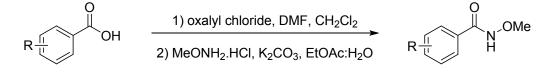
Modular synthesis of dihydro-isoquinolines: Palladium-catalyzed sequential C(sp²)–H and C(sp³)–H bonds activation

Weidong Liu, Qingzhen Yu, Le'an Hu, Zenghua Chen, Jianhui Huang*

Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, P. R. China, 300072 email: jhuang@tju.edu.cn

Supporting Information

General Information
General Procedures
General Procedure A: Synthesis of <i>N</i> -methoxybenzamides
General Procedure B: Synthesis of <i>N</i> -isopropoxybenzamide
General Procedure C: Synthesis of N-alkoxyl dihydroisoquinolones by amide
with peroxide
General Procedure D: Synthesis of N-alkoxyl dihydroisoquinolones by amide
with alcohol9
References
¹ H and ¹³ C NMR Spectra17
X-ray Structure and Data of 18a

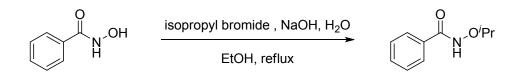

General Information

Flash chromatography was performed on silica gel 100-200 m. The solvent system used was a gradient of petroleum ether/ethyl acetate, increasing in polarity to ethyl acetate. Thin layer chromatography (TLC) was performed on glass backed plates precoated with silica (GF254), which were developed using standard visualizing agents. ¹H and ¹³C NMR spectra were recorded on a 600 MHz or 400 MHz BRUKER AVANCE spectrometer at 25 °C. ¹H: Chemical shifts are reported in ppm with the solvent resonance as the internal standard (CHCl₃: δ 7.26 ppm). Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet), integration, coupling constants (J) in Hz. ¹³C NMR spectra were recorded with complete proton decoupling. Chemical shifts are reported in ppm with the solvent resonance as the internal standard (CDCl₃: δ 77.0 ppm). Low resolution mass spectra were recorded on Micromass Autospec, operating in Agilent GC-MS operating in either E.I. or C.I mode. High-resolution mass spectra (HRMS) recorded for accurate mass analysis, were performed on either a Q-TOF micro (Bruker Compass Data Analysis 4.0) spectrometer. Melting points were performed on recrystallised solids and recorded on a national standard melting point apparatus and are uncorrected.

General Procedures:

The *N*-methoxybenzamides¹⁻⁸ and *N*-methylbenzamide⁹ were prepared following literature procedure and the analytical data are agreed with those data which have been reported previously.

General Procedure A: Synthesis of N-methoxybenzamides

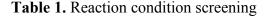


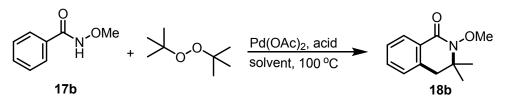
Following same procedure by Guimond *et.* al^1

To a solution of the carboxylic acid (10 mmol) in CH_2Cl_2 (0.3 M) at 0 °C under N_2 was added dropwise oxalyl chloride (12 mmol) followed by a catalytic amount of DMF (2 drops). The reaction was allowed to stir at room temperature until completion (typically 4h). The solvent was then removed under reduce pressure to afford the corresponding crude acid chloride. Methoxyamine hydrochloride (11 mmol) was added to a biphasic mixture of K_2CO_3 (20 mmol) in a 2:1 mixture of EtOAc:H₂O (0.2 M). The resulting solution was cooled to 0°C followed by addition of a solution unpurified acid chloride in a minimum amount of EtOAc dropwise. The flask containing the acid chloride was then rinsed with additional EtOAc. The reaction was stirring for 4h and slowly warmed up to room temperature. The two layers were separated and extracted with EtOAc (20 mL x 2). The combined organic phase was dried over anhydrous Na₂SO₄, filtered, and evaporated under reduced pressure. The residue was purified by flash column chromatography on silica gel.

General Procedure B: Synthesis of N-isopropoxybenzamide

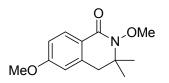
The amide **17I** was prepared by following the procedure reported by A. Nickon *et al*⁶, and the analytical data are consistently agreed with those ones are reported in the literature.⁷

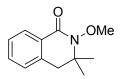



Following similar procedure reported by Nickon et. al6

Benzohydroxamic acid⁸ (3 mmol) was added into a solution of sodium hydroxide (4.5 mmol) in 1.5 mL H₂O, the mixture was warmed to 50 °C until the solids were dissolved, the resulting solution was added to isopropyl bromide (15 mmol) in absolute ethanol (6 mL), and the mixture was heated to reflux for 5 h. After the reaction was completed, the solvents were removed under reduced pressure. The residue was dissolved in EtOAc (20 mL), washed with H₂O (15 mL x 2). The organic layer was dried over anhydrous Na₂SO₄, filtered, and evaporated under reduced pressure. The crude product was purified by flash column chromatography on silica gel.

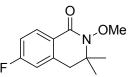
General Procedure C: Synthesis of *N*-alkoxyl dihydroisoquinolones by amide with peroxide


A solution of amide (0.2 mmol), peroxide (0.8 mmol), $Pd(OAc)_2$ (10 mol%) and TFA (5.0 mmol) in *c*-hex (1.0 mL) was heated in 100 °C under air for 20 min. After the reaction was completed, the reaction mixture was allowed to cool down to room temperature and saturated aqueous NaHCO₃ (20 mL) was added. The resulting mixture was extracted with EtOAc (20 mL x 3). The organic layer was dried over anhydrous Na₂SO₄, filtered and the solvent was removed under reduced pressure to provide the crude product. The purification was performed by flash column chromatography on silica gel.

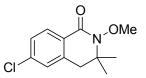

Entry ^[a]	Solvent	Acid	Equiv.	Yield
1	DCE	TFA	20	30%
2	THF	TFA	20	0%
3	AcOH	TFA	20	69%
4	Су	TFA	20	75%
5	Су	TFA	10	55%
6	Су	TFA	25	89%
7	Су	TFA	30	82%
8	Су	TFA	35	77%
9	Су	HFBA	25	85%

[a] Reaction conditions: Benzamide **17b** (0.2 mmol), DTBP (0.8 mmol), Pd(OAc)₂ (10 mol%), acid (10-35 equiv.) at 100 °C in solvent (0.2 M), 20 min-1 h.

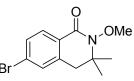
2,6-Dimethoxy-3,3-dimethyl-3,4-dihydroisoquinolin-1(2H)-one (18a)


Following the general procedure C, dihydroisoquinolinone **18a** (39 mg, 83%) was isolated as a white solid: Mp 57-59 °C; ¹H NMR (600 MHz, CDCl₃): δ 8.06 (d, *J* = 9.0 Hz, 1H), 6.85 (dd, *J* = 7.2, 1.8 Hz, 1H), 6.64 (d, *J* = 1.2 Hz, 1H), 3.92 (s, 3H), 3.85 (s, 3H), 3.02 (s, 2H), 1.37 (s, 6H); ¹³C NMR (150 MHz, CDCl₃): δ 165.3, 162.9, 138.3, 130.4, 120.9, 112.6, 112.5, 64.5, 61.9, 55.4, 43.5, 24.7; HRMS (ESI) *m/z* calcd for C₁₃H₁₇NO₃ (M+Na) 258.1106; found 258.1113.

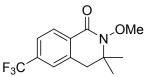
2-Methoxy-3,3-dimethyl-3,4-dihydroisoquinolin-1(2H)-one (18b)


Following the general procedure C, dihydroisoquinolinone **18b** (37 mg, 89%) was isolated as a colorless oil; ¹H NMR (600 MHz, CDCl₃): δ 8.12 (d, *J* = 7.2 Hz, 1H), 7.46 (t, *J* = 7.2 Hz, 1H), 7.35 (t, *J* = 7.5 Hz, 1H), 7.16 (d, *J* = 7.8 Hz, 1H), 3.94 (s, 3H), 3.08 (s, 2H), 1.39 (s, 6H); ¹³C NMR (150 MHz, CDCl₃): δ 165.0, 136.1, 132.6, 128.2,

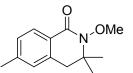
127.6, 127.0, 64.5, 62.1, 43.2, 24.8; HRMS (ESI) *m*/*z* calcd for C₁₂H₁₅NO₂ (M+H) 206.1181; found 206.1181.


6-Fluoro-2-methoxy-3,3-dimethyl-3,4-dihydroisoquinolin-1(2H)-one (18c)

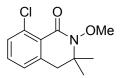
Following the general procedure C, dihydroisoquinolinone **18c** (37.0 mg, 83%) was isolated as a white solid: Mp 87-89 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.13 (dd, *J* = 8.6, 5.8 Hz, 1H), 7.02 (td, *J* = 8.6, 2.4 Hz, 1H), 6.85 (dd, *J* = 8.7, 2.2 Hz, 1H), 3.93 (s, 3H), 3.06 (s, 2H), 1.39 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 166.5, 164.2, 164.0, 138.9 (d, *J*_{C-F} = 8.9 Hz), 131.1 (d, *J*_{C-F} = 9.5 Hz), 124.6 (d, *J*_{C-F} = 2.8 Hz), 114.4 (dd, *J*_{C-F} = 18.8, 3.2 Hz), 64.5, 61.9, 43.2, 24.8; HRMS (ESI) *m/z* calcd for C₁₂H₁₄FNO₂ (M+H) 224.1087; found 224.1085.


6-Chloro-2-methoxy-3,3-dimethyl-3,4-dihydroisoquinolin-1(2H)-one (18d)

Following the general procedure C, dihydroisoquinolinone **18d** (36 mg, 75%) was isolated as a white solid: Mp 84-86 °C; ¹H NMR (600 MHz, CDCl₃): δ 7.98 (d, *J* = 8.4 Hz, 1H), 7.24 (dd, *J* = 8.3, 1.5 Hz, 1H), 7.08 (s, 1H), 3.85 (s, 3H), 2.96 (s, 2H), 1.31 (s, 6H); ¹³C NMR (150 MHz, CDCl₃): δ 164.1, 138.6, 137.8, 129.9, 127.6, 127.4, 126.7, 64.5, 61.9, 43.0, 24.8; HRMS (ESI) *m/z* calcd for C₁₂H₁₄³⁵ClNO₂ (M+H) 240.0791; found 240.0791.

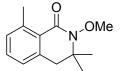

6-Bromo-2-methoxy-3,3-dimethyl-3,4-dihydroisoquinolin-1(2H)-one (18e) Following the general procedure C, dihydroisoquinolinone **18e** (45 mg, 80%) was isolated as a white solid: Mp 102-104 °C; ¹H NMR (600 MHz, CDCl₃): δ 7.98 (d, *J* = 8.3 Hz, 1H), 7.53 – 7.43 (d, 1H), 7.33 (s, 1H), 3.93 (s, 3H), 3.04 (s, 2H), 1.38 (s, 6H); ¹³C NMR (150 MHz, CDCl₃): δ 164.2, 137.9, 130.6, 130.4, 130.0, 127.2 (9), 127.2 (8),

64.5 (d, J = 2.8 Hz), 62.0, 42.9, 24.8; HRMS (ESI) m/z calcd for C₁₂H₁₄⁷⁹BrNO₂ (M+H) 284.0286; found 284.0283.

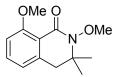

2-Methoxy-3,3-dimethyl-6-(trifluoromethyl)-3,4-dihydroisoquinolin-1(2H)-one (18f)

Following the general procedure C, dihydroisoquinolinone **18f** (24 mg, 43%) was isolated as a white solid: Mp 75-77 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.26 (d, *J* = 8.1 Hz, 1H), 7.62 (d, *J* = 8.1 Hz, 1H), 7.29 (s, 1H), 3.97 (s, 3H), 3.15 (s, 2H), 1.43 (s, 6H).; ¹³C NMR (100 MHz, CDCl₃): δ 163.4, 134.1, 134.0 (*J*_{C-F} = 32.4 Hz), 131.3, 128.9, 124.6 (*J*_{C-F} = 3.7 Hz), 123.9 (*J*_{C-F} = 3.7 Hz), 123.6 (*J*_{C-F} = 271.1 Hz), 64.5, 61.9, 43.1, 24.9; HRMS (ESI) *m/z* calcd for C₁₃H₁₄F₃NO₂ (M+H) 274.1055; found 274.1055.

