Supporting Information: Iron Catalyzed CO₂ Hydrogenation to Formate Enhanced by Lewis Acid Co-Catalysts

Yuanyuan Zhang,^a Alex D. MacIntosh,^a Janice L. Wong,^b Elizabeth A. Bielinski,^b Paul G. Williard,^a Brandon Q. Mercado^b, Nilay Hazari^{b,*} and Wesley H. Bernskoetter^{a,*}

^aThe Department of Chemistry, Brown University, Providence, RI 02912

^bThe Department of Chemistry, Yale University, New Haven, CT 06520

e-mail: nilay.hazari@yale.edu; wb36@brown.edu

Table of Contents:

General Experimental Methods and Characterizing Data	S2
Tables of Base Screening and Lewis Acid Loading	S8
Experimental Descriptions and NMR Spectral Data	S9
X-ray Crystallography	S22
References	S25

General Experimental Methods and Characterizing Data

General Considerations. All manipulations were carried out using standard vacuum, Schlenk, cannula, or glovebox techniques. Hydrogen and carbon dioxide were purchased from Corp Brothers and used as received. Compounds 1a, 1b, HCO₂-1a and 2a were prepared according to literature procedures.¹ Compounds (^{iPr}PN^{Me}P)Fe(H)BH₄, **3a** and **4a** were prepared in a manner similar to that described by Beller and coworkers, but with the slight modifications described below. The ligand MeN{ $CH_2CH_2(PCy_2)$ } was also prepared by analogy to a previous report, only substituting LiPCy₂ for LiPⁱPr₂.^{1a,1b} All other chemicals were purchased from Aldrich, Fisher, VWR, Strem, or Cambridge Isotope Laboratories. Non-volatile solids, surely including Cs₂CO₃, were dried under vacuum at 50 °C overnight. 1,8-diazabicycloundec-7-ene (DBU) was dried over CaH₂ and distilled prior to use. Solvents were dried and deoxygenated using literature procedures.² ¹H, ¹³C and ³¹P NMR spectra were recorded on Bruker DRX 400 MHz, Avance 300 and 600 MHz spectrometers at ambient temperature, unless otherwise noted. ¹H and ¹³C chemical shifts are referenced to residual solvent signals; ³¹P and ⁷Li chemical shifts are referenced to the external standards of H₃PO₄ and LiCl, respectively. Probe temperatures were calibrated using ethylene glycol and methanol as previously described.³ It should be noted that some NMR experiments employed a J. Young NMR tube with up to 3 atm of total pressure and appropriate safety precautions need to be applied if reproducing these experiments. IR spectra were recorded on Jasco 4100 FTIR and Mettler Toledo React IR spectrometers. X-ray crystallographic data were collected on a Bruker D8 QUEST diffractometer. Samples were collected in inert oil and quickly transferred to a cold gas stream. The structures were solved from direct methods and Fourier syntheses and refined by full-matrix least-squares procedures with anisotropic thermal parameters for all non-hydrogen atoms. Crystallographic calculations

were carried out using SHELXTL. The crystal data has been deposited in the CCDC under the following reference numbers: (${}^{iPr}PN^{Me}P$)FeCl₂ (1061151), (${}^{iPr}PN^{Me}P$)Fe(H)BH₄ (1061152), **3a** (1061153), **4a** (1061154 and 1061155), **5a** (1061156), and **CO₂-1a** (1061157). High pressure catalytic CO₂ hydrogenation reactions were performed using a Parr 5500 series compact reactor with glass insert. Elemental analyses were performed at Atlantic Microlab, Inc., in Norcross, GA or Robertson Microlit Laboratory in Ledgewood, NJ.

Preparation of CO₂-1a. A J. Young NMR tube was charged with (^{iPr}PNP)Fe(H)CO (**1a**) (20 mg, 0.051 mmol) in 2 mL pentane. The sample was frozen at -198 °C, degassed, and 1 atm of carbon dioxide admitted to the tube. Upon warming to ambient temperature, the color immediately changed from magenta to yellow. After 5 minutes, the excess carbon dioxide gas was removed *in vacuo*, leaving approximately 1 mL of the product solution in the tube. The mixture was then decanted, concentrated to approximately 0.5 mL, and cooled to -35 °C overnight to afford 19 mg (85%) of **CO₂-1a** as yellow-orange crystals. ¹H NMR (C₆D₆): δ -25.44 (t, 53.9 Hz, 1H, Fe-*H*), 0.80 (m, 6H, CH(CH₃)₂), 1.02 (m, 6H, CH(CH₃)₂), 1.09 (m, 6H, CH(CH₃)₂), 1.19 (m, 6H, CH(CH₃)₂), 1.36 (m, 2H, PCH₂), 1.71 (m, 2H, PCH₂), 1.77 (m, 2H, CH(CH₃)₂), 1.98 (m, 2H, NCH₂), 2.13 (m, 2H, CH(CH₃)₂), 3.29 (m, 2H, NCH₂). ¹³C {¹H} NMR (C₆D₆): δ 96.03 (s). IR (KBr): 1891 (C=O), 1727(O=C).

Preparation of (^{iPr}**PN**^{Me}**P)FeCl₂.** FeCl₂ (167 mg, 1.32 mmol) was added to a 40 mL THF solution of MeN{CH₂CH₂P(ⁱPr)₂}₂ (421 mg, 1.32 mmol) at ambient temperature and stirred for 11 hours. The resulting yellow solution was then filtered, the filtrate concentrated to 10 mL and layered with approximately 5 mL pentane. Cooling overnight at -35 °C afforded 378 mg (64%) of (^{iPr}PN^{Me}P)FeCl₂ as a colorless crystalline solid. Magnetic susceptibility: 4.72 μ B (Evans'

Method). ¹H NMR (THF-*d*₈): δ 73.9, 63.1, 46.8, 4.36, 2.98. Anal. Calcd. for C₁₇H₃₉Cl₂FeNP₂: C, 45.76%; H, 8.81%, N, 3.14%. Found: C, 45.57%, 8.54%, 3.02%.

