Double-Walled pyr Topology Networks from a Novel Fluoride-Bridged Heptanuclear Metal Cluster

Kai Jie Chen, John J. Perry IV, Hayley S. Scott, Qing-Yuan Yang and Michael J. Zaworotko*

Department of Chemical & Environmental Sciences, University of Limerick, Limerick, Republic of Ireland

E-mail: Michael.Zaworotko@ul.ie

Supplementary Index

Experimental Section

X-Ray crystallography

- Table 1. Crystal Data and Structure Refinement for Tripp-1-Co
- Figure S1. Short F...F interaction in Tripp-1-Co
- Figure S2. The packing views along a and [111] axis
- Figure S3. X-ray photoelectron spectroscopy of Tripp-1-Co sample from the reflux reaction
- Figure S4. Infrared Spectrogram of Tripp-1-Co and Tripp-1-Ni samples from the reflux reactions
- Figure S5. The powder X-ray diffraction patterns at different conditions of Tripp-1-Co
- Figure S6. The powder X-ray diffraction patterns at different conditions of Tripp-1-Ni
- Figure S7. The powder X-ray diffraction patterns after sorption measurements
- Figure S8. Thermo gravimetric analysis of Tripp-1-Co and Tripp-1-Ni
- Figure S9. The Virial fit of CO₂ isotherms of Tripp-1-Co and Tripp-1-Ni
- Figure S10. The isosteric heats of adsorption of Tripp-1-Co and Tripp-1-Ni

Experimental Section

Materials and Physical Measurements. Commercially available reagents were used as received without further purification. Thermo-gravimetric (TG) analyses were performed under N₂ using a TA Q50 system. Powder X-ray diffraction (PXRD) patterns were recorded on a PANalytical X'Pert MPD Pro using Cu Kα radiation with a 1D X'Celerator strip detector. Gas sorption isotherms were measured using Micromeritics Tristar II 3030 and 3Flex 3500 surface characterization analyzers. The two MeOH-exchanged samples were desolvated under high vacuum at room temperature for 16 h to remove the MeOH molecules in the pores before the measurements.

Synthesis of single crystal sample [Co₇F₁₂(Tripp)₄](SiF₆)·g: A mixture of Co(NO₃)₂·6H₂O (0.07 mmol, 0.021 g), **Tripp** (0.04 mmol, 0.012 g), (NH₄)₂SiF₆ (0.07 mmol, 0.012 g) and DMF (3 mL) was added to a 10-mL glass vial, and then the vial capped tightly was put into the oven at 120 °C for 48 h, which was then cooled to room temperature. After rinsed several times with fresh DMF, orange single octahedral-shaped crystals were gained for single crystal X-ray diffraction experiment.

Synthesis of [Co₇F₁₂(Tripp)₄](NO₃)₂·g (Tripp-1-Co): A mixture of Co(NO₃)₂·6H₂O (2.8 mmol, 0.814 g), Tripp (1.6 mmol, 0.496 g), NH₄F (4.8 mmol, 0.177 g), DMF (120 mL) and MeOH (30 mL) was added to a 250-mL round-bottom flask, and then reacted in reflux at 120 °C for 48 h, which was then cooled to room temperature. After decanting the mother liquor, the orange crystalline product dried in the air to give the yield of ca. 80% (based on Co). For gas sorption measurements, the as-synthesized sample was rinsed two times daily with fresh MeOH (100 mL × 3) for 4 days to get the MeOH-exchanged **Tripp-1-Co**. Elemental Analysis (%) for $C_{113}H_{188}N_{18}O_{57}F_{12}Co_7$ calcd: C, 40.1; H, 5.6; N, 7.5. Found: C, 38.6; H, 5.8; N, 7.8. IR: $v_{max} = 3370$, 3267, 2830, 1650, 1603, 1560, 1538, 1505, 1404, 1337, 1220, 1066, 1041, 1023, 828 cm⁻¹.

[Ni₇F₁₂(Tripp)₄](NO₃)₂·g (Tripp-1-Ni): This compound was prepared in a similar procedure as Tripp-1-Co, by using Ni(NO₃)₂ (2.8 mmol, 0.816 g) in place of Co(NO₃)₂·6H₂O. The resulting green crystalline product of Tripp-1-Ni was obtained in yield of 70%. The same exchanging procedure as

Tripp-1-Co was taken for the MeOH-exchanged **Tripp-1-Ni**. Elemental Analysis (%) for $C_{108}H_{168}N_{18}O_{52}F_{12}Ni_7$ calcd: C, 40.2; H, 5.2; N, 7.8. Found: C, 39.1; H, 5.3; N, 8.1. IR: $v_{max} = 3385$, 3081, 2820, 1604, 1539, 1506, 1470, 1400, 1318, 1220, 1066, 1042, 1024, 828, 669 cm⁻¹.