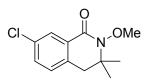
2-Methoxy-3,3,6-trimethyl-3,4-dihydroisoquinolin-1(2H)-one (18g)


Following the general procedure C, dihydroisoquinolinone **18g** (38.5 mg, 88%) was isolated as a colorless oil; ¹H NMR (600 MHz, CDCl₃): δ 7.99 (d, *J* = 7.8 Hz, 1H), 7.14 (d, *J* = 7.8 Hz, 1H), 6.95 (s, 1H), 3.92 (s, 3H), 3.02 (s, 2H), 2.37 (s, 3H), 1.37 (s, 6H); ¹³C NMR (150 MHz, CDCl₃): δ 165.3, 143.2, 136.1, 128.3, 128.2, 127.9, 125.3, 64.4, 62.1, 43.2, 24.8, 21.6; HRMS (ESI) *m/z* calcd for C₁₃H₁₇NO₂ (M+Na) 220.1157; found 220.1158.

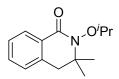
8-Chloro-2-methoxy-3,3-dimethyl-3,4-dihydroisoquinolin-1(2H)-one (18h)


Following the general procedure C, dihydroisoquinolinone **18h** (26 mg, 54%) was isolated as a white solid: Mp 108-110 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.38 (d, *J* = 7.9 Hz, 1H), 7.31 (t, *J* = 7.7 Hz, 1H), 7.07 (d, *J* = 7.3 Hz, 1H), 3.95 (s, 3H), 3.06 (s, 2H), 1.37 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 162.6, 139.1, 135.6, 132.2, 131.2,

126.7, 124.6, 64.6, 60.6, 44.1, 24.8; HRMS (ESI) m/z calcd for $C_{12}H_{14}^{35}CINO_2$ (M+H) 240.0791; found 240.0791.


2-Methoxy-3,3,8-trimethyl-3,4-dihydroisoquinolin-1(2H)-one (18i)

Following the general procedure C, dihydroisoquinolinone **18i** (41 mg, 94%) was isolated as a white solid: Mp 60-62 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.28 (dd, *J* = 9.6, 5.5 Hz, 1H), 7.12 (d, *J* = 7.6 Hz, 1H), 6.99 (d, *J* = 7.4 Hz, 1H), 3.94 (s, 3H), 3.03 (s, 2H), 2.75 (s, 3H), 1.36 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 166.1, 142.1, 137.4, 131.5, 131.1, 125.9 (1), 125.9 (0), 64.5, 60.9, 44.1, 24.6, 23.2; HRMS (ESI) *m/z* calcd for C₁₃H₁₇NO₂ (M+Na) 220.1157; found 220.1158.


2,8-Dimethoxy-3,3-dimethyl-3,4-dihydroisoquinolin-1(2H)-one (18j)

Following the general procedure C, dihydroisoquinolinone **18j** (35 mg, 75%) was isolated as a white solid: Mp 61-63 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.37 (t, *J* = 8.0 Hz, 1H), 6.88 (d, *J* = 8.4 Hz, 1H), 6.72 (d, *J* = 7.4 Hz, 1H), 3.92 (3) (s, 3H), 3.92 (0) (s, 3H), 3.01 (s, 2H), 1.35 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 163.9, 160.8, 139.1, 133.3, 120.0, 116.1, 110.9, 64.4, 60.7, 56.1, 44.1, 24.7; HRMS (ESI) *m/z* calcd for C₁₃H₁₇NO₃ (M+Na) 258.1106; found 258.1103.

7-Chloro-2-methoxy-3,3-dimethyl-3,4-dihydroisoquinolin-1(2H)-one (18k)

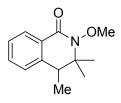
Following the general procedure C, dihydroisoquinolinone **18k** (21 mg, 43%) was isolated as a colorless oil; ¹H NMR (400 MHz, CDCl₃): δ 8.12 (d, *J* = 2.2 Hz, 1H), 7.43 (dd, *J* = 8.1, 2.2 Hz, 1H), 7.13 (d, *J* = 8.1 Hz, 1H), 3.95 (s, 3H), 3.06 (s, 2H), 1.40 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 163.7, 134.3, 133.2, 132.5, 129.7, 129.1, 128.1, 64.5, 62.1, 42.7, 24.8; HRMS (ESI) *m/z* calcd for C₁₂H₁₄³⁵ClNO₂ (M+H) 240.0791; found 240.0791.

2-Isopropoxy-3,3-dimethyl-3,4-dihydroisoquinolin-1(2H)-one (18l)

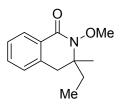
Following the general procedure C, dihydroisoquinolinone **181** (35 mg, 75%) was isolated as a white solid: Mp 44-46 °C; ¹H NMR (600 MHz, CDCl₃): δ 8.13 (d, *J* = 7.7 Hz, 1H), 7.44 (t, *J* = 7.4 Hz, 1H), 7.33 (t, *J* = 7.5 Hz, 1H), 7.16 (d, *J* = 7.5 Hz, 1H), 4.46 – 4.32 (m, 1H), 3.09 (s, 2H), 1.36 (s, 6H), 1.32 (d, *J* = 6.2 Hz, 6H); ¹³C NMR (150 MHz, CDCl₃): δ 167.0, 136.5, 132.3, 128.6, 128.3, 127.5, 126.9, 77.5, 62.1, 43.3, 25.2, 21.2; HRMS (ESI) *m/z* calcd for C₁₄H₁₉NO₂ (M+H) 234.1494; found 234.1495.

General Procedure D: Synthesis of *N*-alkoxyl dihydroisoquinolones by amide with alcohol

A solution of amide (0.2 mmol), alcohol (0.8 mmol), $Pd(OAc)_2$ (10 mol%), $K_2S_2O_8$ (108.0 mg, 0.4 mmol) and TFA (2.0 mmol) in *c*-hex (1.0 mL) was heated in 100 °C under air for 20 min. After the reaction was completed, the reaction mixture was allowed to cool down to room temperature and saturated aqueous NaHCO₃ (20 mL) was added. The resulting mixture was extracted with EtOAc (20 mL x 3). The organic layer was dried over anhydrous Na₂SO₄, filtered and the solvent was removed under reduced pressure to provide the crude product. The purification was performed by flash column chromatography on silica gel.

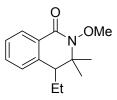

2-methoxy-3,3-dimethyl-3,4-dihydroisoquinolin-1(2H)-one (18b)

Following the general procedure C, dihydroisoquinolinone **18b** (34 mg, 84%) was isolated as a colorless oil; ¹H NMR (600 MHz, CDCl₃): δ 8.12 (d, J = 7.2 Hz, 1H), 7.46 (t, J = 7.2 Hz, 1H), 7.35 (t, J = 7.5 Hz, 1H), 7.16 (d, J = 7.8 Hz, 1H), 3.94 (s, 3H), 3.08 (s, 2H), 1.39 (s, 6H); ¹³C NMR (150 MHz, CDCl₃): δ 165.0, 136.1, 132.6, 128.2, 127.6, 127.0, 64.5, 62.1, 43.2, 24.8; HRMS (ESI) *m*/*z* calcd for C₁₂H₁₅NO₂ (M+H) 206.1181; found 206.1181.

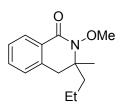

2,3,3-Trimethyl-3,4-dihydroisoquinolin-1(2H)-one (18m)

Following the general procedure C, 2,3,3-trimethyl-3,4-dihydroisoquinolin-1(2H)-one **18m** (4 mg, 10%) was isolated as a colorless oil; ¹H NMR (400 MHz, CDCl₃): δ 7.99 (d, *J* = 7.7 Hz, 1H), 7.34 (t, *J* = 7.4 Hz, 1H), 7.26 (t, *J* = 7.6 Hz, 1H), 7.07 (d, *J* = 7.4 Hz, 1H), 3.02 (s, 3H), 2.87 (s, 2H), 1.23 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 164.7, 136.1, 131.6, 128.6, 128.2, 127.2, 126.9, 55.9, 42.3, 27.1, 26.1; HRMS (ESI) *m/z* calcd for C₁₂H₁₅NO₂ (M+H) 190.1232; found 190.1231.

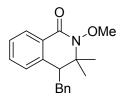
2-Methoxy-3,3,4-trimethyl-3,4-dihydroisoquinolin-1(2H)-one (18o)


Following the general procedure D, dihydroisoquinolinone **18n** (28 mg, 63%) was isolated as a colorless oil; ¹H NMR (400 MHz, CDCl₃): δ 8.12 (d, *J* = 7.7 Hz, 1H), 7.47 (t, *J* = 7.5 Hz, 1H), 7.34 (t, *J* = 7.5 Hz, 1H), 7.20 (d, *J* = 7.6 Hz, 1H), 3.93 (s, 3H), 2.94 (q, *J* = 7.0 Hz, 1H), 1.37 (s, 3H), 1.33 – 1.32 (m, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 164.3, 142.4, 132.7, 128.2, 127.3, 126.9, 126.8, 64.4, 64.1, 45.0, 29.7, 25.1, 21.7, 17.0; HRMS (ESI) *m/z* calcd for C₁₃H₁₇NO₂ (M+Na) 242.1157; found 220.1132.

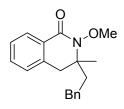
3-Ethyl-2-methoxy-3-methyl-3,4-dihydroisoquinolin-1(2H)-one (18o')


Following the general procedure D, dihydroisoquinolinone **18n'** (3.4 mg, 8%) was isolated as a colorless oil; ¹H NMR (400 MHz, CDCl₃): δ 8.12 (d, *J* = 7.6 Hz, 1H), 7.44 (t, *J* = 7.0 Hz, 1H), 7.34 (t, *J* = 7.5 Hz, 1H), 7.15 (d, *J* = 7.4 Hz, 1H), 3.94 (s, 2H), 3.06 (s, 2H), 1.87 (m, 1H), 1.66 (m, 1H), 1.40 (s, 3H), 0.90 (t, *J* = 7.5 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 164.7, 136.0, 132.4, 128.4, 128.1, 127.5, 126.9, 65.0,

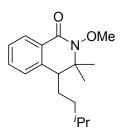
64.4, 40.0, 29.7, 22.5, 9.1; HRMS (ESI) *m/z* calcd for C₁₃H₁₇NO₂ (M+Na) 242.1157; found 220.1132.


4-Ethyl-2-methoxy-3,3-dimethyl-3,4-dihydroisoquinolin-1(2H)-one (18p)

Following the general procedure D, dihydroisoquinolinone **18o** (13.5 mg, 29%) was isolated as a colorless oil; ¹H NMR (400 MHz, CDCl₃): δ 8.12 (d, *J* = 7.7 Hz, 1H), 7.44 (td, *J* = 7.5, 1.4 Hz, 1H), 7.35 (td, *J* = 7.6, 1.1 Hz, 1H), 7.11 (d, *J* = 7.5 Hz, 1H), 3.94 (s, 3H), 2.55 (dd, *J* = 9.8, 4.0 Hz, 1H), 1.95 (dtd, *J* = 15.0, 7.5, 3.4 Hz, 1H), 1.66 – 1.56 (m, 1H), 1.51 (s, 3H), 1.21 (s, 3H), 0.80 (t, *J* = 7.5 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 163.9, 140.2, 131.6, 128.8, 128.3, 127.7, 126.9, 64.2, 64.1, 51.9, 25.7, 23.6, 22.8, 11.8; HRMS (ESI) *m*/*z* calcd for C₁₄H₁₉NO₂ (M+H) 234.1494; found 234.1495.