Preparation of (^{Cy}**PN^{Me}P**)**FeCl₂.** This compound was prepared in a manner identical to (^{iPr}PN^{Me}P)FeCl₂ using MeN{CH₂CH₂P(Cy)₂} (210 mg, 0.438 mmol) and FeCl₂ (52 mg, 0.410 mmol) which afforded 244 mg (98%) of a colorless powder. Magnetic susceptibility: 4.96 μ B (Evans' Method). ¹H NMR (C_6D_6): δ 69.7, 55.6, 6.57, 4.86, 0.81, -0.13, -2.48, -5.18. Anal. Calcd. for C₂₉H₅₅Cl₂FeNP₂: C, 57.43%; H, 9.14%, N, 2.31%. Found: C, 57.52%, 8.86%, 2.31%. Preparation of (^{Cy}PN^{Me}P)Fe(H)(BH₄). (^{Cy}PN^{Me}P)FeCl₂ (159 mg, 0.262 mmol) was dissolved in a solvent mixture containing 5 mL acetonitrile and 15 mL ethanol to provide a red-purple solution. Upon cooling the solution in an in ice-water bath, excess NaBH₄ (117 mg, 3.14 mmol) was added in one portion. Gas evolution was immediately observed and the solution turned brown. After stirring at ambient temperature for one hour, the brown reaction mixture was placed under reduced pressure to remove the volatiles. The residue was triturated with pentane (3×5) mL), extracted with 15 mL of pentane, and the dark brown solution concentrated. Cooling to -35 °C overnight afforded 101 mg (70%) of (CyPNMeP)Fe(H)(BH₄) as brown crystals. The same procedure was also used to obtain (^{iPr}PN^{Me}P)Fe(H)(BH₄) which was identified by comparison to previously reported NMR spectra. Characterization data for (^{Cy}PN^{Me}P)Fe(H)(BH₄): Anal. Calcd. for C₂₉H₆₀BFeNP₂: C, 63.17%; H,10.97%, N 2.54%. Found: C, 63.39; H, 11.00%; N, 2.61%. ¹H NMR (C₆D₆): δ -35.95 (br, 1H, Fe-H-B), -23.00 (t, 53.1 Hz, 1H, Fe-H), -11.95 (br, 1H, Fe-H-B), 1.22-1.55 (m, 22H, PCy₂), 1.58 (s, 3H, NCH₃), 1.59-1.69 (m, 6H, PCy₂), 1.71-1.84 (m, 8H, PCy₂), 1.90-1.92 (m, 4H, PCy₂), 1.92-1.95 (m, 2H, CH₂), 2.30 (m, 2H, CH₂), 2.31 (m, 2H, PCy₂), 2.51 (m, 2H, CH₂), 2.75 (m, 2H, P Cy₂), 3.27 (m, 2H, CH₂), 4.36 (b, 2H, BH₂). ¹³C {¹H} NMR (C₆D₆): δ 27.77, 27.80, 27.84, 27.91, 28.14, 28.21, 28.46, 28.49, 29.21, 29.68, 30.82, 36.31 (PCy₂), 29.71, 66.58 (CH₂) 50.61 (NCH₃). ³¹P {¹H} NMR (C₆D₆): δ 87.2 (s, PCy₂).

Preparation of (^{Cy}PN^{Me}P)Fe(H)CO(BH₄) (3b). A 25 mL heavy walled glass vessel was charged with (^{Cy}PN^{Me}P)Fe(H)BH₄ (39 mg, 0.071 mmol) in 8 mL pentane. The sample was frozen at -198 °C, degassed, and 1 atm of carbon monoxide admitted to the vessel. Upon warming to ambient temperature the color changed from brown to yellow and within 30 minutes yellow crystalline solids precipitated. Most of the volatiles were removed quickly under vacuum, leaving approximately 3 mL pentane in the vessel. Under N₂ the mixture was decanted and the yellow crystalline residue was washed with 2×3 mL of pentane. Following air-drying, the yellow solid was briefly dried under vacuum (less than 5 minutes) to afford 38 mg (92%) of 3b. The same procedure was also used to obtain (^{iPr}PN^{Me}P)Fe(H)CO(BH₄) (**3a**) which was identified by comparison to previously reported NMR spectra.^{1a,1b} Characterization data for (^{Cy}PN^{Me}P)Fe(H)CO(BH₄) (**3b**): Anal. Calcd. for C₃₀H₆₀BFeNOP₂: C, 62.19%; H, 10.44%, N, 2.42%. Found: C, 61.98; H, 10.18%; N, 2.24%. ¹H NMR (C₆D₆): δ -19.60 (t, 52.8 Hz, 1H, Fe-H), -2.54 (br, 4H, BH₄), 1.21-1.25 (m, 8H, PCy₂), 1.40-1.47 (m, 4H, PCy₂), 1.55-1.99 (m, 32H, CH₂ & PCy₂), 2.01 (s, 3H, NH₃), 2.02 (m, 2H, PCy₂), 2.18 (m, 2H, CH₂), 2.74 (m, 2H, PCy₂), 3.07 (m, 2H, CH₂). ¹³C {¹H} NMR (C₆D₆): δ 27.26, 27.30, 27.35, 27.65, 27.91, 28.21, 28.25, 28.94, 29.10, 31.48, 37.13, 41.81 (PCy₂), 50.94 (NCH₃), 31.06, 66.00 (CH₂), CO resonance not located. ³¹P {¹H} NMR (C_6D_6): δ 85.40 (s, PCy₂).

