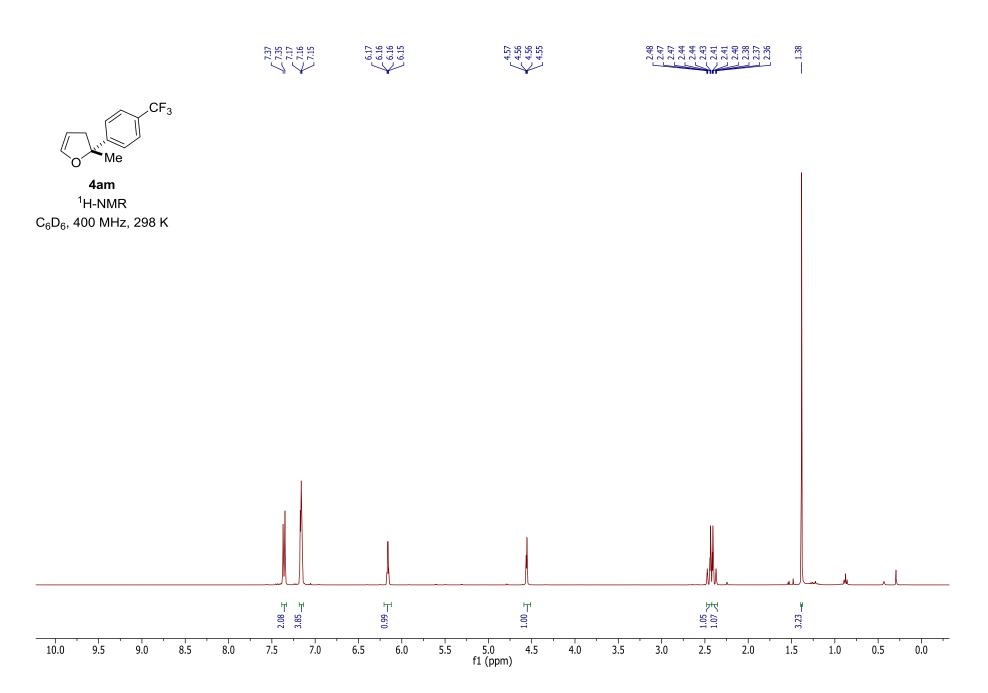


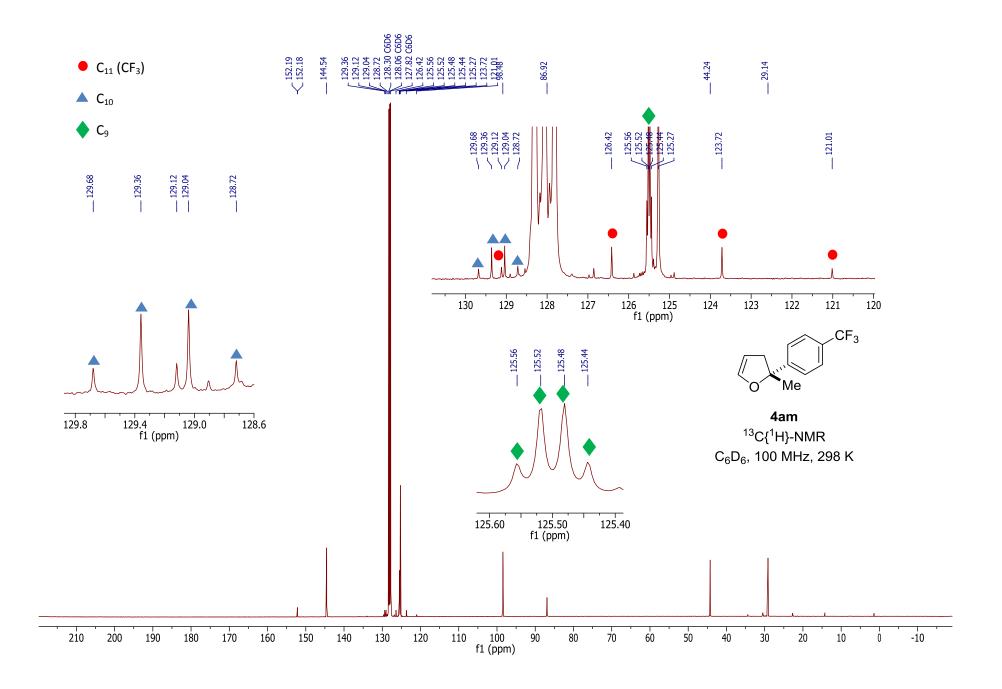




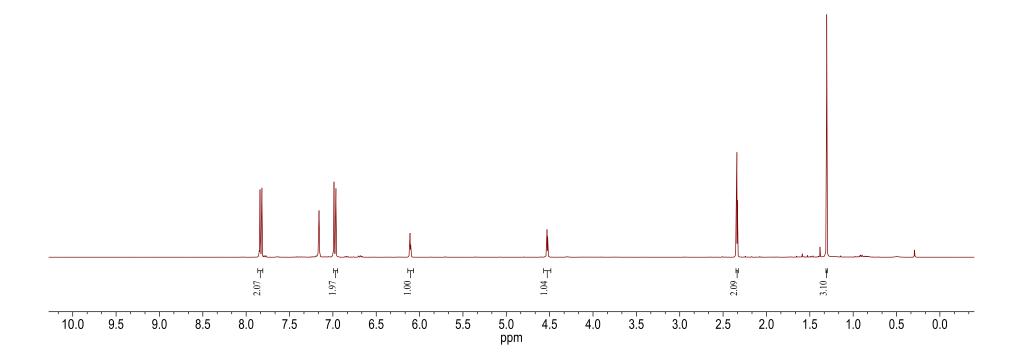