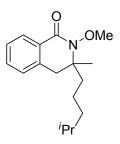

2-Methoxy-3-methyl-3-propyl-3,4-dihydroisoquinolin-1(2H)-one (18p')

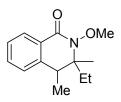
Following the general procedure D, dihydroisoquinolinone **180'** (15 mg, 33%) was isolated as a colorless oil; ¹H NMR (400 MHz, CDCl₃): δ 8.12 (d, *J* = 7.7 Hz, 1H), 7.44 (t, *J* = 7.4 Hz, 1H), 7.34 (t, *J* = 7.6 Hz, 1H), 7.14 (d, *J* = 7.5 Hz, 1H), 3.94 (s, 3H), 3.07 (s, 2H), 1.83 – 1.72 (m, 1H), 1.63 – 1.52 (m, 1H), 1.42 (s, 3H), 1.31 (m, 2H), 0.86 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 164.7, 136.0, 132.4, 128.4, 128.1, 127.4, 126.9, 64.7, 64.3, 40.7, 39.8, 23.3, 17.9, 14.5; HRMS (ESI) *m/z* calcd for C₁₄H₁₉NO₂ (M+H) 234.1494; found 234.1495.



4-benzyl-2-methoxy-3,3-dimethyl-3,4-dihydroisoquinolin-1(2H)-one (18q)

Following the general procedure D, dihydroisoquinolinone **18p** (18 mg, 30%) was isolated as a colorless oil; ¹H NMR (400 MHz, CDCl₃): δ 8.12 (d, *J* = 6.9 Hz, 1H), 7.26 (t, 1H), 7.19 – 7.13 (m, 3H), 7.08 (td, *J* = 7.5, 1.3 Hz, 1H), 6.77 (m, 2H), 6.21 (d, *J* = 7.5 Hz, 1H), 3.99 (s, 3H), 3.35 (dd, *J* = 12.9, 4.0 Hz, 1H), 2.86 (dd, *J* = 10.9, 4.1 Hz, 1H), 2.67 (dd, *J* = 12.8, 11.1 Hz, 1H), 1.65 (s, 3H), 1.25 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 164.1, 139.4, 139.2, 131.2, 129.6, 129.0, 128.2, 128.1, 127.3, 127.0, 126.2, 64.2, 53.0, 37.5, 29.7, 25.5, 23.4; HRMS (ESI) *m/z* calcd for C₁₉H₂₁NO₂ (M+H) 296.1651; found 296.1651.


2-methoxy-3-methyl-3-phenethyl-3,4-dihydroisoquinolin-1(2H)-one (18q') Following the general procedure D, dihydroisoquinolinone **18p'** (20 mg, 34%) was isolated as a colorless oil; ¹H NMR (400 MHz, CDCl₃): δ 8.12 (d, *J* = 7.7 Hz, 1H), 7.44 (t, *J* = 6.9 Hz, 1H), 7.35 (t, *J* = 7.4 Hz, 1H), 7.23 (d, *J* = 7.5 Hz, 2H), 7.19–7.07 (m, 4H), 3.97 (s, 3H), 3.13 (d, *J* = 5.2 Hz, 2H), 2.67–2.63 (t, *J* = 8.8 Hz, 2H), 2.16 – 2.09 (m, 1H), 1.9 –1.87 (m, 1H), 1.52 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 164.6, 141.5, 135.8, 132.5, 128.4, 128.3, 128.2 (1), 128.2 (0), 127.5, 127.0, 126.0, 64.6, 64.5, 41.0, 39.3, 31.1, 23.3.; HRMS (ESI) *m/z* calcd for C₁₉H₂₁NO₂ (M+H) 296.1651; found 296.1651.


4-isopentyl-2-methoxy-3,3-dimethyl-3,4-dihydroisoquinolin-1(2H)-one (18r)

Following the general procedure D, dihydroisoquinolinone **18q** (17.6 mg, 32%) was isolated as a colorless oil; ¹H NMR (400 MHz, CDCl₃): δ 8.11 (d, *J* = 7.5 Hz, 1H), 7.43 (dd, *J* = 7.5, 4.2 Hz, 1H), 7.34 (t, *J* = 7.5 Hz, 1H), 7.10 (d, *J* = 7.5 Hz, 1H), 3.95 (s, 3H), 2.59 (dd, *J* = 10.0, 4.0 Hz, 1H), 1.91–1.83 (m, 1H), 1.59–1.55 (m, 1H), 1.50 (s, 3H), 1.21 (s, 3H), 1.14–0.96 (m, 3H), 0.84 (d, *J* = 7.0 Hz, 3H), 0.79 (d, *J* = 7.0 Hz, 1H), 1.91–1.83 (m, 1H), 1.91–1.83 (m, 2000) (d, *J* = 7.0 Hz), 1.21 (s, 3H), 1.14–0.96 (m, 3H), 0.84 (d, *J* = 7.0 Hz), 3H), 0.79 (d, *J* = 7.0 Hz), 1.91–1.83 (m, 2000) (d, *J* = 7.0 Hz), 1.91–1.91 (d, *J* =

3H); ¹³C NMR (100 MHz, CDCl₃): δ 163.9, 140.8, 131.7, 128.5, 128.4, 127.6, 126.9, 64.3, 64.1, 50.8, 36.4, 28.6, 28.2, 25.7, 22.8, 22.3; HRMS (ESI) *m/z* calcd for C₁₇H₂₅NO₂ (M+Na) 298.1783; found 298.1780.

2-methoxy-3-methyl-3-(4-methylpentyl)-3,4-dihydroisoquinolin-1(2H)-one (18r') Following the general procedure D, dihydroisoquinolinone **18q'** (17.1 mg, 31%) was isolated as a colorless oil; ¹H NMR (400 MHz, CDCl₃): δ 8.11 (d, J = 7.5 Hz, 1H), 7.44 (t, J = 7.5 Hz, 1H), 7.34 (t, J = 7.5 Hz, 1H), 7.14 (d, J = 7.5 Hz, 1H), 3.94 (s, 3H), 3.07 (s, 2H), 1.84–1.74(m, 2H), 1.51–1.45 (m, 2H), 1.41 (s, 3H), 1.12–1.10 (m, 2H), 0.82 (dd, J = 7.0, 4.0 Hz, 6H), 0.67 (dd, J = 7.0, 4.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 164.7, 136.0, 132.4, 128.4, 128.1, 127.4, 126.9, 64.8, 64.3, 40.6, 39.3, 37.6, 27.8, 23.1, 22.5, 22.3; HRMS (ESI) *m/z* calcd for C₁₇H₂₅NO₂ (M+Na) 298.1783; found 298.1784.

3-ethyl-2-methoxy-3,4-dimethyl-3,4-dihydroisoquinolin-1(2H)-one (18s)

Following the general procedure D, dihydroisoquinolinone **18r** (30.8 mg, 66%) was isolated as a colorless oil; ¹H NMR (400 MHz, CDCl₃): δ 8.10 (dd, *J* = 7.5, 4.0 Hz, 1H), 7.45 (td, *J* = 7.5, 1.4 Hz, 1H), 7.3–7.29 (m, 1H), 7.17 (dd, *J* = 7.5, 4.0 Hz, 1H), 3.93 (s, 3H), 3.00 (q, *J* = 7.0 Hz, 1H), 2.00–1.93 (m, 1H), 1.84–1.75 (m, 1H), 1.29 (dd, *J* = 7.0, 1.5 Hz, 6H), 0.86 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 163.6, 142.7, 132.6 (d, *J* = 3.8 Hz), 128.1 (d, *J* = 7.1 Hz), 127.4, 127.2, 126.8 (d, *J* = 4.0 Hz), 67.1, 64.2, 63.7, 41.8, 31.6, 22.7, 14.1; HRMS (ESI) *m/z* calcd for C₁₄H₁₉NO₂ (M+H) 234.1494; found 234.1495.

The reaction of benzamide 17b with alkene

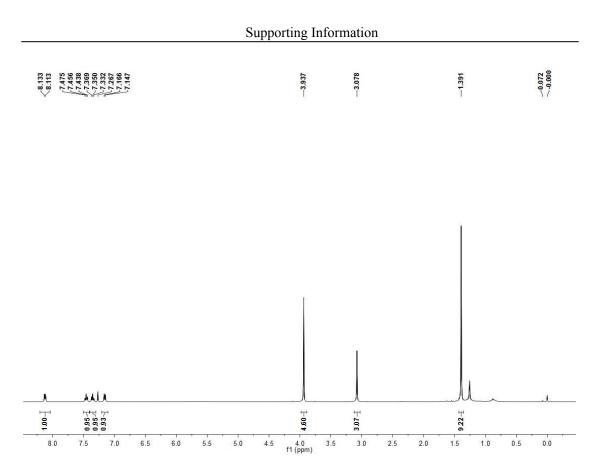
A mixture of *N*-methoxylbenzamide (**17b**) (30.2 mg, 0.2 mmol), 2-methylbut-2-ene (0.8 mmol), Pd(OAc)₂ (10 mol%), K₂S₂O₈ (108.0 mg, 0.4 mmol) and TFA (228.0 mg, 2.0 mmol) in *c*-hex (1.0 mL) was heated at 100 °C for 60 min. The reaction mixture was allowed to cool down to room temperature and saturated aqueous NaHCO₃ (20 mL) was added. The resulting mixture was extracted with EtOAc (20 mL x 3). The organic layer was dried over anhydrous Na₂SO₄, filtered and the solvent was removed under reduced pressure to provide the crude product. The purification was performed by flash column chromatography on silica gel to give the unreacted benzamide **17b** (28.4 mg, 94%).

Radical capture experiment with 2,6-di-tert-butyl phenol

A solution of *N*-methoxylbenzamide (**17b**) (30.2 mg, 0.2 mmol), DTBP (116.8 mg, 0.8 mmol), Pd(OAc)₂ (4.5 mg, 10 mol%) and TFA (684.0 mg, 6.0 mmol) in *c*-hex (1.0 mL) was added 2,6-di-*tert*-butyl phenol (329.6 mg, 1.6 mmol). The mixture was heated at 100 °C under air for 60 min. The reaction mixture was allowed to cool down to room temperature and saturated aqueous NaHCO₃ (20 mL) was added. The resulting mixture was extracted with EtOAc (20 mL x 3). The organic layer was dried over anhydrous Na₂SO₄, filtered and the solvent was removed under reduced pressure to provide the crude product. The purification was performed by flash column chromatography on silica gel to give the unreacted benzamide **17b** (28.7 mg, 95%).