Preparation of $(^{iPr}PN^{Me}P)Fe(H)_2CO$ (4a). A 20 mL scintillation vial was charged with $(^{iPr}PN^{Me}P)Fe(H)CO(BH_4)$ (3a) (20 mg, 0.048 mmol) in 5 mL of THF. Excess NEt₃ (approximately 500 µL) was added to the solution and stirred for 20 minutes. The volatiles were then removed under vacuum and the residue extracted with 2 mL of pentane. Cooling the

solution to -35 °C overnight afforded 16 mg (89%) of **4a** as yellow needles. The compound was characterized by comparison to previously reported NMR spectra.^{1a,1b}

Preparation of (^{iPr}PN^{Me}P)Fe(H)CO(HCO₂) (5a). A J. Young NMR tube was charged with (^{iPr}PN^{Me}P)Fe(H)₂CO (4a) (30 mg, 0.074 mmol) in 1 mL of C₆D₆. The sample was frozen at -198 °C, degassed, and 1 atm of carbon dioxide admitted to the tube. The tube was warmed to ambient temperature and allowed to sit for approximately 20 minutes. The volatiles were removed *in vacuo*, leaving a yellow residue. The residue was extracted with pentane (3×2 mL), concentrated to approximately 1 mL, and cooled to -35 °C overnight to afford 30 mg (90%) of **5a** as yellow crystals. Anal. Calcd. for C₁₉H₄₁FeNO₃P₂: C, 50.79%; H, 9.20%; N, 3.12%. Found: C, 50.72%; H, 8.47%; N, 3.04%. Major Isomer: ¹H NMR (C₆D₆): δ -23.89 (t, 52Hz, 1H, Fe-H), 0.90 (m, 6H, CH(CH₃)₂), 1.13 (m, 6H, CH(CH₃)₂), 1.18 (m, 6H, CH(CH₃)₂), 1.45 (m, 6H, CH(CH₃)₂), 1.51-1.58 (m, 4H, CH(CH₃)₂), 1.83 (s, 3H, CH₃), 1.96-2.10 (m, 6H), 2.31 (m, 2H), 9.22 (s, 1H, HCO_2). ¹³C{¹H} NMR (C₆D₆): δ 18.24, 19.35, 20.03, 20.74, 25.95, 26.38, 26.86, 45.32, 65.51, 169.26 (HCO₂), 223.46 (CO). ${}^{31}P{}^{1}H$ NMR (C₆D₆): δ 87.23 (s). Selected data for *minor isomer:* ¹H NMR (C₆D₆): δ -24.03 (t, 51.4 Hz, 1H, Fe-*H*), 9.11 (s, 1H, *H*CO₂). ¹³C{¹H} NMR (C_6D_6): δ 222.64 (CO). ³¹P{¹H} NMR (C_6D_6): δ 89.87 (s). Sample spectra containing all peaks for the major and minor isomers are provided later in the Supporting Information.

General Methods for Catalytic CO₂ Hydrogenation Studies. In a glovebox, a 50 mL glass reactor liner was charged with catalyst as a stock solution in THF (*ca.* 0.02 M), a corresponding amount of DBU, Lewis acid and 5 mL to 10 mL THF. The cylinder liner was placed into the Parr reactor and the vessel sealed. The reactor was removed from the dry box and pressurized with 69 atm of a $1:1 \text{ CO}_2$:H₂ mixture at ambient temperature. The reactor was then heated and stirred at 80 °C for the indicated time. The reaction was stopped by removal from the heat source and

venting of the gases. The contents of the reactor were then quickly transferred to a 100 mL round bottom flask with assistance of D_2O to dissolve the solid products. Then all of the volatiles were removed under reduced pressure. The residue was dissolved in D_2O , and 10 to 400 μ L DMF was added as an internal standard for quantification of the formate product by ¹H NMR spectroscopy. Fairly large amounts of D_2O may be required to completely dissolve the generated formate.

0.78 μmol **1b** 100eq Base, THF, 80 °C, 4 h $CO_2 + H_2$ BaseH⁺ **Base**^d TON^b Yield (%)^e KHMDS^c 4 4 20 KO^tBu 20 Cs_2CO_3 60 60 NEt₃ 3 3 1 1 Pyridine DABCO^c 50 50 DBU^c 80 90

Table S1. Screening of bases for CO₂ hydrogenation catalyzed by 1b.^a

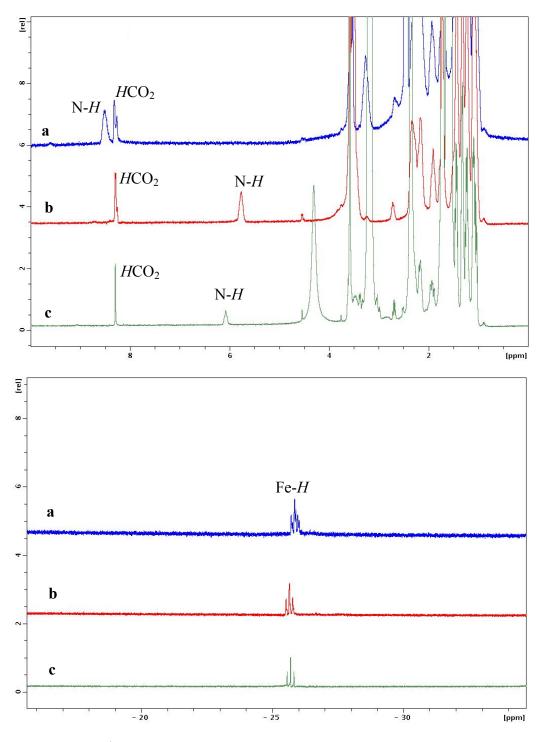
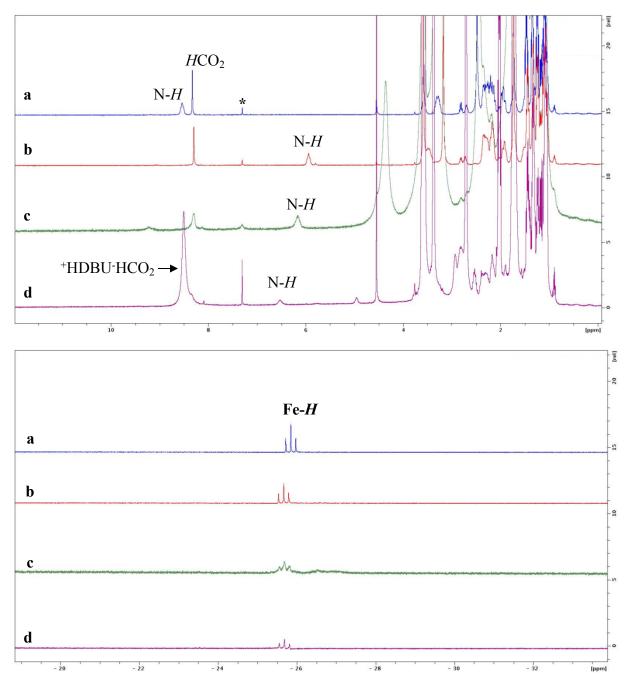
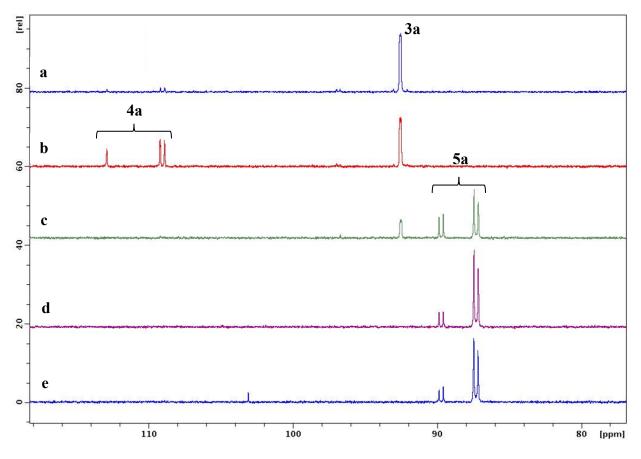