X-Ray crystallography

Diffraction intensities were collected on a Bruker Quest diffractometer equipped with a CMOS detector and $1\mu S$ microfocus X-ray source Cu K α λ = 1.5418 Å). Absorption corrections were applied by using the multi-scan program SADABS. The structures were solved with the direct method and refined with the full-matrix least-squares technique with the SHELXTL program package¹. All nonhydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atoms were generated geometrically. Crystallographic data were summarized in Table 1.

Table 1. Crystal Data and Structure Refinement for Tripp-1-Co

Complex	Tripp-1-Co		
Formula	$C_{80}H_{56}Co_{7}F_{18}N_{16}O_{18}Si$	Z	4
Formula weight	2312.01	$D_{ m c}/{ m g~cm^{ ext{-}3}}$	1.043
Temperature (K)	100(2)	reflns coll.	136375
Crystal system	cubic	unique reflns	2575
Space group	<i>Pa</i> -3	$R_{ m int}$	0.1192
a/Å	24.5063(4)	$R_1[I > 2\sigma(I)]^{[a]}$	0.0990
$b/{ m \AA}$	24.5063(4)	$wR_2[I > 2\sigma(I)]^{[b]}$	0.2948
$c/ ext{Å}$	24.5063(4)	R_1 (all data)	0.1276
ß/o	90	wR_2 (all data)	0.3245
V/Å ³	14717.5(4)	GOF	1.026

[[]a] $R_1 = \sum ||F_0| - |F_c|| / \sum |F_0|$, [b] $wR_2 = [\sum w(F_0^2 - F_c^2)^2 / \sum w(F_0^2)^2]^{1/2}$

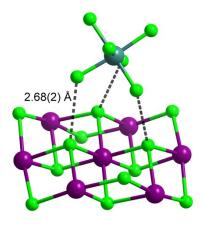


Figure S1. Short F...F interaction in Tripp-1-Co

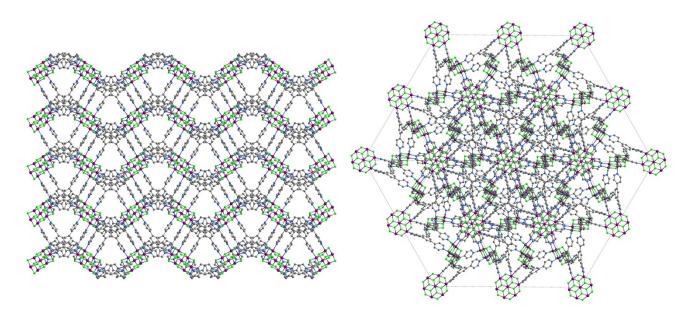
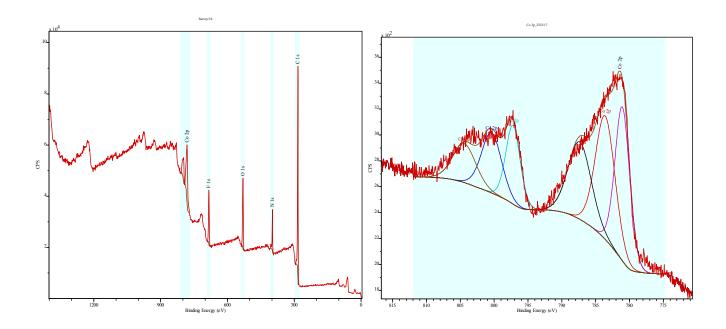



Figure S2. The packing views along a and [111] axis

Quantification from survey spectrum			
Element	Position (eV)	Molor ratio %	
Ols	530.7	9.9	
C1s	284.7	71.8	
N1s	398.7	8.4	
F1s	683.7	5.9	
Co2p	781.7	4.1	

Figure S3. X-ray photoelectron spectroscopy of Tripp-1-Co sample from the reflux reaction, showing the different ratios of O, C, N, F, Co. The position of 781.7 eV for Co verifies the valence state of +2.

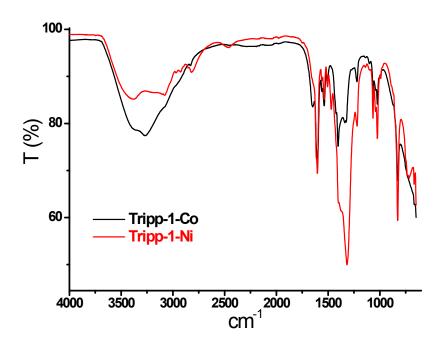


Figure S4. Infrared Spectrogram of Tripp-1-Co and Tripp-1-Ni samples from the reflux reactions.

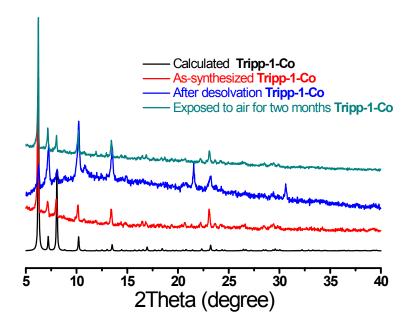


Figure S5. The powder X-ray diffraction patterns at different conditions of Tripp-1-Co

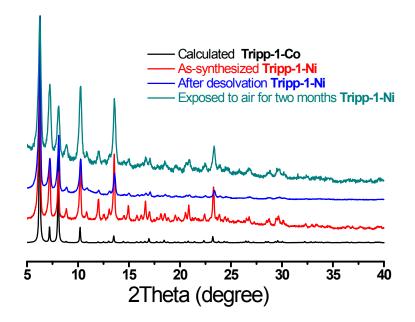


Figure S6. The powder X-ray diffraction patterns at different conditions of Tripp-1-Ni

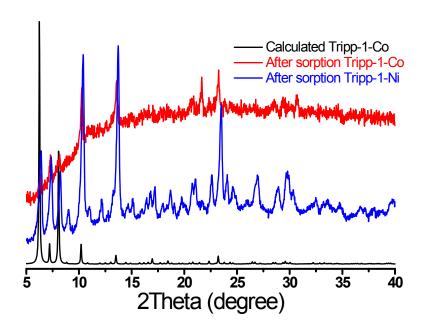


Figure S7. The powder X-ray diffraction patterns after sorption measurements

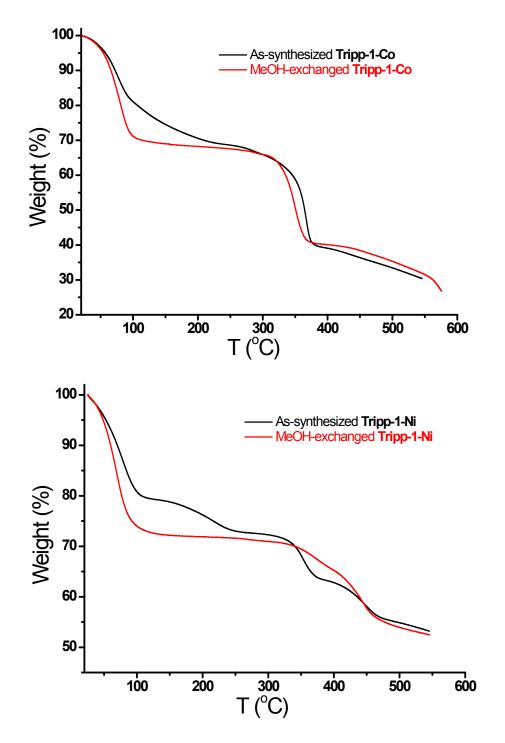


Figure S8. Thermo gravimetric analysis of Tripp-1-Co (top) and Tripp-1-Ni (bottom).

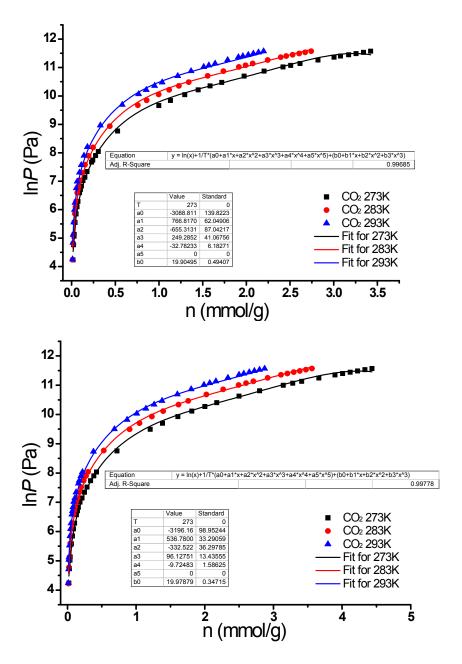


Figure S9. The Virial fit of CO₂ isotherms of Tripp-1-Co (top) and Tripp-1-Ni (bottom).

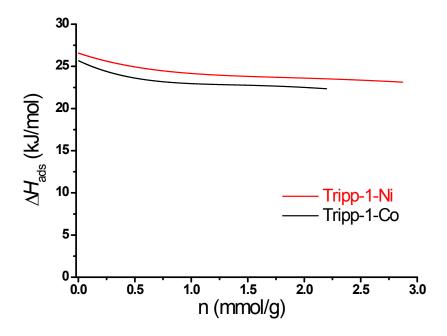


Figure S10. The isosteric heats of adsorption of Tripp-1-Co and Tripp-1-Ni.

Reference

1. Sheldrick, G. M. SHELXTL 6.12; Bruker Analytical Instrumentation: Madison, WI, 2000.