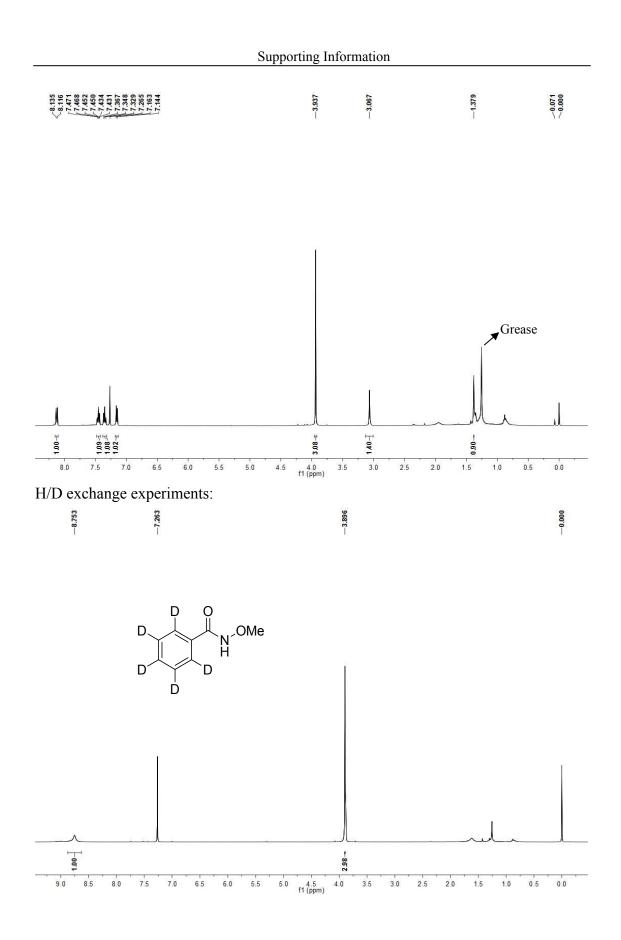
Radical capture experiment with TEMPO

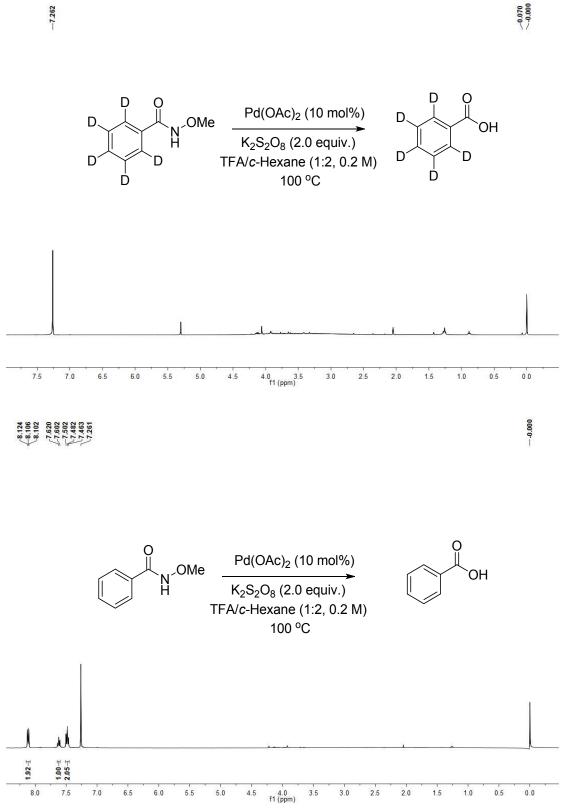
A solution of *N*-methoxylbenzamide (**17b**) (30.2 mg, 0.2 mmol), DTBP (116.8 mg, 0.8 mmol), $Pd(OAc)_2$ (4.5 mg, 10 mol%) and TFA (684.0 mg, 6.0 mmol) in *c*-hex (1.0 mL) was added TEMPO (329.6 mg, 1.6 mmol). The mixture was heated in 100 °C under air for 60 min. The reaction mixture was allowed to cool down to room temperature and saturated aqueous NaHCO₃ (20 mL) was added. The resulting mixture was extracted with EtOAc (20 mL x 3). The organic layer was dried over

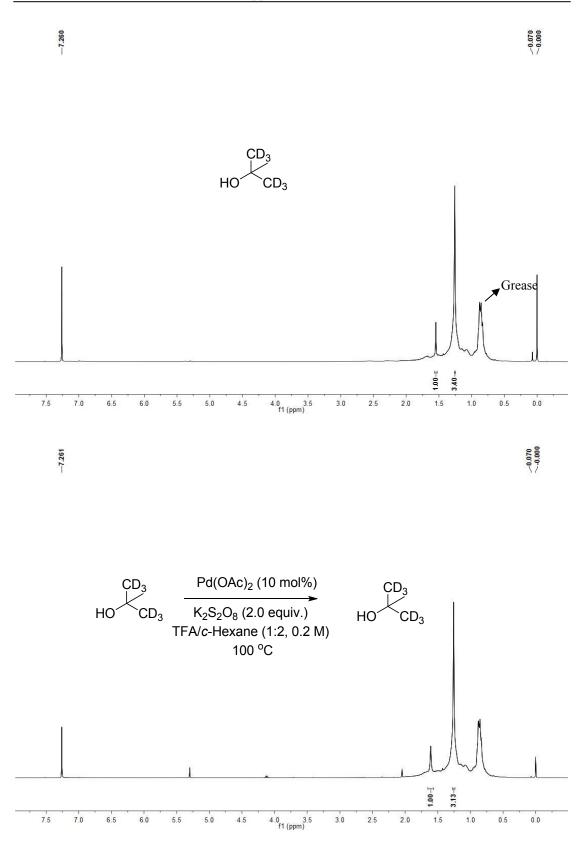

anhydrous Na_2SO_4 , filtered and the solvent was removed under reduced pressure to provide the crude product. The purification was performed by flash column chromatography on silica gel to give the unreacted benzamide **17b** (27.8 mg, 92%).

Control experiment with palladacycle 19

A mixture of palladacycle **19** (51.0 mg, 0.2 mmol), DTBP (116.8 mg, 0.8 mmol) and TFA (684.0 mg, 6.0 mmol) in *c*-hex (1.0 mL) was heated at 100 °C for 60 min. The reaction mixture was allowed to cool down to room temperature and saturated aqueous NaHCO₃ (20 mL) was added. The resulting mixture was extracted with EtOAc (20 mL x 3). The organic layer was dried over anhydrous Na₂SO₄, filtered and the solvent was removed under reduced pressure to provide the crude product. The purification was performed by flash column chromatography on silica gel to give dihydroisoquinolinone **18b** (39.8 mg, 97%).

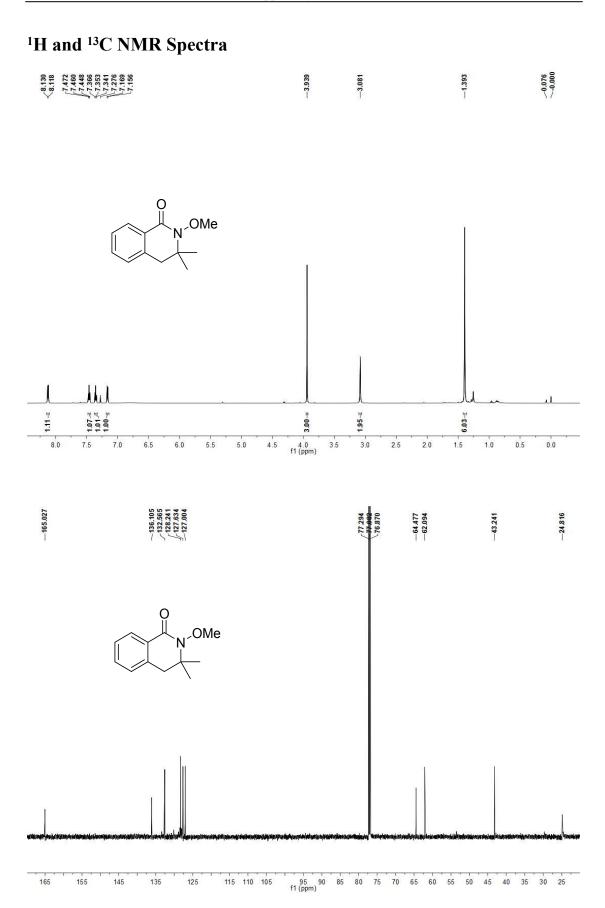

Intermolecular competition experiment between benzamides 17b and 17b-5D

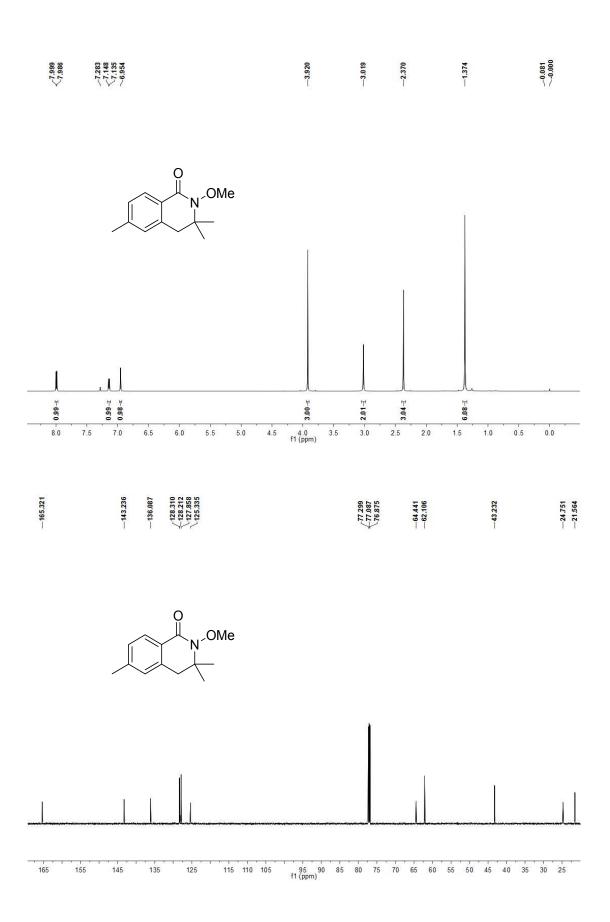

A mixture of *N*-methoxylbenzamide (**17b**) (15.1 mg, 0.1 mmol), *N*-methoxyl-2,3,4,5,6-pentadeueriobenzamide (**17b-5D**) (15.6 mg, 0.1 mmol), *t*-BuOH (59.2 mg, 0.8 mmol), Pd(OAc)₂ (4.5 mg, 10 mol%), K₂S₂O₈ (108.0 mg, 0.4 mmol) and TFA (684.0 mg, 6.0 mmol) in *c*-hex (1.0 mL) was heated at 100 °C for 10 min. The reaction mixture was allowed to cool down to room temperature and saturated aqueous NaHCO₃ (20 mL) was added. The resulting mixture was extracted with EtOAc (20 mL x 3). The organic layer was dried over anhydrous Na₂SO₄, filtered and the solvent was removed under reduced pressure to provide the crude product. The purification was performed by flash column chromatography on silica gel to give **18b/18b-5D** (21.4 mg, 42%). The ratio of dihydroisoquinolinones **18b**:1**8b-5D** in the crude mixture of products was determined by ¹H-NMR. The kinetic isotopic effect of this reaction was thus determined to be *kH/kD* = 1.9.

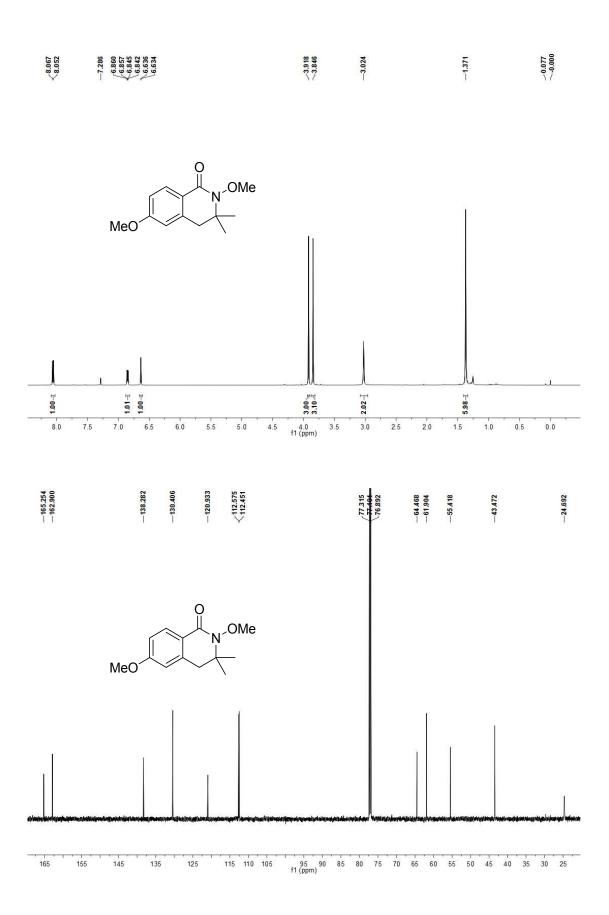


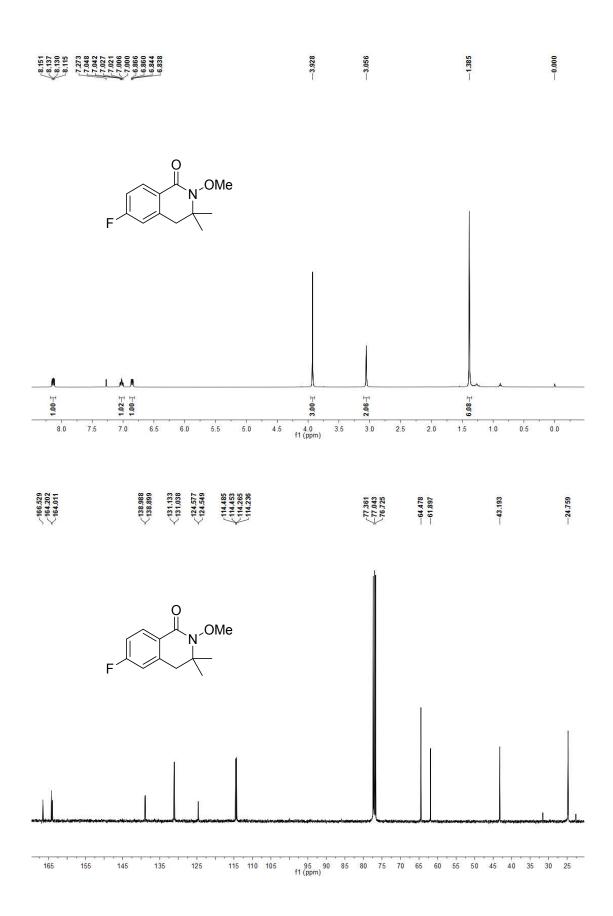
Intramolecular competition experiment with tertiary alcohol 6a-D6