aReaction conditions: 69 atm of CO₂:H₂ (1:1), 0.78 µmol of 1b in 5 mL THF (ca. 0.015 M) at 80 °C. ^bFormate production quantified by $^{1}\mathrm{H}$ NMR spectroscopy. ^cKHMDS is potassium bis(trimethylsilyl)amide, DABCO 1,4-diazabicyclo[2.2.2]octane DBU 1.8is and is Diazabicyclo [5.4.0] undec-7-ene. ^dEt₃N and pyridine were dried over CaH₂ and molecular sieves respectively and distilled under reduced pressure. DABCO were purified by sublimation (50 °C, 0.02 mbar). DBU was dried over CaH₂ and distilled prior to use. Cs₂CO₃ was dried under vacuum at 50 °C overnight. e Reported yield is based on base (base/foremate = 1:1).

Table S2. Lewis acid optimization for CO₂ hydrogenation catalyzed by 1b.^a

$CO_2 + H_2$	0.78 1500eq DBU, X Li	DBUH ⁺		
	DBU/LiBF ₄	TON ^b	Yield $(\%)^d$	
	no LiBF ₄	431 ^c	28	-
	150/1	541	36	
	30/1	693	46	
	20/1	784	52	
	15/1	930	62	
	6/1	1190	79	
	5/1	1210	80	
	2/1	1230 ^c	82	-


^{*a*}Reaction conditions: 69 atm of CO₂:H₂ (1:1), 0.78 µmol of **1b** in 5 mL THF (*ca.* 0.015 M), 180 mg DBU at 80 °C. ^{*b*}Formate production quantified by ¹H NMR spectroscopy. ^{*c*}Reported values are the average of three trials. ^{*d*}Reported yield is based on base (base/formate = 1:1)

Treatment of HCO₂-1a with LiBF₄ and DBU. A J. Young NMR tube was charged with 3 mg of **HCO₂-1a** in approximately 1 mL of THF- d_8 . Then, 3 eq of LiBF₄ was added under an N₂ atmosphere. After 20 minutes, approximately 40 eq of DBU was also added. The reaction was monitored by ³¹P and ¹H NMR spectroscopy over the course of 16 hours.


Figure S1. (a) ¹H NMR spectra of HCO_2 -1a, (b) after addition of 3 eq LiBF₄, (c) after addition of 40 eq DBU.

NMR scale catalytic CO₂ hydrogenation reaction with HCO₂-1a. A J. Young NMR tube was charged with 5 mg of **HCO₂-1a** in approximately 1 mL of THF- d_8 . Then 3 eq of LiBF₄ and 40 eq of DBU were added to the sample. The sample was frozen at -198 °C, degassed, and 1 atm each of carbon dioxide and dihydrogen were admitted to the tube. The sample was warmed to ambient temperature and monitored by ³¹P and ¹H NMR spectroscopy.

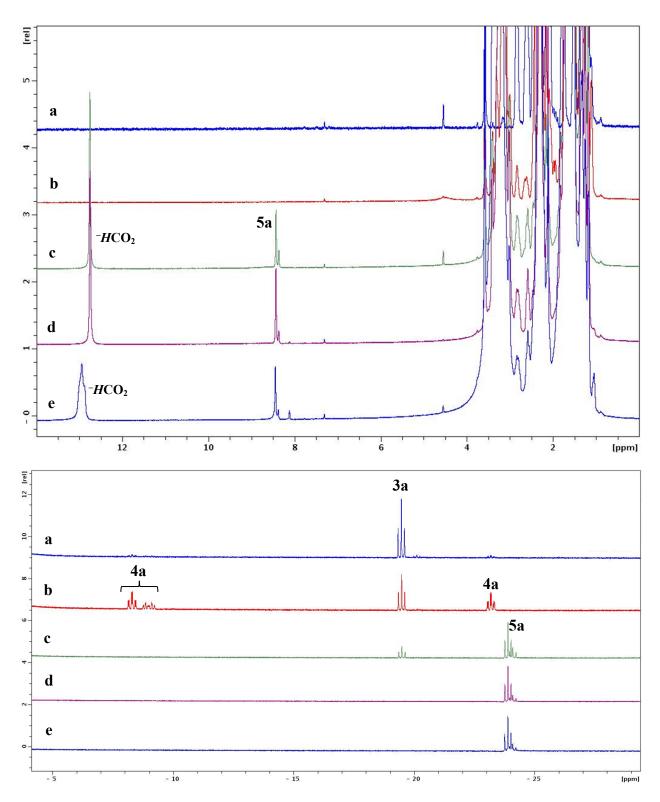


Figure S2. (a) ¹H NMR spectra of **HCO₂-1a**, (b) after addition of 3 eq LiBF₄, (c) after addition of 40 eq DBU, (d) 16 h after addition of 1 atm CO_2/H_2 . *denotes C_6H_6 from glovebox atmosphere.

NMR scale catalytic CO₂ hydrogenation reaction with 3a. A J. Young NMR tube was charged with 6 mg of **3a** in approximately 1 mL of THF- d_8 . Then, 3 eq of LiBF₄ and 40 eq of DBU were added to the sample. The sample was frozen at -198 °C, degassed, and 1 atm each of carbon dioxide and dihydrogen were admitted to the tube. The sample was warmed to ambient temperature and monitored by ³¹P and ¹H NMR spectroscopy.