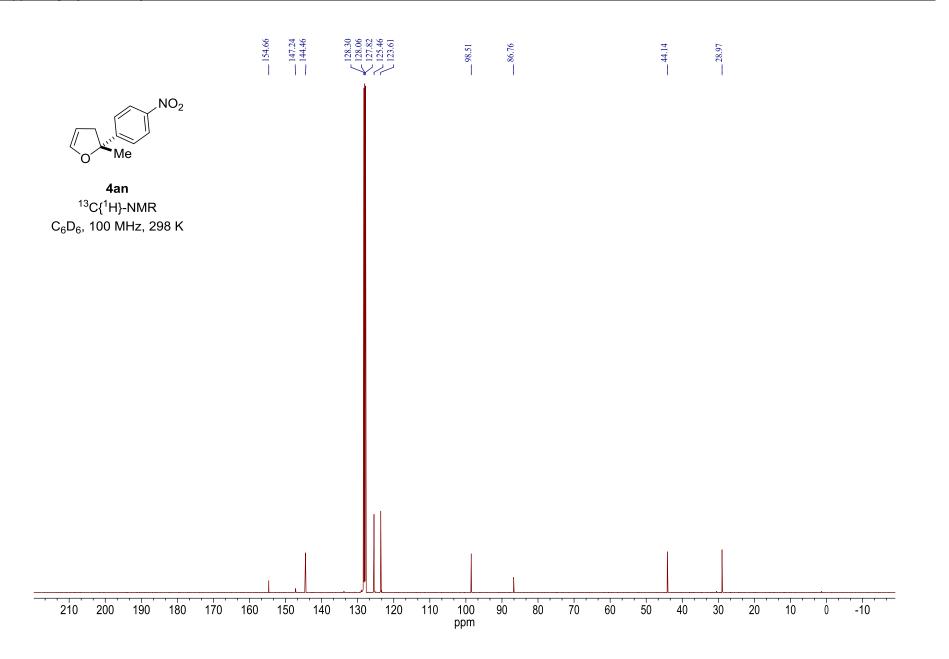


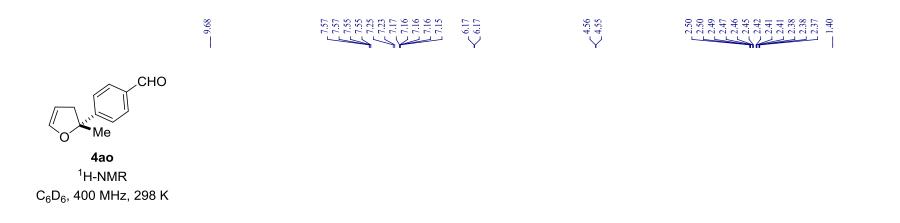


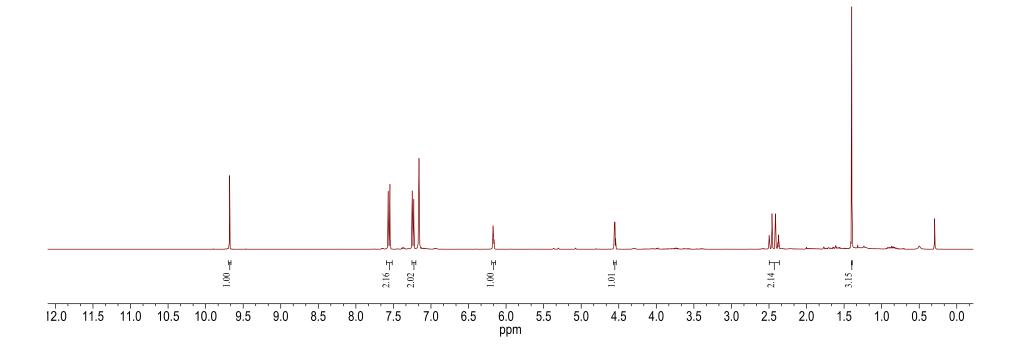


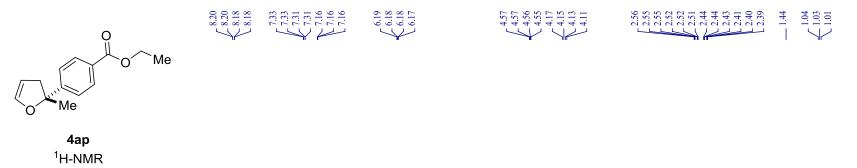


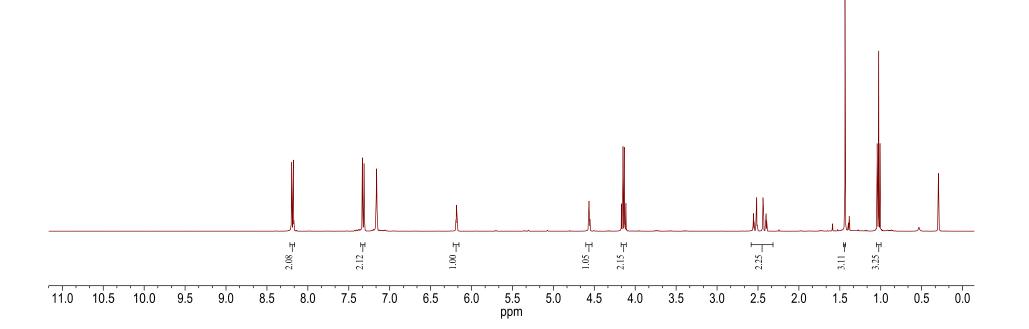

____-61.22 CF_3 Me \cap

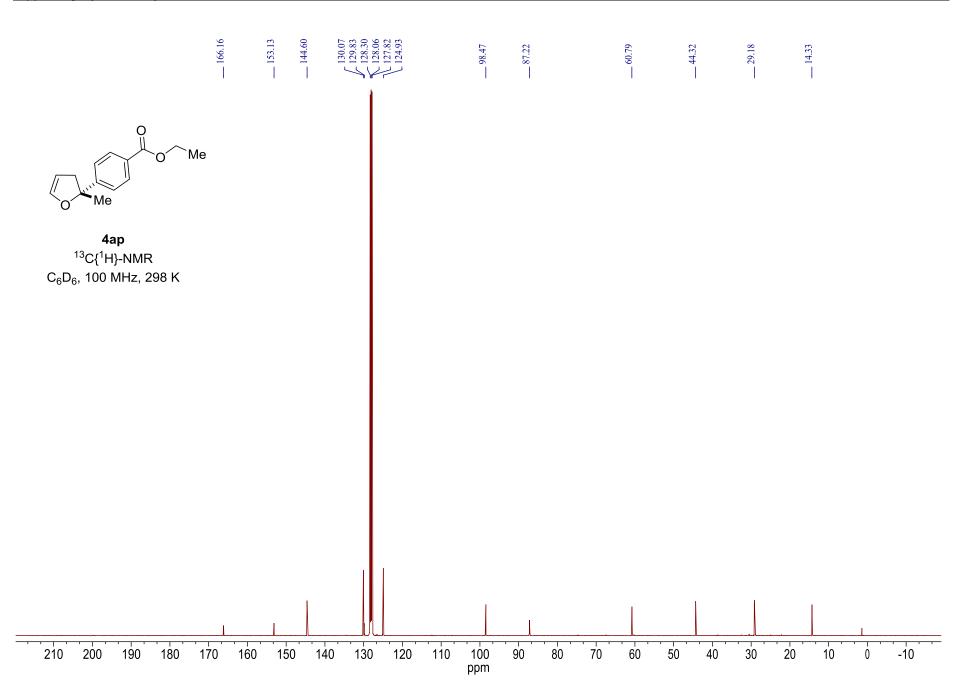

4am ¹⁹F-NMR C₆D₆, 282 MHz, 298 K

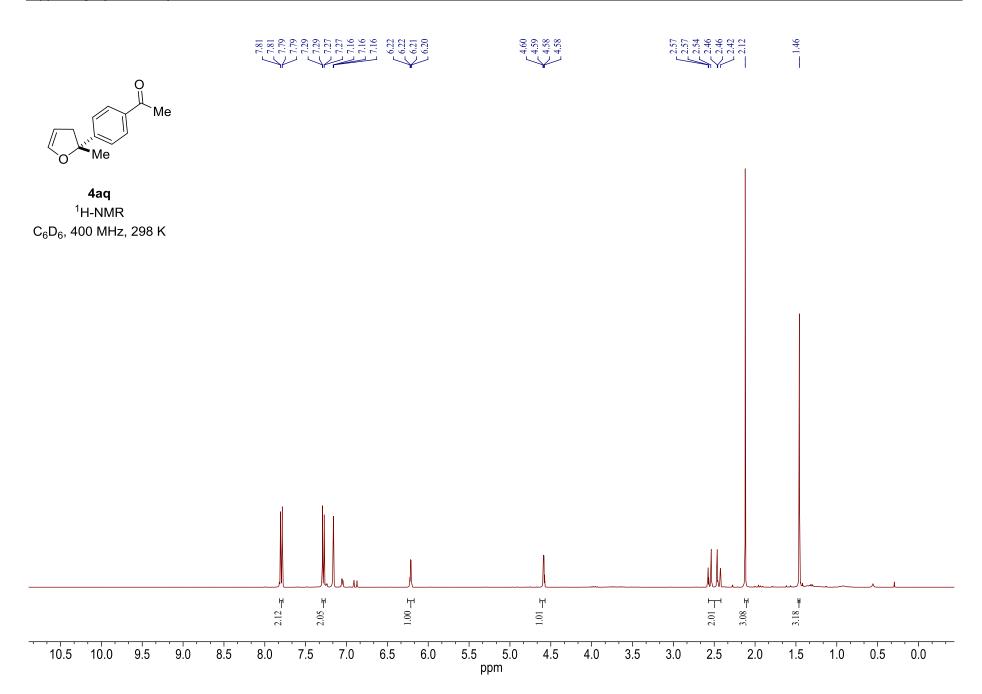

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

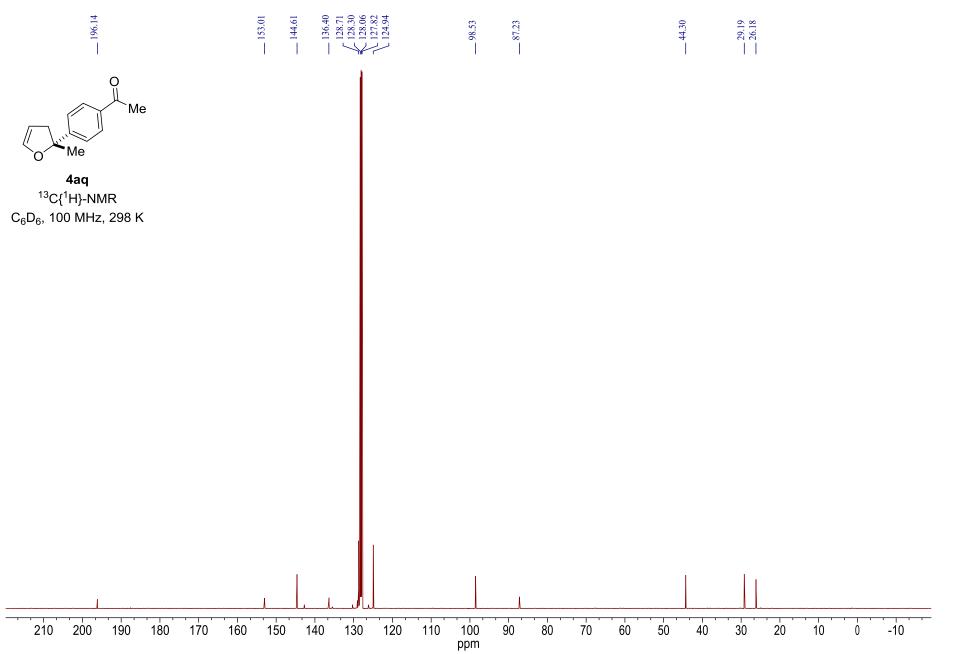


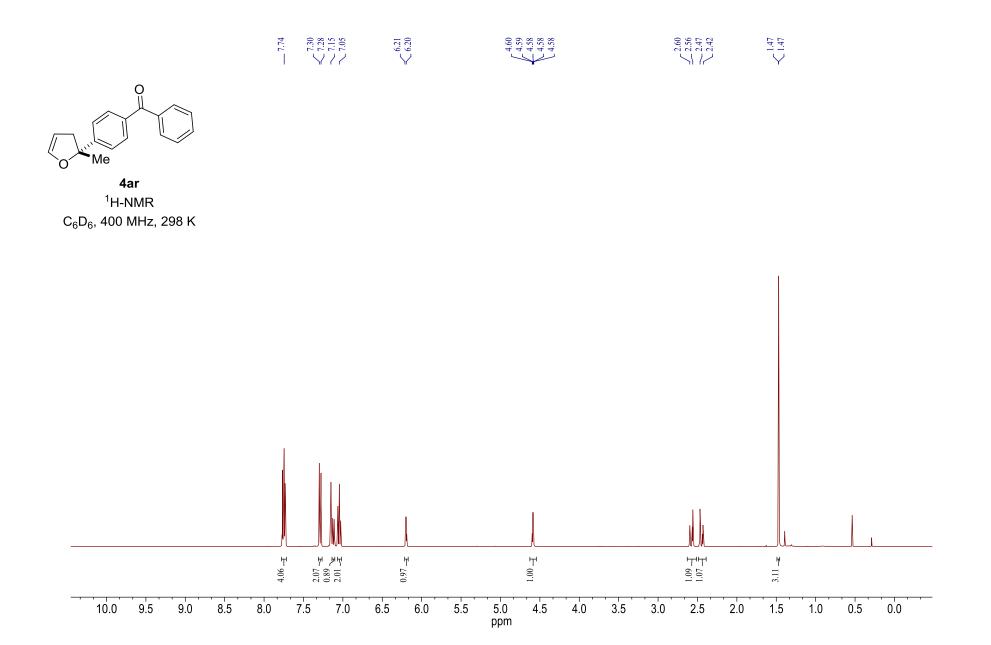











C₆D₆, 400 MHz, 298 K