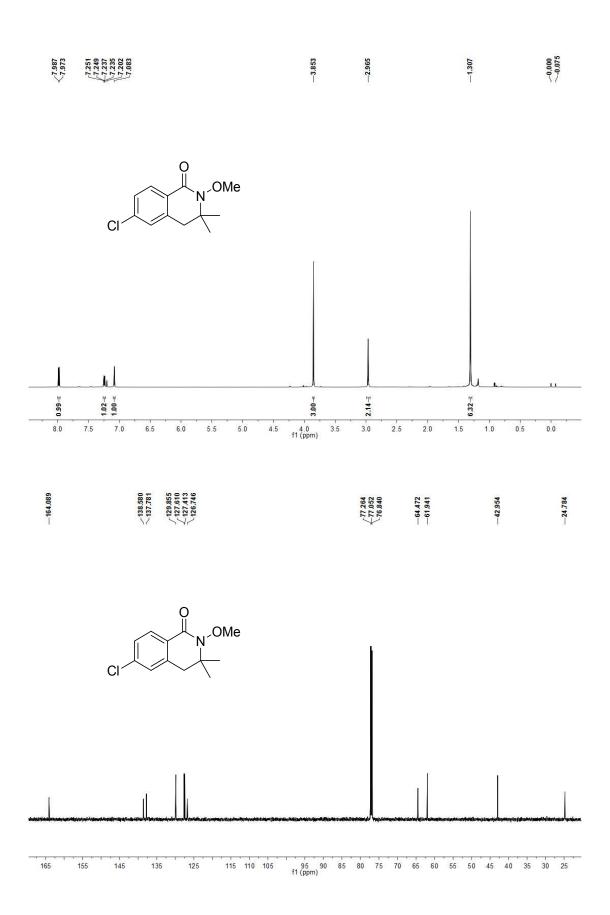
A mixture of *N*-methoxylbenzamide (**17b**) (30.2 mg, 0.2 mmol), *t*-BuOH-**D6** ([**D6**]-**6a**) (59.2 mg, 0.8 mmol), Pd(OAc)₂ (4.5 mg, 10 mol%), K₂S₂O₈ (108.0 mg, 0.4 mmol) and TFA (684.0 mg, 6.0 mmol) in *c*-hex (1.0 mL) was heated at 100 °C for 15 min. The reaction mixture was allowed to cool down to room temperature and saturated aqueous NaHCO₃ (20 mL) was added. The resulting mixture was extracted with EtOAc (20 mL x 3). The organic layer was dried over anhydrous Na₂SO₄, filtered and the solvent was removed under reduced pressure to provide the crude product. The purification was performed by flash column chromatography on silica gel to give **18b-D6/18b-D5** (24.0 mg, 57%). The ratio of dihydroisoquinolinones **18b-D6:18b-D5** in the crude mixture of products was determined by ¹H-NMR. The kinetic isotopic effect of this reaction was thus determined to be kH/kD = 4.7.

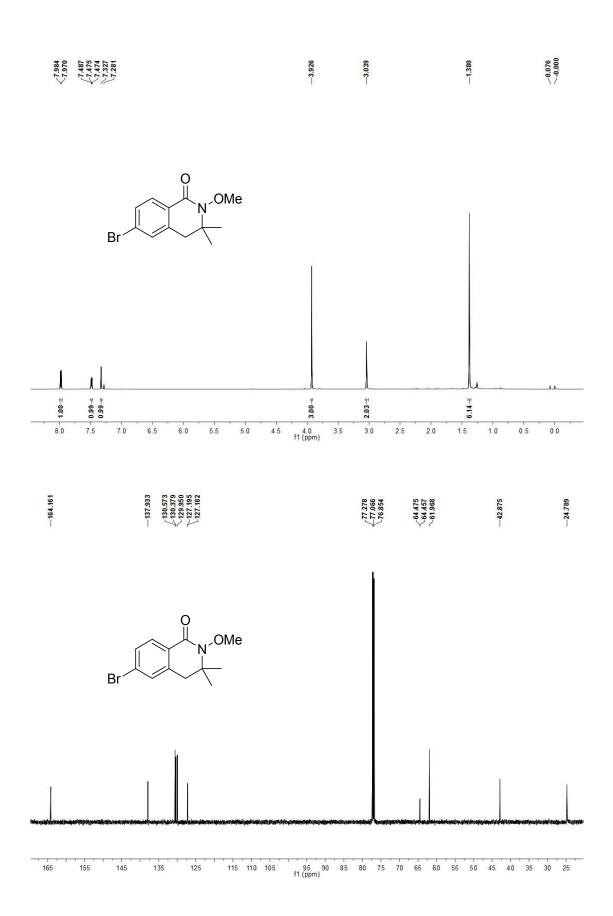


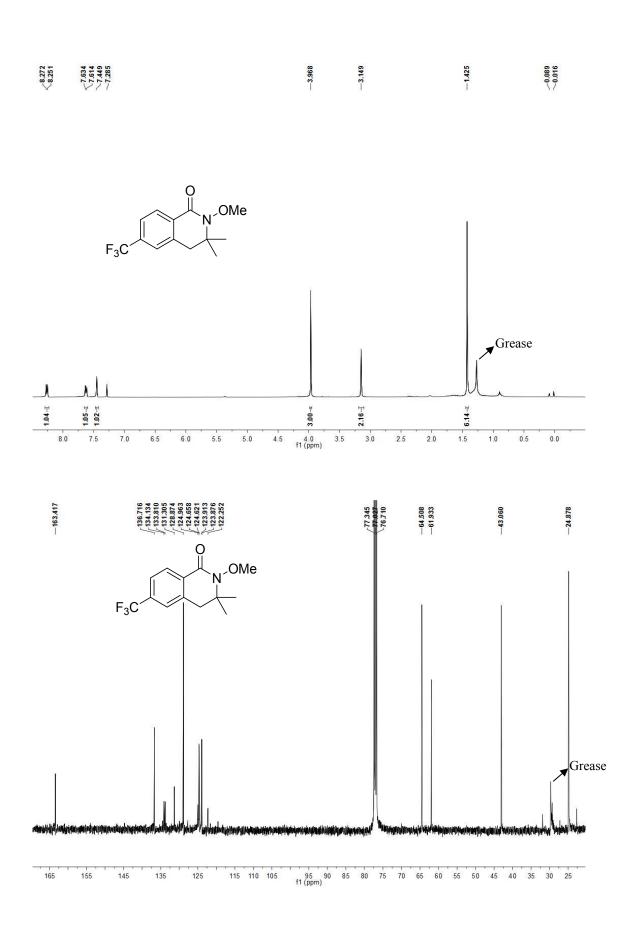


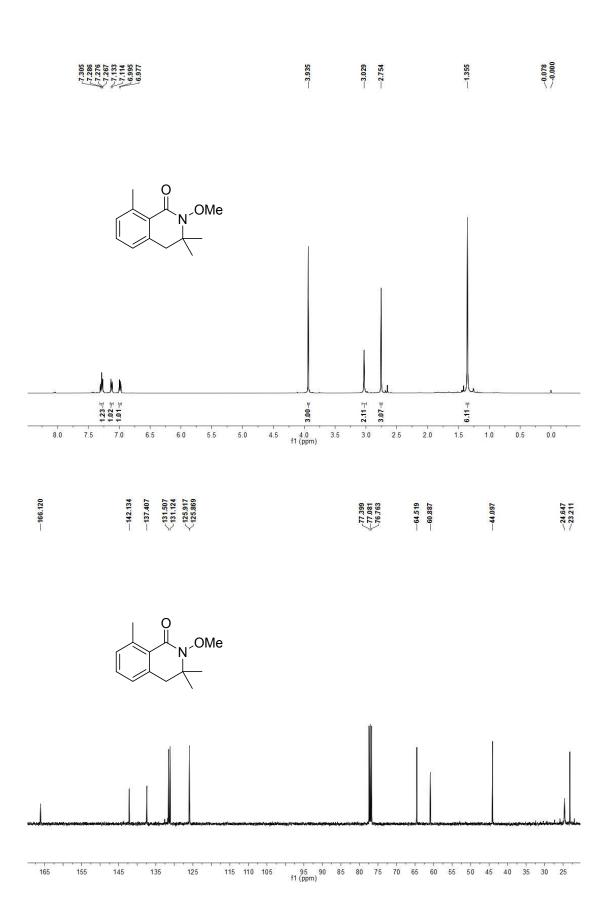

References:

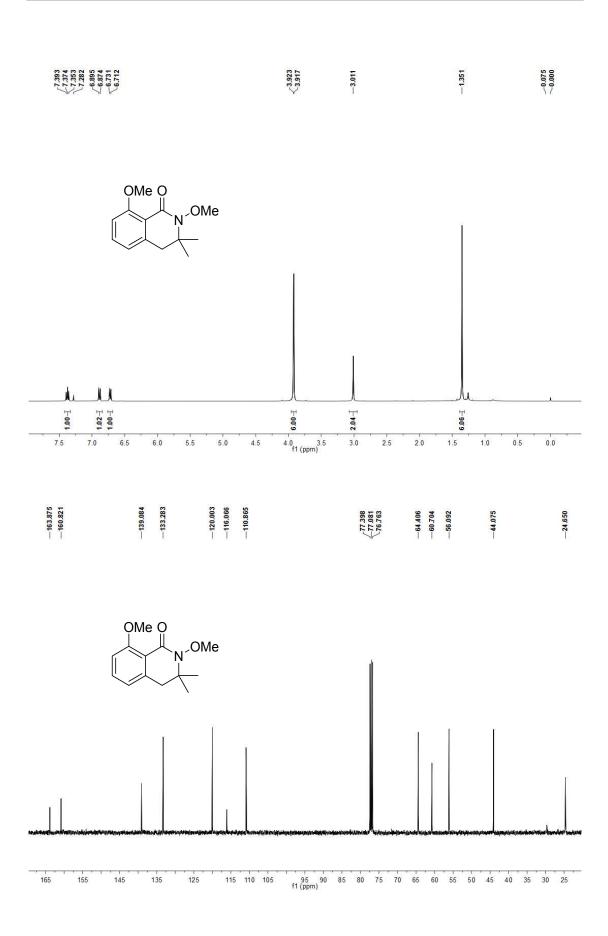

- 1. N. Guimond, C. Gouliaras and K. Fagnou, J. Am. Chem. Soc., 2010, 132, 6908.
- 2. Z. W. Chen, Y. Z. Zhu and J. Yu. Zheng, J. Org. Chem., 2014, 79, 10988–10998.