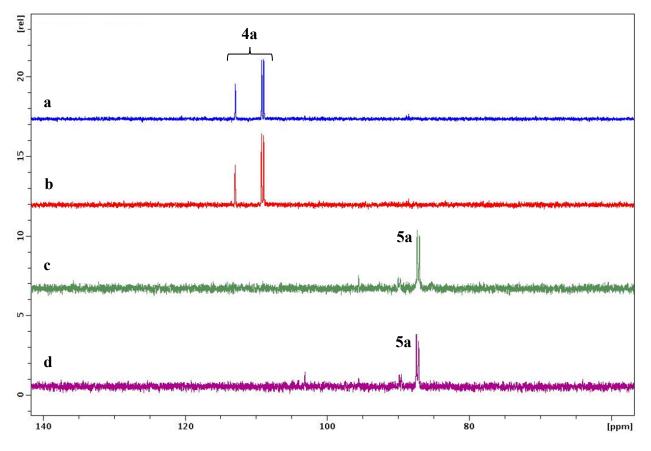


Figure S3. (a) ³¹P NMR spectra of **3a**, (b) after addition of 3 eq LiBF₄, (c) after addition of 40 eq DBU, (d) 1.5 h after addition of 1 atm CO_2/H_2 , (e) 16 h after addition of 1 atm CO_2/H_2 .

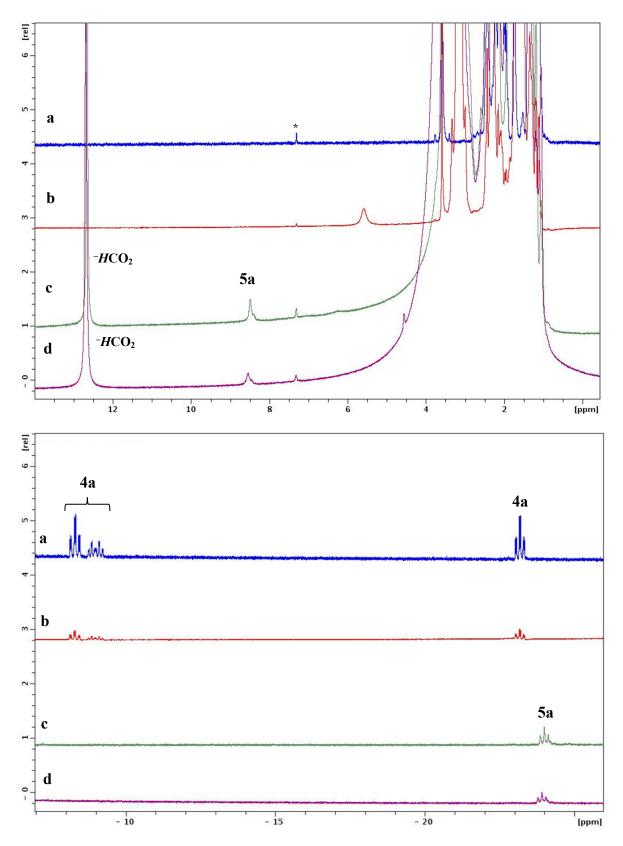
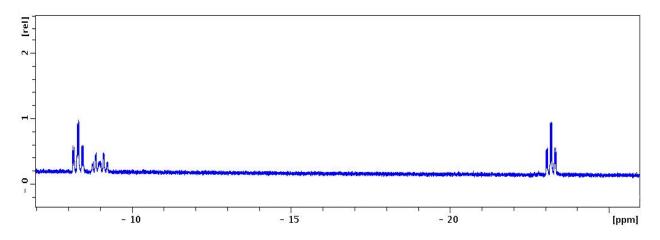
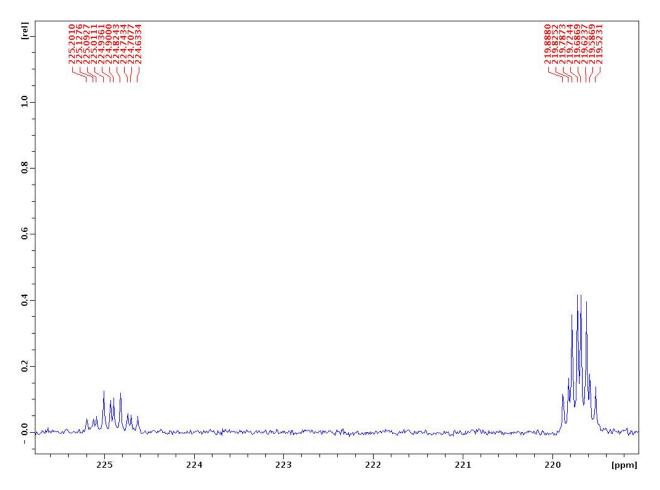
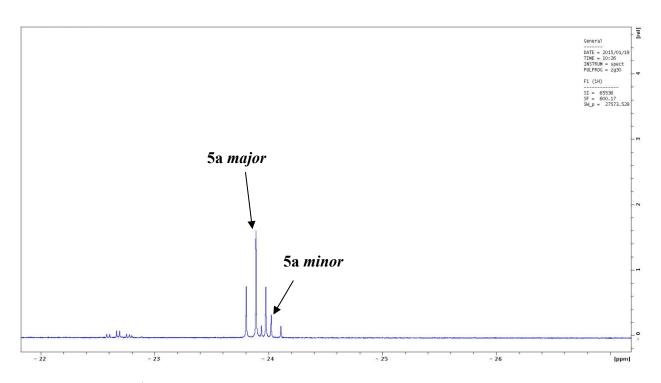


Figure S4. (a) ¹H NMR spectra of **3a**, (b) after addition of 3 eq LiBF₄, (c) after addition of 40 eq DBU, (d) 1.5 h after addition of 1 atm CO_2/H_2 , (e) 16 h after addition of 1 atm CO_2/H_2 . Free formate (⁺HDBU⁻HCO₂) is seen upon CO_2/H_2 addition (d and e).

NMR scale catalytic CO₂ hydrogenation reaction with 4a. A J. Young NMR tube was charged with 6 mg of **4a** in approximately 1 mL of THF- d_8 . Then 3 eq of LiBF₄ and 40 eq of DBU were added to the sample. The sample was frozen at -198 °C, degassed, and 1 atm each of carbon dioxide and dihydrogen were admitted to the tube. The sample was warmed to ambient temperature and monitored by ³¹P and ¹H NMR spectroscopy over the course of 16 hours.

Figure S5. (a) ³¹P NMR spectra of **4a**, (b) after addition of 3 eq LiBF₄ and 40 eq DBU, (c) 1.5 h after addition of 1 atm CO_2/H_2 , (d) 16 h after addition of 1 atm CO_2/H_2 .

Figure S6. (a) ¹H NMR spectra of **4a**, (b) after addition of 3 eq LiBF₄ and 40 eq DBU, (c) 1.5 h after addition of 1 atm CO_2/H_2 , (d) 16 h after addition of 1 atm CO_2/H_2 .

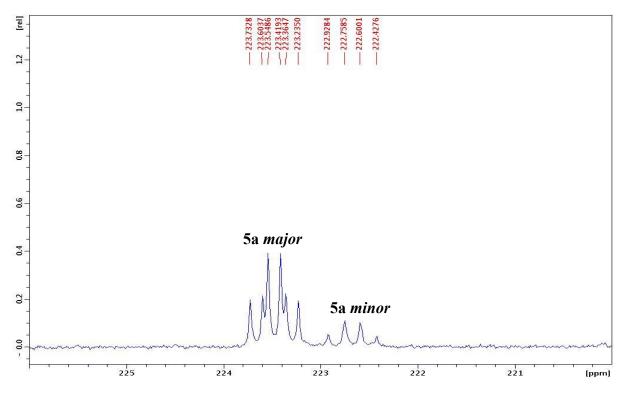

Figure S7. Partial ¹H NMR spectrum for 4a showing the *cis*- and *trans*-isomers isomers in C₆D₆.

Figure S8. Partial ¹H-coupled ¹³C NMR spectrum of (${}^{iPr}PN^{Me}P$)Fe(H)₂¹³CO (4a) showing *cis*and *trans*-isomers in C₆D₆.

Figure S9. Partial ¹H NMR spectrum for **5a** showing major and minor isomers in C_6D_6 . Note: **4a** present in small amount at -22.7 ppm.

Figure S10. Partial ¹H-coupled ¹³C NMR spectrum of $({}^{iPr}PN^{Me}P)Fe(H){}^{13}CO(HCO_2)$ (5a) showing major and minor isomers in C₆D₆.

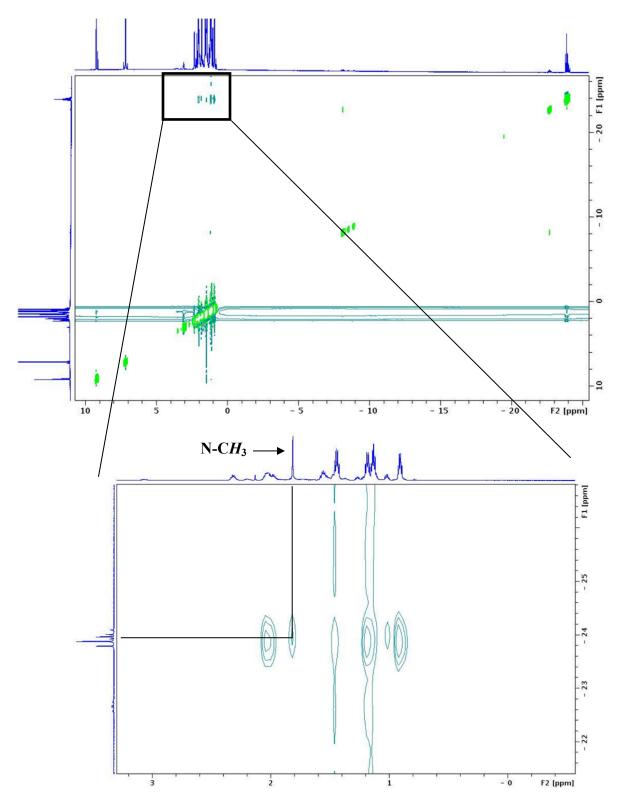
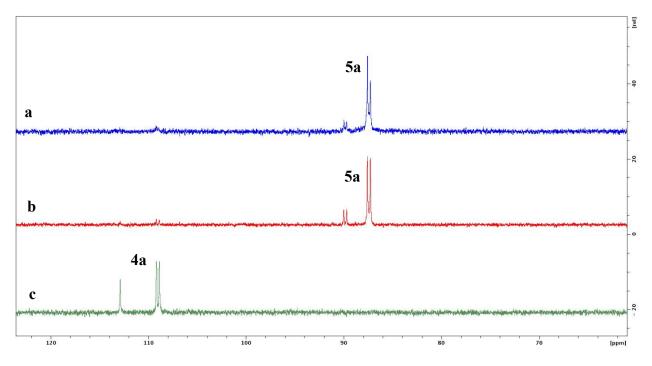
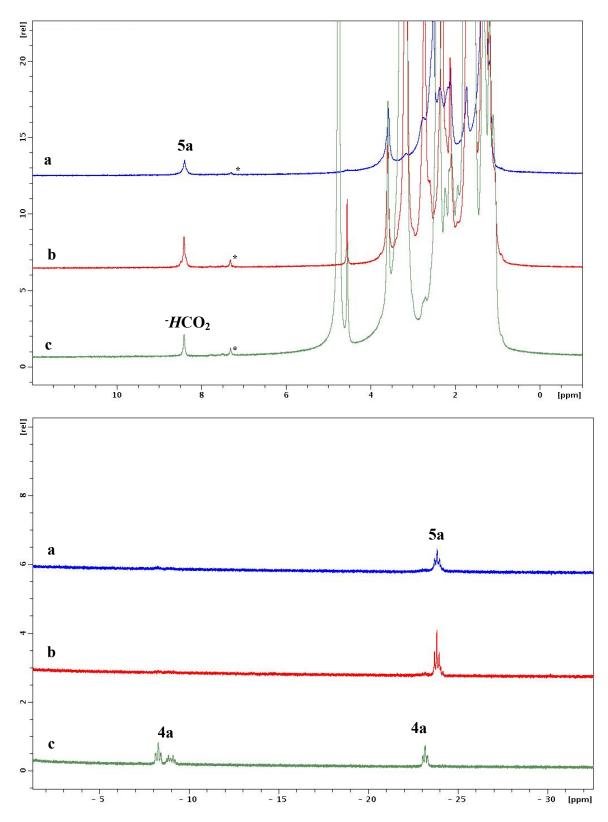




Figure S11. NOESY NMR spectrum for 5a in C_6D_6 (mixing time 300ms at 22 °C).

Treatment of 5a with DBU, H₂ and LiBF₄. A J. Young NMR tube was charged with 3 mg of **5a** in approximately 1 mL of THF- d_8 . 5 eq of DBU were added to the sample, then the tube was frozen at -198 °C, degassed, and 1 atm of dihydrogen was admitted. The sample was warmed to ambient temperature and monitored by ³¹P and ¹H NMR spectroscopy. After 16 h, 3 eq of LiBF₄ was added to the sample and the dihydrogen atmosphere recharged.

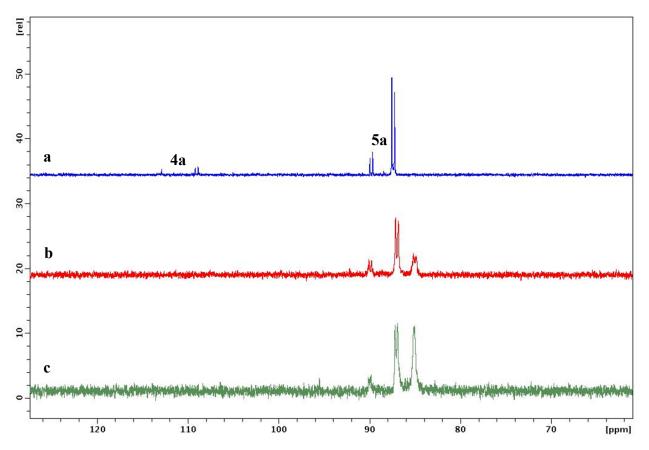


Figure S12. (a) ³¹P NMR spectra of **5a**, (b) 16 h after addition of 5 eq DBU and 1 atm H_2 , (c) 10 min after addition of 3 eq LiBF₄.

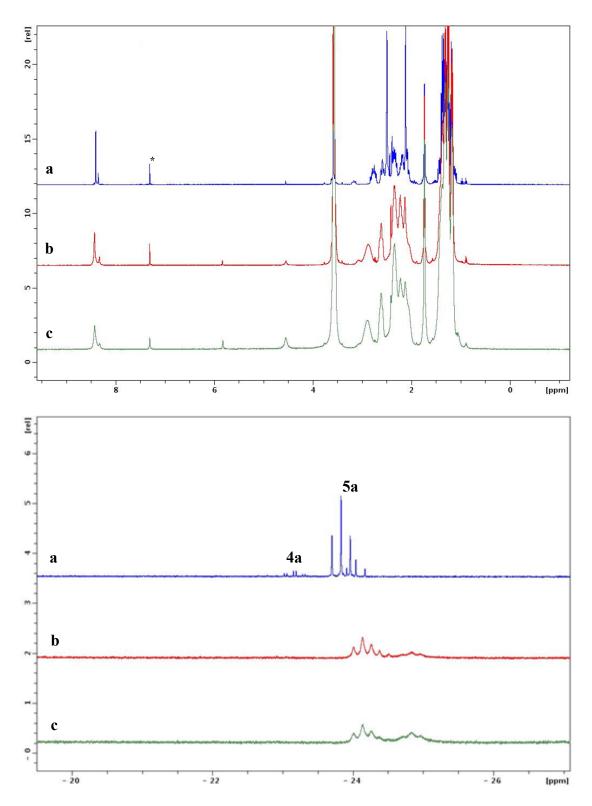


Figure S13. (a) ³¹P NMR spectra of **5a**, (b) 16 h after addition of 5 eq DBU and 1 atm H₂, (c) 10 min after addition of 3 eq LiBF₄. Free formate (⁺HDBU ⁻HCO₂) is seen upon CO₂/H₂ addition (c). * denotes C₆H₆ from glovebox atmosphere.

Treatment of 5a with LiBF₄. A J. Young NMR tube was charged with 3 mg of **5a** in approximately 1 mL of THF- d_8 . Then 3 eq of LiBF₄ was added under an N₂ atmosphere and the sample monitored by ³¹P and ¹H NMR spectroscopy.

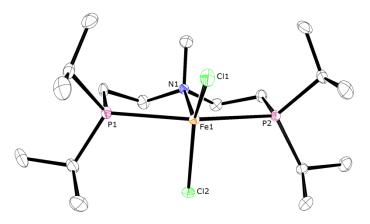


Figure S14. (a) ³¹P NMR spectra of **5a**, (b) 10 min after addition of 3 eq LiBF₄, (c) 2 h after addition of 3 eq LiBF₄. Note: **4a** present in small amount in (a).

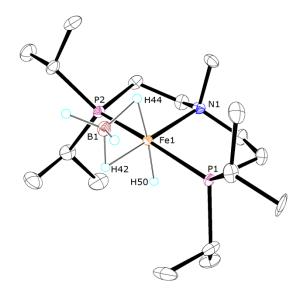
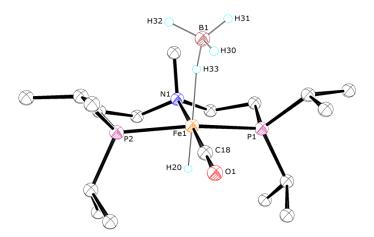
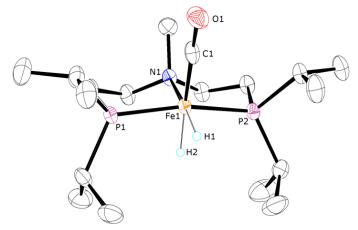
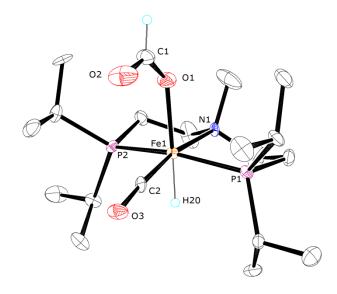


Figure S15. (a) ¹H NMR spectra of **5a**, (b) 10 min after addition of 3 eq LiBF₄, (c) 2 h after addition of 3 eq LiBF₄. Note: **4a** present in small amount in (a), * denotes C_6H_6 from glovebox atmosphere.


X-ray Crystallography


Figure S16. Molecular structures of $({}^{iPr}PN^{Me}P)FeCl_2$ at 30% ellipsoids. Hydrogen atoms not attached to iron or boron have been removed for clarity. Selected bond lengths (Å) and angles (°): Fe(1)-P(1) 2.5749(8), Fe(1)-P(2) 2.5738(7), Fe(1)-N(1) 2.222(2), Fe(1)-Cl(1) 2.2937(7), Fe(1)-Cl(2) 2.3505(7), P(1)-Fe(1)-P(2) 162.68(3), Cl(1)-Fe(1)-Cl(2) 140.42(3).


Figure S17. Molecular structures of (${}^{iPr}PN^{Me}P$)Fe(H)BH₄ at 30% ellipsoids. Hydrogen atoms not attached to iron or boron have been removed for clarity. Selected bond lengths (Å) and angles (°) (${}^{iPr}PN^{Me}P$)Fe(H)BH₄: Fe(1)-P(1) 2.193(2), Fe(1)-P(2) 2.183(2), Fe(1)-N(1) 2.079(2), Fe(1)-H(42) 1.62(6), Fe(1)-H(44) 1.67(5), Fe(1)-H(50) 1.58(5), P(1)-Fe(1)-P(2) 165.34(6), H(42)-B(1)-H(44) 105(4).

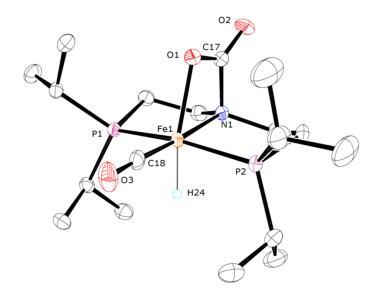

Figure S18. Molecular structure of **3a** at 30% ellipsoids. Hydrogen atoms not attached to iron or boron have been removed for clarity. Selected bond lengths (Å) and angles (°) for **3a**: Fe(1)-P(1) 2.2034(6), Fe(1)-P(2) 2.2031(7), Fe(1)-N(1) 2.136(1), Fe(1)-H(20) 1.47(2), Fe(1)-H(33) 1.81(3), Fe(1)-C(18) 1.728(2), C(18)-O(1) 1.162(2), P(1)-Fe(1)-P(2) 165.45(3), N(1)-Fe(1)-C(18) 177.55(7).

Figure S19. Molecular structure **4a** at 30% ellipsoids. Hydrogen atoms not attached to iron have been removed for clarity. Selected bond lengths (Å) and angles (°): Fe(1)-P(1) 2.1622(8), Fe(1)-P(2) 2.1583(8), Fe(1)-N(1) 2.123(2) Fe(1)-H(1) 1.51(2), Fe(1)-H(2) 1.42(3), Fe(1)-C(1) 1.748(3), C(1)-O(1) 1.134(4), P(1)-Fe(1)-P(2) 165.13(3), N(1)-Fe(1)-H(1) 171.8(9), C(1)-Fe(1)-H(2) 170(1).

Figure S20. Molecular structure of **5a** at 30% ellipsoids. The hydrogen atom attached to iron was freely refined while that attached to C(1) was calculated. All other hydrogen atoms have been removed for clarity. Selected bond lengths (Å) and angles (°) for 3a: Fe(1)-P(1) 2.212(3), Fe(1)-P(2) 2.227(3), Fe(1)-N(1) 2.14(1), Fe(1)-H(20) 1.40(8), Fe(1)-C(2) 1.68(1), Fe(1)-O(1) 2.019(8), C(2)-O(3) 1.19(2), C(1)-O(1) 1.27(2), C(1)-O(2) 1.20(2), P(1)-Fe(1)-P(2) 163.8(1), N(1)-Fe(1)-C(2) 168.8(5); O(1)-Fe(1)-H(20) 177(4).

Figure S21. Molecular structure of **CO₂-1a** at 30% ellipsoids. Hydrogen atoms not attached to iron and a co-crystallized pentane molecule have been removed for clarity. Selected bond lengths (Å) and angles (°): Fe(1)-P(1) 2.2104(9), Fe(1)-P(2) 2.2051(9), Fe(1)-N(1) 2.037(2), Fe(1)-C(18) 1.720(3), Fe(1)-H(24) 1.45(3), Fe(1)-O(1) 2.113(2), C(17)-O(1) 1.262(4), C(17)-O(2) 1.212(4), C(17)-N(1) 1.513(4), C(18)-O(3) 1.167(4), P(1)-Fe(1)-P(2) 164.85(4), N(1)-Fe(1)-C(18) 175.1(1), N(1)-Fe(1)-O(1) 65.75(9), O(1)-C(17)-O(2) 131.9(3).

References

1. (a) Werkmeister, S.; Junge, K.; Wendt, B.; Alberico, E.; Jiao, H.; Baumann, W.; Junge, H.; Gallou, F.; Beller, M. *Angew. Chem. Int. Ed.* **2014**, *53*, 8722; (b) Bornschein, C.; Werkmeister, S.; Wendt, B.; Jiao, H.; Alberico, E.; Baumann, W.; Junge, H.; Junge, K.; Beller, M. *Nat. Commun.* **2014**, *5*, 4111; (c) Koehne, I.; Schmeier, T. J.; Bielinski, E. A.; Pan, C. J.; Lagaditis, P. O.; Bernskoetter, W. H.; Takase, M. K.; Würtele, C.; Hazari, N.; Schneider, S. *Inorg. Chem.* **2014**, *53*, 2133.

2. Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. Organometallics 1996, 15, 1518.

3. Sandström, J. Dynamic NMR Spectroscopy; Academic Press: New York, 1982.