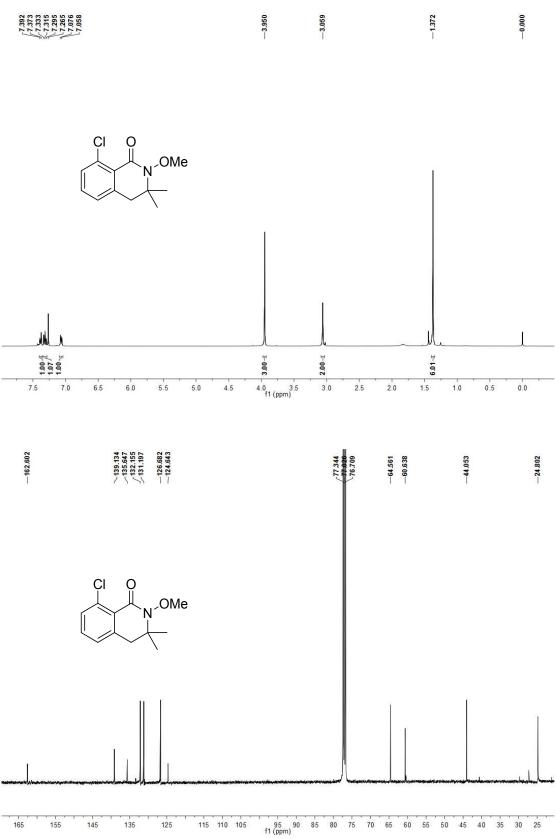

- 3. Semenov, et al, Zhurnal Organicheskoi Khimii, 1979, 15, 2069.
- 4. T. Kukosha, N. Trufilkina and M. Katkevics, et al, Synthesis, 2012, 44, 2413–2423.
- H. B. Zhong, D. Yang, S. Q. Wang and J. H. Huang, *Chem. Commun.*, 2012, 48, 3236.
- N. N. Zhang, B. Y. Li, H. B. Zhong and J. H. Huang, Org. Biomol. Chem., 2012, 10, 9429.

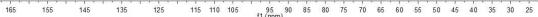


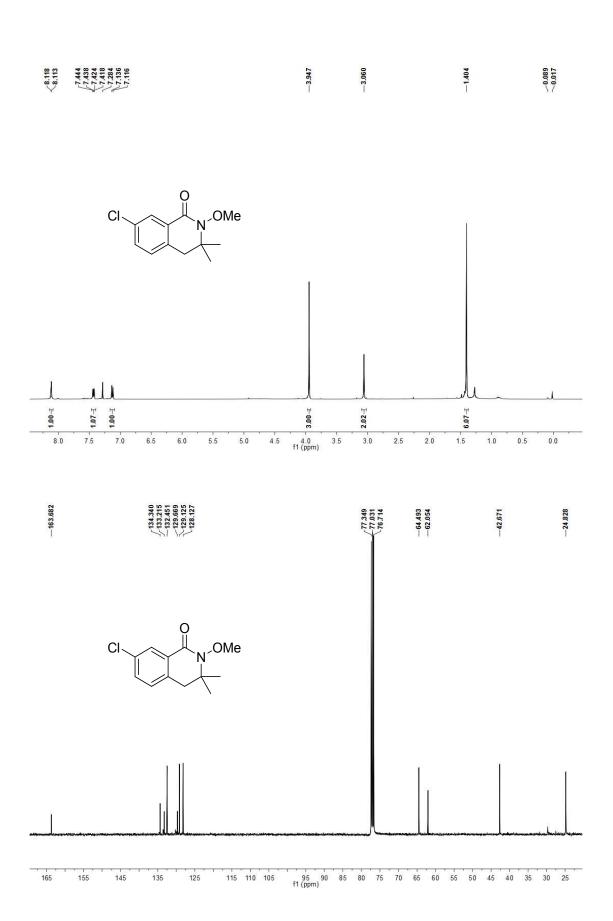


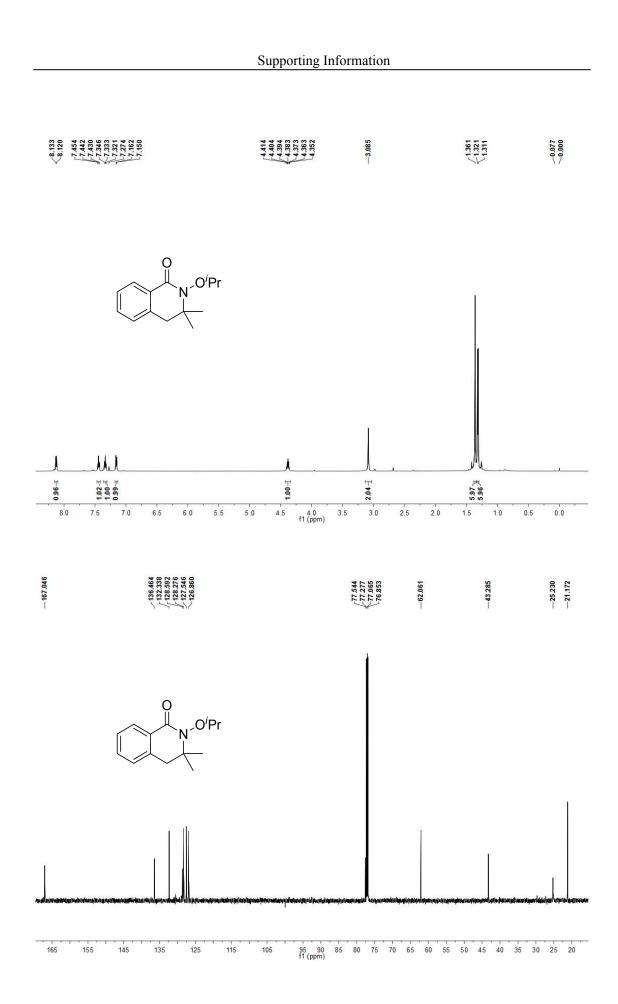


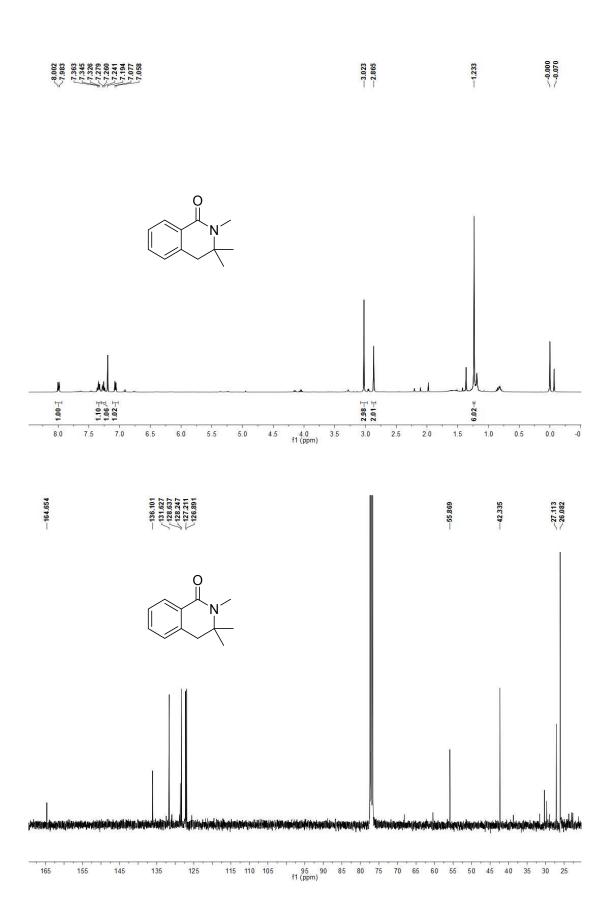


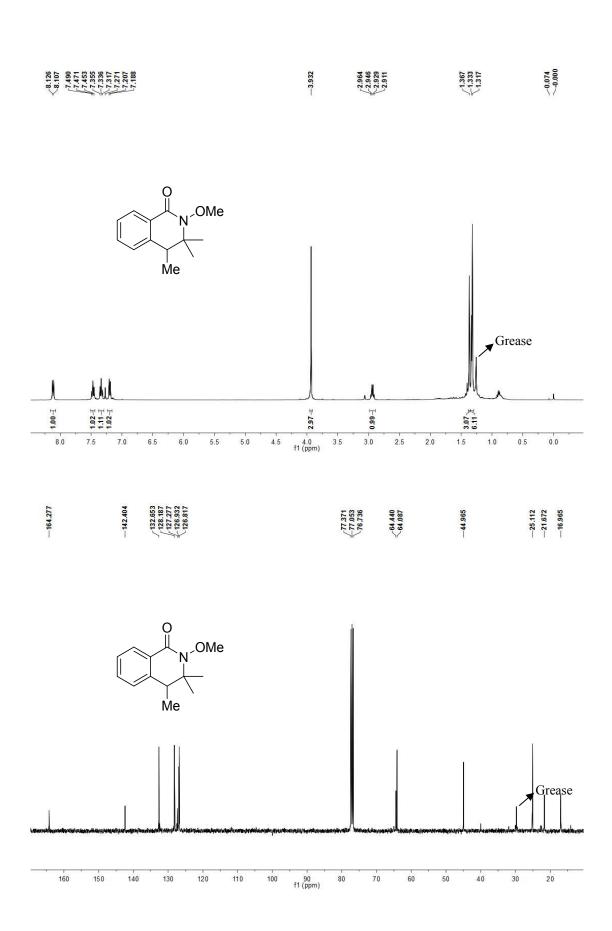


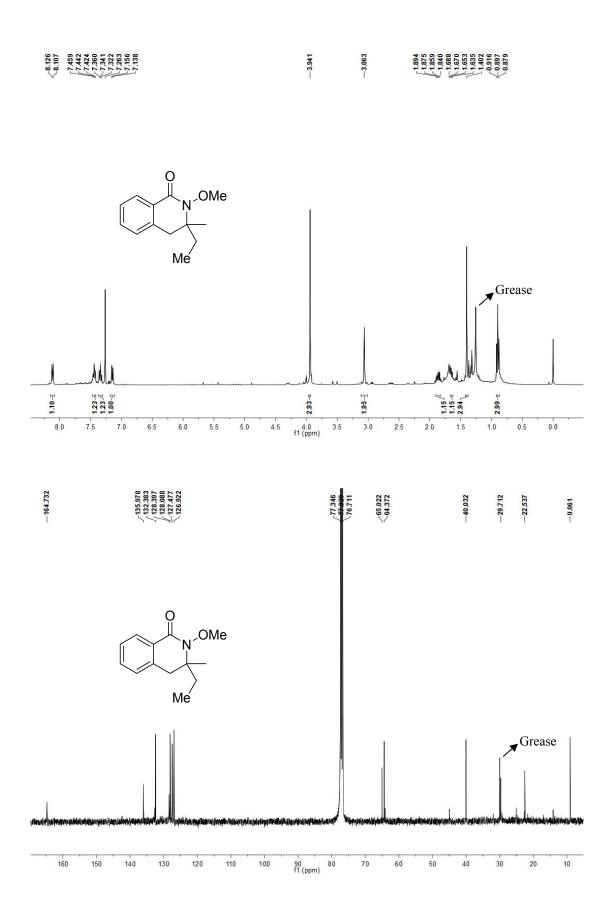


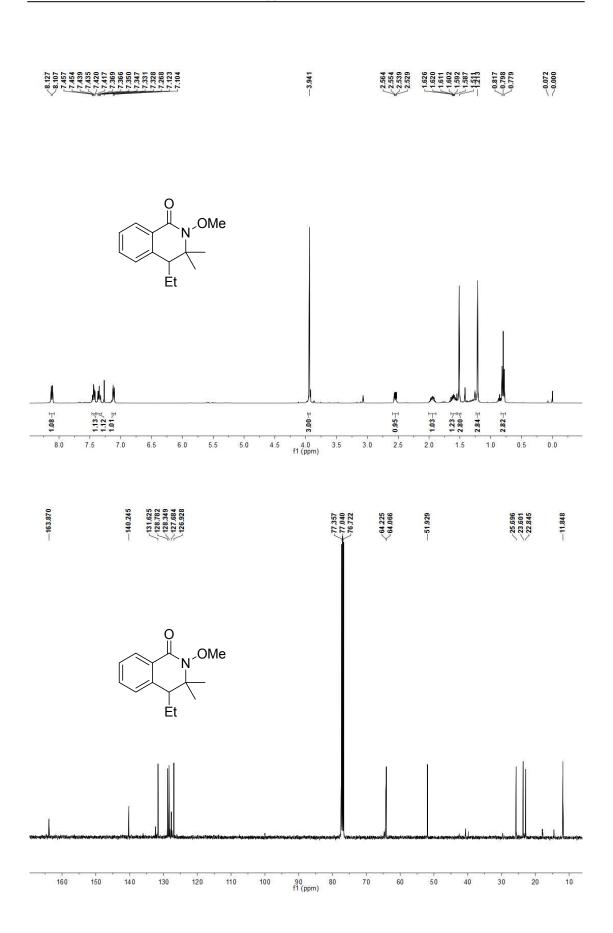


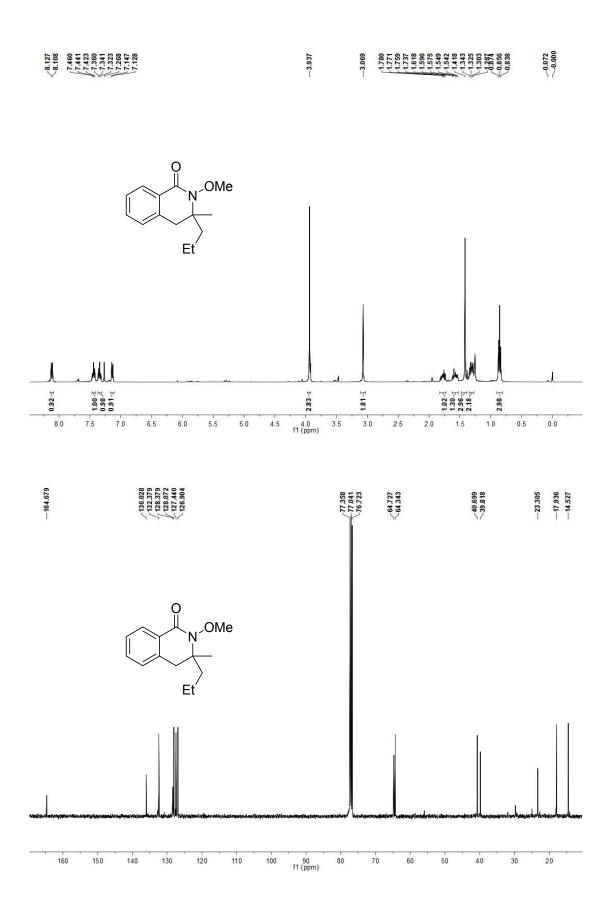


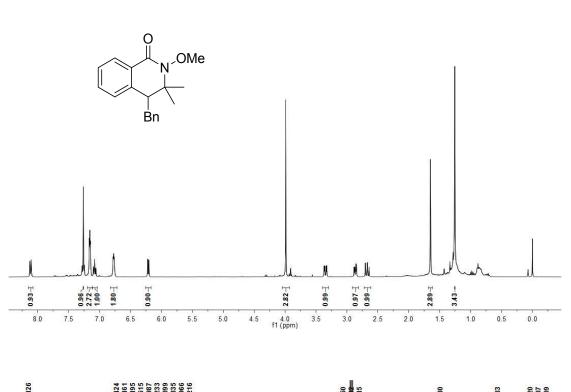


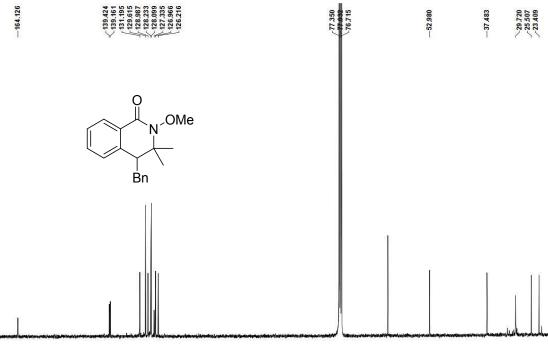


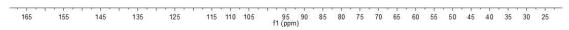




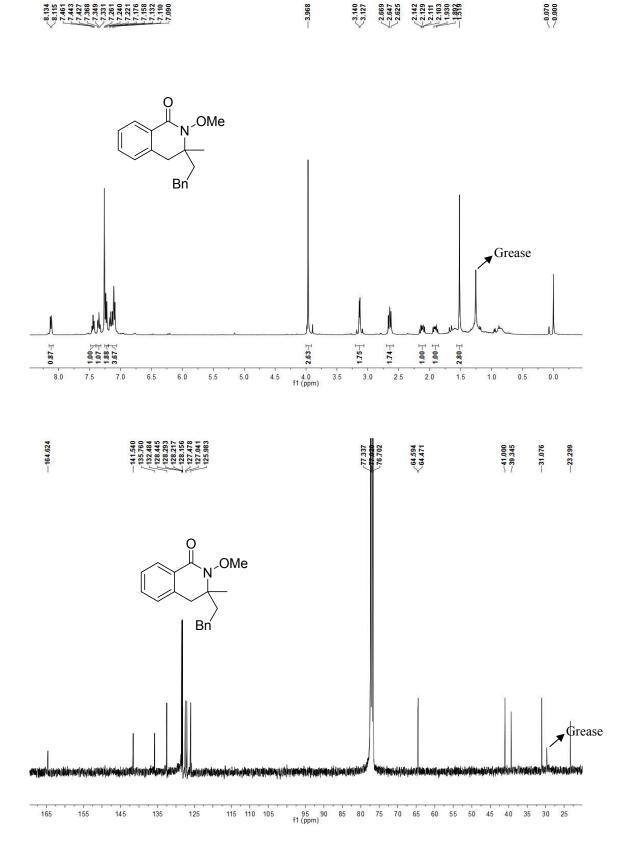


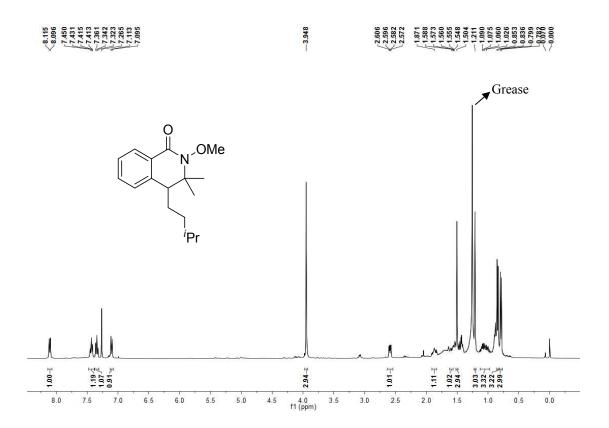


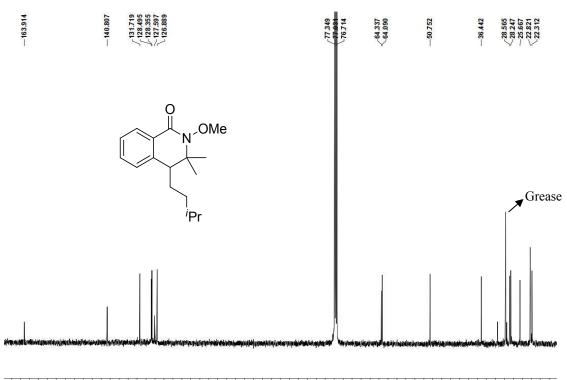


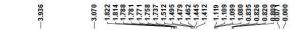


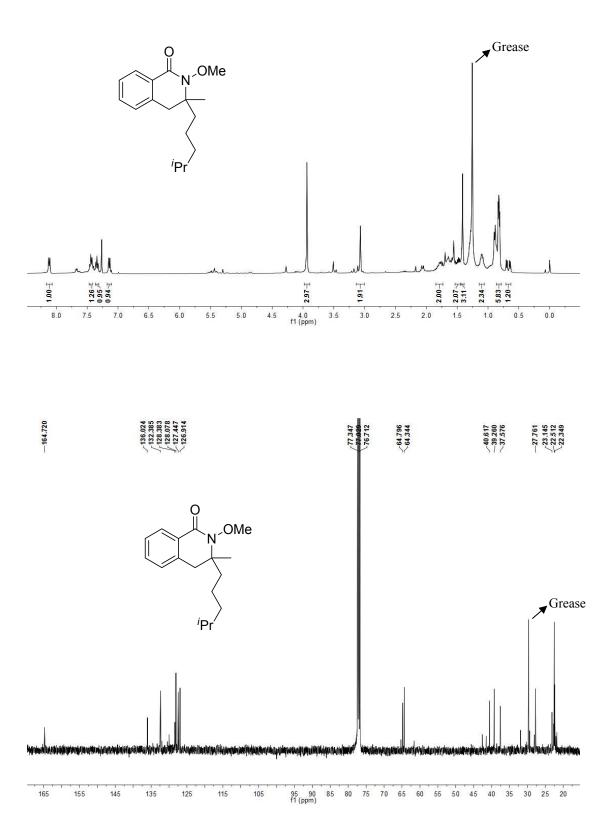
8.124 8.107 8.107 8.107 7.1245 7.7149 7.7149 7.7149 7.7149 7.7149 6.765 6.765 6.773 6.773 6.773 6.773 6.773 6.773 6.773 6.773

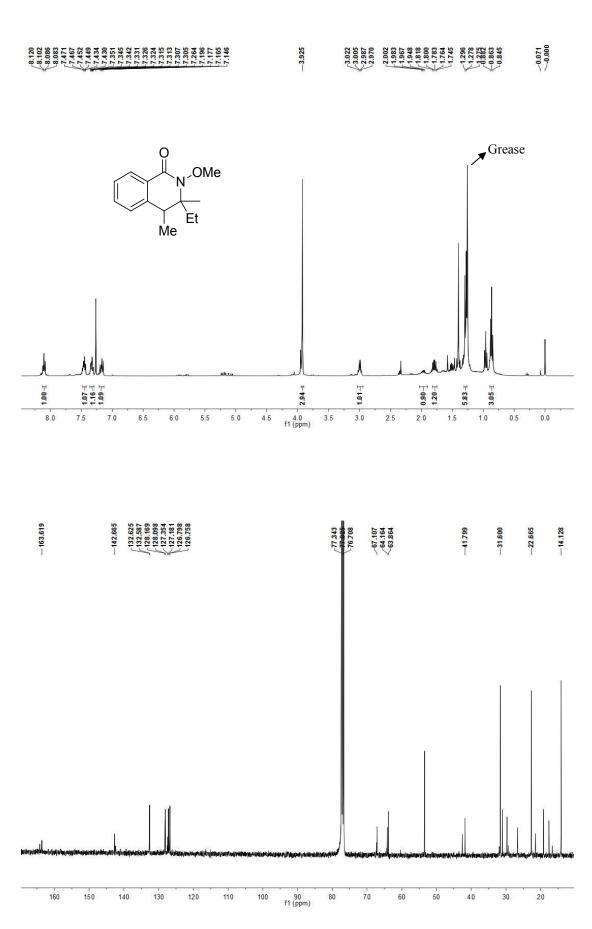


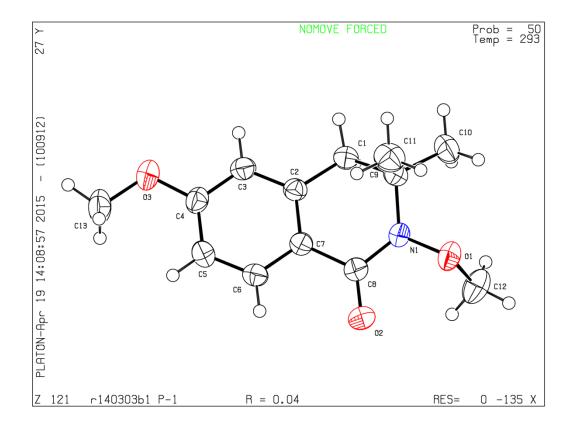











165 155 145 135 125 115 105 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 f1 (ppm)

	80-0-040-
N O	10 4 N 9 4 N 9 10 M
	4446667++
00 m	NUNNNNNN

X-ray Structure and Data of 18a

Table 1. Crystal data and structure refinement for 18a.

18a	
C13 H17 N O3	
235.28	
293(2) K	
0.71073 A	
Triclinic, P-1	
a = 7.6086(15) A	alpha = 108.24(3) deg.
b = 7.9394(16) A	beta = $102.74(3)$ deg.
c = 11.314(2) A	gamma = 98.42(3) deg.
615.7(2) A^3	
2, 1.269 Mg/m^3	
0.090 mm^-1	
	C13 H17 N O3 235.28 293(2) K 0.71073 A Triclinic, P-1 a = 7.6086(15) A b = 7.9394(16) A c = 11.314(2) A 615.7(2) A^3 2, 1.269 Mg/m^3

F(000)	252
Crystal size	0.20 x 0.18 x 0.12 mm
Theta range for data collection	1.98 to 27.96 deg.
Limiting indices	-10<=h<=8, -10<=k<=10, -13<=l<=14
Reflections collected / unique	6345 / 2903 [R(int) = 0.0457]
Completeness to theta $= 27.96$	98.1 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9893 and 0.9822
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	2903 / 0 / 158
Goodness-of-fit on F^2	1.034
Final R indices [I>2sigma(I)]	R1 = 0.0434, wR2 = 0.1028
R indices (all data)	R1 = 0.0813, wR2 = 0.1108
Largest diff. peak and hole	0.165 and -0.181 e.A^-3

Table 2. Atomic coordinates ($x \ 10^{4}$) and equivalent isotropic displacement parameters (A² $x \ 10^{3}$) for 18a.

U(eq) is defined as	one third of the trace	of the orthogo	nalized Uij tensor.

	X	у	Z	U(eq)
O(1)	-1350(1)	-2814(1)	5674(1)	44(1)
O(2)	2047(1)	-2125(2)	7153(1)	59(1)
O(3)	3926(1)	5355(1)	11895(1)	53(1)
N(1)	-785(2)	-1452(2)	6923(1)	36(1)
C(1)	-1402(2)	1042(2)	8511(1)	39(1)
C(2)	643(2)	1693(2)	9164(1)	34(1)
C(3)	1418(2)	3256(2) 45	10244(1)	40(1)

	Supporting Information					
C(4)	3316(2)	3777(2)	10838(1)	39(1)		
C(5)	4466(2)	2714(2)	10345(1)	43(1)		
C(6)	3697(2)	1148(2)	9271(1)	41(1)		
C(7)	1805(2)	622(2)	8674(1)	35(1)		
C(8)	1069(2)	-1089(2)	7519(1)	38(1)		
C(9)	-1876(2)	-36(2)	7053(1)	37(1)		
C(10)	-3932(2)	-967(2)	6546(2)	54(1)		
C(11)	-1395(2)	1171(2)	6305(2)	54(1)		
C(12)	-1873(2)	-4572(2)	5765(2)	62(1)		
C(13)	5856(2)	5899(2)	12561(2)	61(1)		

Table 3. Bond lengths [A] and angles [deg] for 18a.

O(1)-N(1)	1.4110(14)
O(1)-C(12)	1.4359(18)
O(2)-C(8)	1.2260(15)
O(3)-C(4)	1.3644(17)
O(3)-C(13)	1.4260(19)
N(1)-C(8)	1.3666(17)
N(1)-C(9)	1.4823(16)
C(1)-C(2)	1.5003(19)
C(1)-C(9)	1.5316(19)
C(1)-H(1A)	0.9700
C(1)-H(1B)	0.9700
C(2)-C(3)	1.378(2)
C(2)-C(7)	1.3983(18)
C(3)-C(4)	1.390(2)
C(3)-H(3)	0.9300
16	

C(4)-C(5)	1.3874(18)
C(5)-C(6)	1.376(2)
C(5)-H(5)	0.9300
C(6)-C(7)	1.3859(19)
C(6)-H(6)	0.9300
C(7)-C(8)	1.486(2)
C(9)-C(11)	1.520(2)
C(9)-C(10)	1.5240(19)
C(10)-H(10A)	0.9600
C(10)-H(10B)	0.9600
C(10)-H(10C)	0.9600
C(11)-H(11A)	0.9600
C(11)-H(11B)	0.9600
С(11)-Н(11С)	0.9600
C(12)-H(12A)	0.9600
C(12)-H(12B)	0.9600
C(12)-H(12C)	0.9600
C(13)-H(13A)	0.9600
C(13)-H(13B)	0.9600
C(13)-H(13C)	0.9600
N(1)-O(1)-C(12)	109.84(11)
C(4)-O(3)-C(13)	117.65(12)
C(8)-N(1)-O(1)	113.54(10)
C(8)-N(1)-C(9)	123.50(12)
O(1)-N(1)-C(9)	113.22(9)
C(2)-C(1)-C(9)	113.37(11)
C(2)-C(1)-H(1A)	108.9
C(9)-C(1)-H(1A)	108.9
C(2)-C(1)-H(1B)	108.9
C(9)-C(1)-H(1B)	108.9
/1 /	

H(1A)-C(1)-H(1B)	107.7
C(3)-C(2)-C(7)	118.67(13)
C(3)-C(2)-C(1)	123.27(12)
C(7)-C(2)-C(1)	118.02(12)
C(2)-C(3)-C(4)	121.19(13)
C(2)-C(3)-H(3)	119.4
C(4)-C(3)-H(3)	119.4
O(3)-C(4)-C(5)	124.08(13)
O(3)-C(4)-C(3)	115.96(13)
C(5)-C(4)-C(3)	119.95(13)
C(6)-C(5)-C(4)	119.04(13)
C(6)-C(5)-H(5)	120.5
C(4)-C(5)-H(5)	120.5
C(5)-C(6)-C(7)	121.29(13)
C(5)-C(6)-H(6)	119.4
C(7)-C(6)-H(6)	119.4
C(6)-C(7)-C(2)	119.85(13)
C(6)-C(7)-C(8)	118.40(13)
C(2)-C(7)-C(8)	121.75(12)
O(2)-C(8)-N(1)	122.53(13)
O(2)-C(8)-C(7)	122.27(13)
N(1)-C(8)-C(7)	115.17(12)
N(1)-C(9)-C(11)	110.60(11)
N(1)-C(9)-C(10)	108.92(12)
C(11)-C(9)-C(10)	110.31(12)
N(1)-C(9)-C(1)	105.85(10)
C(11)-C(9)-C(1)	112.03(13)
C(10)-C(9)-C(1)	108.99(12)
C(9)-C(10)-H(10A)	109.5
C(9)-C(10)-H(10B)	109.5

H(10A)-C(10)-H(10B)	109.5
С(9)-С(10)-Н(10С)	109.5
H(10A)-C(10)-H(10C)	109.5
H(10B)-C(10)-H(10C)	109.5
C(9)-C(11)-H(11A)	109.5
C(9)-C(11)-H(11B)	109.5
H(11A)-C(11)-H(11B)	109.5
С(9)-С(11)-Н(11С)	109.5
H(11A)-C(11)-H(11C)	109.5
H(11B)-C(11)-H(11C)	109.5
O(1)-C(12)-H(12A)	109.5
O(1)-C(12)-H(12B)	109.5
H(12A)-C(12)-H(12B)	109.5
O(1)-C(12)-H(12C)	109.5
H(12A)-C(12)-H(12C)	109.5
H(12B)-C(12)-H(12C)	109.5
O(3)-C(13)-H(13A)	109.5
O(3)-C(13)-H(13B)	109.5
H(13A)-C(13)-H(13B)	109.5
O(3)-C(13)-H(13C)	109.5
H(13A)-C(13)-H(13C)	109.5
H(13B)-C(13)-H(13C)	109.5

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters (A^2 x 10^3) for 18a. The anisotropic displacement factor exponent takes the form: -2 pi^2 [h^2 a*^2 U11 + ... + 2 h k a* b* U12]

		S	upporting Info	rmation		
	U11	U22	U33	U23	U13	U12
O(1)	52(1)	37(1)	34(1)	5(1)	7(1)	3(1)
O(2)	48(1)	51(1)	61(1)	-4(1)	9(1)	23(1)
O(3)	53(1)	45(1)	41(1)	0(1)	3(1)	5(1)
N(1)	36(1)	32(1)	32(1)	5(1)	4(1)	7(1)
C(1)	34(1)	40(1)	41(1)	11(1)	12(1)	11(1)
C(2)	35(1)	35(1)	34(1)	13(1)	9(1)	11(1)
C(3)	42(1)	39(1)	39(1)	11(1)	11(1)	16(1)
C(4)	47(1)	33(1)	30(1)	8(1)	5(1)	7(1)
C(5)	35(1)	45(1)	42(1)	13(1)	3(1)	6(1)
C(6)	37(1)	44(1)	41(1)	12(1)	10(1)	16(1)
C(7)	35(1)	33(1)	34(1)	12(1)	7(1)	9(1)
C(8)	39(1)	35(1)	39(1)	11(1)	8(1)	11(1)
C(9)	32(1)	39(1)	40(1)	15(1)	9(1)	11(1)
C(10)	34(1)	61(1)	53(1)	10(1)	5(1)	7(1)
C(11)	58(1)	54(1)	57(1)	31(1)	14(1)	17(1)
C(12)	76(1)	35(1)	62(1)	9(1)	17(1)	-2(1)
C(13)	61(1)	53(1)	44(1)	7(1)	-8(1)	-2(1)

Table 5. Hydrogen coordinates ($x 10^{4}$) and isotropic displacementparameters (A^2 $x 10^{3}$) for 18a.

_	x	У	Z	U(eq)
H(1A)	-1954	2088	8639	47

Supporting Information				
H(1B)	-1946	277	8920	47
H(3)	657	3976	10580	48
H(5)	5738	3055	10736	51
H(6)	4461	428	8939	49
H(10A)	-4238	-1655	5633	80
H(10B)	-4649	-61	6688	80
H(10C)	-4205	-1772	6996	80
H(11A)	-102	1762	6642	80
H(11B)	-2117	2076	6397	80
H(11C)	-1665	439	5404	80
H(12A)	-865	-4767	6346	93
H(12B)	-2166	-5500	4921	93
H(12C)	-2939	-4623	6087	93
H(13A)	6222	4953	12849	91
H(13B)	6097	7000	13297	91
H(13C)	6547	6109	11986	91

Table 6. Torsion angles [deg] for 18a.

90.36(15)
-122.29(13)
150.56(13)
-31.53(18)
0.2(2)
178.14(14)
-2.7(2)
177.67(12)
179.64(13)

C(2)-C(3)-C(4)-C(5)	0.0(2)
O(3)-C(4)-C(5)-C(6)	-179.86(14)
C(3)-C(4)-C(5)-C(6)	-0.2(2)
C(4)-C(5)-C(6)-C(7)	0.2(2)
C(5)-C(6)-C(7)-C(2)	0.0(2)
C(5)-C(6)-C(7)-C(8)	-179.81(14)
C(3)-C(2)-C(7)-C(6)	-0.2(2)
C(1)-C(2)-C(7)-C(6)	-178.21(13)
C(3)-C(2)-C(7)-C(8)	179.55(13)
C(1)-C(2)-C(7)-C(8)	1.5(2)
O(1)-N(1)-C(8)-O(2)	-16.68(19)
C(9)-N(1)-C(8)-O(2)	-160.20(13)
O(1)-N(1)-C(8)-C(7)	165.41(11)
C(9)-N(1)-C(8)-C(7)	21.90(19)
C(6)-C(7)-C(8)-O(2)	6.7(2)
C(2)-C(7)-C(8)-O(2)	-173.02(13)
C(6)-C(7)-C(8)-N(1)	-175.35(12)
C(2)-C(7)-C(8)-N(1)	4.9(2)
C(8)-N(1)-C(9)-C(11)	72.25(16)
O(1)-N(1)-C(9)-C(11)	-71.37(15)
C(8)-N(1)-C(9)-C(10)	-166.35(13)
O(1)-N(1)-C(9)-C(10)	50.03(15)
C(8)-N(1)-C(9)-C(1)	-49.29(17)
O(1)-N(1)-C(9)-C(1)	167.09(10)
C(2)-C(1)-C(9)-N(1)	51.04(16)
C(2)-C(1)-C(9)-C(11)	-69.59(15)
C(2)-C(1)-C(9)-C(10)	168.05(12)

Symmetry transformations used to generate equivalent atoms: