Supporting Information

A nitrogen-base catalyzed generation of organotin(II) hydride from organotin trihydride under reductive dihydrogen elimination

Christian P. Sindlinger^a, Andreas Stasch^b, Holger F. Bettinger^c and Lars Wesemann^{a,*}

^aInstitut für Anorganische Chemie, Auf der Morgenstelle 18, 72076 Tübingen, Germany ^bSchool of Chemistry, Monash University, PO Box 23, Melbourne, VIC 3800, Australia ^cInstitut für Organische Chemie, Auf der Morgenstelle 18, 72076 Tübingen, Germany

Table of Contents

Experimental Details	
General Information	2
NMR spectroscopy	2
Crystallographic Details	
Refinement Details	
X-Ray Diffraction and Refinement of Ar*SnH $_3$ 1	
X-Ray Diffraction and Refinement of Ar*Sn(DMAP)SnH₂Ar* 6	
X-Ray Diffraction and Refinement of Ar*SnCp* 8	
X-Ray Diffraction on Distannane 4	
Synthesis	5
Ar*SnCl₃ (2)	5
$Ar*SnD_3$ (1-D) and $Ar*SnH_3$ (1)	5
Kinetic Experiments	6
Determination of the order in DMAP	6
Arrhenius-analysis approximation of the activation energy	7
Kinetic Isotope Effects (KIE)	9
KIE in <i>d</i> ₆ -benzene	
KIE in <i>d</i> ₈ -THF	10
NMR Spectra	
Compound 1 Ar*SnH₃ and Ar*SnD₃ as used as starting material for kinetic dehydroger experiments	nation
Distannane (4) ¹ H-NMR	
Distannane (4) ¹¹⁹ Sn- ¹ H-coupled-NMR	
Ar*SnH₃ plus DMAP over time	

Ar*SnH(DMAP) ¹¹⁹ Sn- ¹ H coupled NMR	13
Ar*Sn(DMAP)SnH ₂ Ar* ¹ H-NMR	13
Ar*Sn(DMAP)SnH ₂ Ar* ¹ H-NMR-details -30°C	14
Dissolved crystals of Ar*Sn(DMAP)SnH ₂ Ar* ¹¹⁹ Sn - ¹ H-coupled-NMR	14
Dissolved crystals of Ar*Sn(DMAP)SnH ₂ Ar* ¹¹⁹ Sn-NMR at RT	15
Raw solution ¹ H-NMR of TMEDA catalysed dehydrogenation	15
Raw solution ¹ H-NMR of Et ₂ NMe catalysed dehydrogenation	16
Consecutive addition of DMAP to in situ generated Ar*SnH solutions	16
¹¹⁹ Sn-NMR of Ar*SnH + 1 eq DMAP	17
Selected IR Spectra	18
$Ar^*SnH_2-SnH_2Ar^*$	18
Ar*SnH(DMAP) / Ar*SnH(6DMAP) / Ar*SnH₂Sn(DMAP)Ar*	18
Ar*SnH(DMAP) / Ar*SnD(DMAP)	19
Computational Details	20
General Methodology and BDE calculations	20
Mechanism Study	21
Cartesian coordinates of the optimized structure of $PhSnH_3$, DMAP, Pyridine, NMe_3	22
Cartesian coordinates of the optimized structure of LA, LA(py), TS-A, TS-A(py), TS-B1(DMAP), T B1(Py), TS-B1(NMe ₃)	[.] S- 22
Cartesian coordinates of the optimized structures of Ar*SnH₃, Ar*SnH, μ-bridged (Ar*SnH)₂, Ar*SnH(DMAP), Ar*SnH(py), Ar*SnH(NMe₃)	25
Literature	33

Experimental Details

General Information

All manipulations were carried out under argon atmosphere using standard Schlenk techniques or an MBraun Glovebox. THF, diethylether and benzene were distilled from sodium/benzophenone, toluene from sodium. Hexane and pentane were obtained from an MBRAUN solvent purification system and degassed. Benzene- d_6 was distilled from sodium and stored over potassium, THF- d_8 was distilled from LiAlD₄ and stored under exclusion of light at -40°C, pyridine- d_5 was destilled from calcium hydride and subsequently from sodium. DMAP was obtained commercially (99%, Aldrich) and used without further purification, *i*-Pr₂Net, Et₂NMe and TMEDA were obtained commercially (Aldrich) and distilled from CaH₂ (*i*-Pr₂NEt, Et₂NMe) or from *n*-BuLi (TMEDA) and degassed.

Terphenyl- iodide $(Ar^*I)^1$, -lithium-etherate $(Ar^*Li(OEt_2))^1$, -Sn(II) chloride $(Ar^*SnCI)^2$ and trihydride $(Ar^*SnH_3)^3$ were prepared according to slightly modified literature procedures. 1,2,34-Tetramethylfulvene was prepared according to a literature procedure.⁴

Elemental analysis was performed by the Institut für Anorganische Chemie, Universität Tübingen using a Vario MICRO EL analyzer.

NMR spectroscopy

NMR spectra were recorded with either a Bruker DRX-250 NMR spectrometer equipped with a 5 mm ATM probe head and operating at 250.13 (¹H), 62.90 (¹³C) 93.3 MHz (¹¹⁹Sn), a Bruker Avancell+400 NMR spectrometer equipped with a 5 mm

QNP (quad nucleus probe) head and operating at 400.13 (¹H), 161.97 (³¹P) 100.62 MHz (¹³C) or a Bruker AVII+ 500 NMR spectrometer with a 5 mm ATM probe head or a 5 mm TBO probe head and operating at 500.13 (¹H), 125.76 (¹³C), 186.5 MHz (119Sn) and a low-temperature set-up. The proton and carbon signals were assigned where possible via a detailed analysis of ¹H, ¹³C, ¹³C-UDEFT, ¹H-¹H COSY, ¹H-¹³C HSQC, ¹H-¹³C HMBC spectra.

Crystallographic Details

Refinement Details

X-ray data for 1, 6 and 8 were collected with a Bruker Smart APEX II diffractometer with graphite- monochromated Mo Ka radiation. The programs used were Bruker's APEX2 v2011.8-0 including SADABS for absorption correction and SAINT for structure solution, as well as the ShelXLE graphical user interface for shelxl for structure refinement.⁵⁻⁹ For further refinement details see the attached cif-files.

Table 1. Selected crystallographic data for compounds.								
Compound	1	$6 \times 2(C_5H_{12})$	8×0.5(C5H12)					
CCDC number	1061347	1061348	1061349					
Empirical formula	C ₃₆ H ₅₂ Sn	$C_{79}H_{110}N_2Sn_2 \times 2 (C_5H_{12})$	C64H70Sn×0.5 (C5H12)					
Formula weight	602.51	1469.36	771.73					
<i>T</i> [K]	100(2)	100(2)	100(2)					
Λ[Å]	0.71073	0.71073	0.71073					
Crystal system	Orthorhombic	triclinic	Monoclinic					
Space group	Pbcm	P-1	$P2_{l}/c$					
<i>a</i> [Å]	10.9013(2)	12.7122(5)	15.9849(4)					
<i>b</i> [Å]	12.0601(2)	15.3521(6)	15.9056(4)					
<i>c</i> [Å]	25.2220(5)	22.5773(9)	17.7408(4)					
α [°]	90	84.881(2)	90					
β [°]	90	89.932(2)	100.7540(10)					
γ [°]	90	82.556(2)	90					
V [Å ³]	3315.96(11)	4351.4(3)	4431.37(19)					
Ζ	8	2	4					
ρ [Mg m ⁻³]	1.209	1.121	1.157					
μ [mm ⁻¹]	0.791	0.614	0.606					
<i>F</i> (000)	1272	1564	1664					
Crystal size [mm ³]	$0.13 \times 0.18 \times 0.24$	$0.134 \times 0.164 \times 0.274$	$0.11 \times 0.16 \times 0.29$					
Theta range [°]	1.87 - 27.90	1.86 - 26.88	1.82 - 27.12					
Index ranges	$-14 \le h \le 14$	$-16 \le h \le 16$	$-20 \le h \le 20$					
	$-15 \le h \le 15$	$-18 \le h \le 19$	$-20 \le h \le 19$					
	$-33 \le h \le 33$	$-27 \le h \le 28$	$-21 \le h \le 22$					
Refl. collected	42055	51088	55843					
Indep. refl. / [R(int)]	4053/ 0.0297	18495 / 0.0344	9783 / 0.0332					
Completeness to theta max	100.0%	98.5%	99.7%					
Data/restraints/parameter	4053/3/183	18495/291/991	9783/74/505					
GooF	1.063	1.051	1.011					
Final <i>R</i> indices [<i>I</i> >2sigma(<i>I</i>)] <i>R</i> 1 / w <i>R</i> 2	0.0208 / 0.0557	0.0469 / 0.1159	0.0303 / 0.0705					
<i>R</i> indices (all data) <i>R</i> 1 / <i>wR</i> 2	0.0260/ 0.0584	0.0672/ 0.1257	0.0448 / 0.0767					
Largest diff. peak and hole [eA ⁻³]	0.475 / -0.467	3.805/ -0.903	0.893 / -0.854					
Absorption correction	numerical	numerical	numerical					

X-Ray Diffraction and Refinement of Ar*SnH₃ 1

Large colorless crystals of Ar*SnH₃ were obtained quantitatively from slow solvent evaporation from solutions in benzene. The Sn-H protons were located in the difference Fourier map and found to be disordered. They were treated with DFIX and DANG commands and the Sn–H bond length are underestimated.

X-Ray Diffraction and Refinement of Ar*Sn(DMAP)SnH₂Ar* 6

Molecule **6** crystallized from pentane at -40°C. In the crystal structure of **6** two equivalents of lattice pentane were found in the asymmetric unit located on three positions. One position was found to be fully occupied by one whole molecule of pentane with severe disorder that was treated with DFIX and DANG commands. The other two positions are only occupied to 50% by severely disordered pentane molecules which were treated using DFIX, DANG; SIMU, DELU, ISOR as well as EADP command. A large residual density of 3.8 eÅ⁻³ remained around Sn1. The methyl group in a para-*i*Pr-group at the Trip moieties attached to the stannylene-Sn was found to be disordered over two positions and treated accordingly. Sn–H hydrogen atoms have been located in the difference Fourier map. The found Sn–H bond length may therefore be underestimated.

X-Ray Diffraction and Refinement of Ar*SnCp* 8

Molecules **8** crystallized reproducibly in good yields from pentane or hexane at -40°C. A half equivalent of lattice pentane was found per formula unit which is severely disordered and treated with DFIX, DANG, SIMU, DELU, ISOR commands. An isopropylgroup in the Trip-moieties was found to be disordered and treated accordingly.

X-Ray Diffraction on Distannane 4

Distannane **4** repeatedly crystallized from saturated solutions in benzene in large colorless blocks that diffracted poorly. To date we were not able to grow crystals suitable for X-ray diffraction from various conditions. The data sets obtained for the crystals were refined isotropically in the monoclinic space group P2/n. The asymmetric unit of the obtained poor preliminary solution and refinement up to a wR2 = 44% contained five independent molecules. Proton refinement is impossible. The preliminary structure refinement supports the connectivity pattern that is evident from the NMR spectroscopic properties of the compound.

Figure 1SI

(*left*) ORTEP plot for Ar*SnH₃ **1**. Hydrogen atoms except Sn-bond H were omitted for clarity. Thermal ellipsoids are drawn at 50% probability level. Selected bond lengths [Å] are given: Sn1–C1 2.157(2), Sn–H300/700 1.493(15)/1.529(17).

(*right*) Isotropically refined preliminary solution for distannane **4**. One out of five molecules in the asymmetric unit is depicted. Atom positions were refined isotropically and are depicted at 25% probability level. Selected bond lengths [Å] and angles [°] are given exemplarily, the ranges for the other molecules are given in square brackets: Sn3–Sn7 2.272 [2.685-2.764], C19-Sn3-Sn7-C16 159.5 [155.4-167.4], C19-Sn3-Sn7 117.0, Sn3-Sn7-C16 120.3 [114.6-121.5].

Synthesis

Ar*SnCl₃ (2)

Caution! Mercury compounds are toxic! **Caution!** To a mixture of solid Ar*SnCl (**3**) (1.592 g, 2.503 mmol, 1 eq) and HgCl₂ (0.680 g, 2.505 mmol, 1 eq) toluene (35 mL) was added at room temperature and the initially bright orange suspension immediately decolourizes and a blackish precipitate is observed. Volatiles are removed under reduced pressure and the residue is extracted with hexane (6 × 40 mL), the supernatant extracts are decanted and filtered through a plug of glass fibre. After removal of hexane under reduced pressure pure $Ar*SnCl_3$ (**2**) is obtained as a white fluffy powder (1.698 g, 2.403 mmol, 96%). Spectroscopic data were identical to those reported in the literature.¹⁰

$Ar*SnD_3$ (1-D) and $Ar*SnH_3$ (1)

Ar*SnD₃ was synthesized essentially identical to Ar*SnH₃ using LiAlD₄ instead of LiAlH₄. During the reaction direct day- or lamp light were avoided. To a stirred suspension of LiAlD₄ (Aldrich 98 %D, 94 mg, 2.2 mmol, 3.1 eq) in Et₂O (10 mL) at -40°C a solution of Ar*SnCl₃ (**2**) (500 mg, 0.707 mmol, 1 eq) in Et₂O (15 mL) was added and the mixture was stirred at -40°C for 2h before the mixture was allowed to warm to room temperature. The mixture is kept at room temperature for 1 h before Et₂O was removed under reduced pressure and the grey residue was dried well in vacuo. The residue is repeatedly extracted with hexane (in total 90 mL) and the decanted extracts were filtered through a short plug of Celite or a syringe filter. Volatiles were removed under reduced pressure to obtain pure Ar*SnD₃ as a white powder (414 mg, 0.683 mmol, 97%). Spectroscopic properties are identical to those reported for Ar*SnH₃ with the respective deuterium related couplings: ¹H-NMR (C₆D₆, 298 K, 400.11 MHz): δ = 7.25-7.21 (m, 3H, *p/m*-CH_{Ph}), 7.19 (s, 4H, *m*-CH_{trip}), 2.91 (sept., 4H, ³J_{H-H} = 6.87 Hz, *o*-CHMe₂), 2.76 (sept, 2H, ³J_{H-H} = 6.94 Hz, *p*-CHMe₂), 1.33 (d, 12H, ³J_{H-H} = 6.94 Hz, *o*-CHMe₂), 1.27 (d, 12H, ³J_{H-H} = 6.91 Hz, *o*-CHMe₂), 1.14 (d, 12H, ³J_{H-H} = 6.83 Hz, *p*-CHMe₂) ¹¹⁹Sn (C₆D₆, 298K, 93.25 MHz) –388.3 (sept., SnD₃, ¹J_{119Sn-D} = 296.1 Hz). IR (KBr, cm⁻¹): 1340 (stretch, Sn–D).

Kinetic Experiments

Determination of the order in DMAP

All experiments were conducted using 18.0 mg Ar*SnH₃ in 0.65 mL of C_6D_6 (with approx. 1-2% of hexamethyldisiloxane as internal standard). All signals were manually integrated. To approximate the error of the method selected datasets were repeatedly integrated and the deviation of the determined rate constants was approx. $\pm 2\%$.

In order to determine the order of the dehydrogenation reaction in DMAP to gain first insights into the general role of the base, the kinetics of the consumption of Ar*SnH₃ in a C₆D₆ solution under pseudo-first order conditions with excessive DMAP concentrations (3, 4, 6, 8, 10 equivalents) were measured by means of time-dependent ¹H NMR spectroscopy at 50°C. Manual integration of the hydride resonance at δ = 4.21 ppm of Ar*SnH₃ provided [Ar*SnH₃]_t proportional values. Integration values were referenced to the integral of the internal standard (Me₃SiOSiMe₃). Samples (in a J- Young-type NMR tube) have been prepared and mixed at room temperature in a glovebox and then transferred (generally within 3-4 minutes) to a preheated (50°C) NMR spectrometer (Bruker AVII+ 500 NMR). The time was counted from the moment the sample was inserted into the spectrometer (0:00) at the investigated temperature. Each ¹H NMR was taken with 16 scans and spectra acquisition was repeated after exactly 300 seconds.

The values $[Ar*SnH_3](t)$ depicted in the following graph were normalized for each experiment against the first determined value $[Ar*SnH_3](0) = 1$.

From the rate law of a pseudo-first order reaction (with R and Ar* being equivalently used)

$$d[RSnH_3] = -k'[RSnH_3]$$
 with $k' = k[DMAP]$ for $[DMAP] \gg [RSnH_3]$

follows after integration

$$ln[RSnH_3]_t = ln[RSnH_3]_0 - k't$$

The plotted values for $ln[RSnH_3]$ to the not normalized integral values of $[Ar*SnH_3]$ referenced to the standard integral = 1.

Linear fitting according to the equation

$$y = m x + b$$

provides the pseudo rate constant k'

k' = m

The results of these linear fits for the slope values are given in the legend of the $ln[Ar*SnH_3](t)$ plot.

A direct proportional dependency of the pseudo rate constant from the relative concentration of DMAP is evident and therefore strongly indicates the reaction to be first order in DMAP.

Arrhenius-analysis approximation of the activation energy

Likewise, in order to approximate the activation energy of the reaction an Arrhenius-Analysis was performed on the basis of kinetic data obtained from time-dependent ¹H NMR spectroscopy. Therefore samples of 18.0 mg Ar*SnH₃ in 0.65 mL of C₆D₆ (with approx. 1-2% of hexamethyldisiloxane as internal standard) and 6, 8 and 10 equivalents of DMAP (pseudo first order conditions) have been prepared in a glove box and directly transferred (within 3-4 min) in an NMR spectrometer (Bruker AVII+ 500 NMR) preheated to 40°C, 50°C and 60°C. 16 scan spectra were taken every 300 seconds starting from the time the sample was inserted into the spectrometer (time 0:00). By manually integrating the Ar*SnH₃ concentration proportional signal at δ = 4.21 ppm the consumption of Ar*SnH₃ over time was measured. The pseudo-rate constants k'_{T,c} at each temperature and DMAP concentration were determined as described above by linear regression of ln[Ar*SnH₃] vs t plots.

From linear regression of the respective $ln[Ar*SnH_3](t)$ vs. time-plots the pseudo rate constants $k'_{T,c}$ were determined.

The DMAP independent rate constants k were extrapolated from the k' plots versus DMAP.

According to the Arrhenius approximation for the temperature dependence of rate constants

$$k_T = A e^{-E_a/RT}$$
 with $A = const.$

The activation energy of a reaction can be approximated by a linearization:

$$\ln(k_T) = \frac{-E_a}{R} \frac{1}{T} + \ln A$$

with slope = m and the ideal gas constant R = 8,314 J/molK and 4,18 J/cal

 $E_a = -mR = 13.68 \pm 1.01 \ kcal/mol$

Kinetic Isotope Effects (KIE)

In order to approximate the kinetic isotope effect of the reaction time-dependent ¹H NMR spectroscopy experiments were performed. Therefore samples of 18.0 mg Ar*SnH₃ or Ar*SnD₃ in 0.65 mL of C₆D₆ or THF-d₈ (with approx. 1-2% of hexamethyldisiloxane as internal standard) and 6 equivalents of DMAP (pseudo first order conditions) have been prepared in a glove box and directly transferred (within 3-4 min) in an NMR spectrometer (Bruker AVII+ 500 NMR) preheated to 40°C. 16 scan spectra were taken every 300 seconds starting from the time the sample was inserted into the spectrometer (time 0:00). By manually integrating the Ar*SnH₃ concentration proportional signal at δ = 4.21 ppm the consumption of Ar*SnH₃ over time was measured. The Ar*SnD₃ concentration was determined by manual integration of the doublet signal *i*Pr-group at δ = 1.11 ppm (C₆D₆) or the *m*-CH_{Trip}-signal (*d*₈-THF). The pseudo-rate constants k' were determined as described above by linear regression of ln[Ar*SnH₃] vs time plots.

$$KIE = \frac{k'_H}{k'_D}$$

The maximal KIE for cleavage of the Sn–H/Sn–D bond was approximated on account of the different bond strength obtained from the IR(KBr) stretching frequencies of the Sn–H/D at 298K within the Arrhenius relation for k.

$$\tilde{v}(SnH) = 1875 \ cm^{-1}$$

 $\tilde{v}(SnD) = 1342 \ cm^{-1}$
 $k_H = A(H) \ e^{-E_a(H)/kT}$ and $k_D = A(D) \ e^{-E_a(D)/kT}$

with

$$E_a(H/D) \approx E_0(Sn - H/Sn - D) = \frac{1}{2}hv_0 \text{ and } A(H) \approx A(D)$$
$$\left(\frac{k_H}{k_D}\right)_{th} = e^{\Delta E_A(H-D)/kT} = e^{h[v_0(H) - v_0(D)]/2kT}$$
$$\left(\frac{k_H}{k_D}\right)_{313K} = 3.40$$

KIE in d₆-benzene

Along with the respective k^\prime value for 6eq DMAP at 40°C for Ar*SnH_3 (vide supra):

$$KIE(benzene) = \left(\frac{k'_{H}}{k'_{D}}\right)_{313K} = \left(\frac{-1.974}{-1.203}\right) = 1.64$$

And therefore:

$$KIE(THF) = \left(\frac{k'_H}{k'_D}\right)_{313K} = \left(\frac{-3.773}{-1.850}\right) = 2.04$$

NMR Spectra

Ar*Sn(DMAP)SnH₂Ar* ¹H-NMR-details -30°C

Selected IR Spectra Ar*SnH₂-SnH₂Ar* IR (KBr) Ar*SnH₂-SnH₂Ar*

Ar*SnH(DMAP) / Ar*SnH(6DMAP) / Ar*SnH₂Sn(DMAP)Ar*

Depicted are the IR spectra of dried raw solid material of Ar*SnH(ca. 1 DMAP) obtained from the dehydrogenation with 6 equivalent of DMAP and extraction with pentane under removal of the most of the excessive DMAP. The IR spectra of the crude yellow solid obtained after removal of solvents from the reaction of $Ar*SnH_3$ and 6 equivalents of DMAP and the IR spectra of isolated crystals of $Ar*SnH_2-Sn(DMAP)Ar*$.

Ar*SnH(DMAP) / Ar*SnD(DMAP)

Depicted are the IR spectra of dried raw solid material of Ar*SnH(ca. 1 DMAP) and Ar*SnD(ca. 1DMAP) obtained from the dehydrogenation with 6 equivalent of DMAP and extraction with pentane under removal of the most of the excessive DMAP.

Computational Details

General Methodology and BDE calculations

DFT calculations have been performed using the Gaussian09 Revision D.01 program.¹¹ For the calculations of bond dissociation energies, the structures have been optimized in the gasphase using the BP86 functional^{12,13} with def2TZVP basis set on all atoms (C, H, N, Sn) along with w06 density fitting^{14, 15} as well as Stuttgart-Dresden effective core potentials on tin (MWB46) as implemented in Gaussian. Grimme dispersion correction with Becke-Johnson damping has been taken into account using the D3BJ option implemented in Gaussian.¹⁶ Starting geometries for geometry optimizations were directly taken from the X-ray data were available (Ar*SnH₃ and [Ar*SnH]₂) or from manipulations on the basis of these X-ray structures (monomeric Ar*SnH). Starting geometries for the optimization of base-adducts to Ar*SnH were obtained from substitution of the donor molecule on the basis of the structure of Ar*SnH(NHC).¹⁷ Thermal corrections were obtained from frequency calculations performed for all optimized structures. Frequency calculations revealed no or a single imaginary frequency smaller than 9 cm⁻¹, except for Ar*SnH were two small imaginary frequencies were obtained (6 and 11 cm⁻¹).

Table 2SI Computationally accessed energies and enthalpies for Ar*SnH₃ and derivatives for the approximation of bond dissociation enthalpies.

Comp.	E/a.u.	E+ZPVE	Н	G
Ar*SnH₃	-1407,19433	-1406,44173	-1406,39690	-1406,52121
μ-(Ar*SnH)₂	-2812,10217	-2810,62067	-2810,53277	-2810,74554
Ar*SnH	-1406,00603	-1405,26818	-1405,22493	-1405,34586
Ar*SnH(DMAP)	-1788,46949	-1787,57231	-1787,51800	-1787,66410
Ar*SnH(pyridine)	-1654,42926	-1653,60256	-1653,55294	-1653,68827
ArSnH(NMe₃)	-1580,58269	-1579,72442	-1579,67412	-1579,80911
DMAP	-382,42253	-382,26603	-382,25615	-382,30019
Pyridine	-248,38765	-248,30168	-248,29632	-248,32850
NMe ₃	-174 54492	-174 42871	-174 42219	-174 45507

The BDEs given in the main text are calculated from

$$BDE = \Delta G(diss) = G(adduct) - G(ArSnH) - G(base)$$

and no further entropy-corrections have been made.

Mechanism Study

For the studies of the mechanism dehydrogenation of model compound PhSnH₃ was chosen. Computations were carried out in Gaussian09 Revision D01 using TPSS functional (TPSSTPSS-keyword in Gaussian)¹⁸ along with 6-31G* basis set¹⁹ for C, H and N and a def2TZVP basis set along with Stuttgart-Dresden ECP (MWB46) for Sn. Superfinegrid was applied. Solvent THF was simulated by a polarized continuum model. For **TS-B1** (and **TS-B1(D)**) one strong imaginary frequency at 1228 cm⁻¹ (876 cm⁻¹ for PhSnD₃) was found along with one minor frequency at 6 cm⁻¹. The transition state structures for the NMe₃ and Pyridine deprotonation as well as **TS-A** revealed only one strong imaginary frequency. For **LA(DMAP)** an imaginary frequency was found (14 cm⁻¹). For all other structures frequency calculations revealed no imaginary frequency. Our screenings for putative transition state **TS-B2** remained unsuccessful. The computed energies at standard conditions are given in Table 3SI. E_{rel} and dH, dG values tabulated represent the differences against free PhSnH₃ and base.

Table 3SI Computationally accessed energies and enthalpies for the model system PhSnH₃ plus DMAP/base in THF (PCM). Relative energies and enthalpies (dH, dG) are given in kcal/mol. Please also note accompanying Scheme 1-SI

Comp.	E/a.u.	E+ZPVE	Н	G	E _{rel}	(E+ZPVE) _{rel}	dH	dG	-TdS	dGcorr
DMAP	-382,35092	-382,19047	-382,18066	-382,22476						
Pyridine	-248,34295	-248,25510	-248,24980	-248,28190						
NMe ₃	-174,51014	-174,39048	-174,38405	-174,41679						
PhSnH₃	-236,84686	-236,73888	-236,72991	-236,77739						
LA(DMAP)	-619,21653	-618,9461	-618,92787	-618,99466	-11,77	-10,49	-10,85	4,70	15,6	-3,1
TS-A(DMAP)	-619,14386	-618,87728	-618,85798	-618,92813	33,83	32,67	33,00	46,45	13,4	39,7
TS-B1(DMAP)	-619,18375	-618,91684	-618,89839	-618,96827	8,80	7,85	7,65	21,26	13,6	14,5
PhSnD₃	-236,84686	-236,74440	-236,73483	-236,78230						
TS-B1(² H)(DMAP)	-619,18375	-618,92165	-618,90259	-618,97365	8,80	8,30	8,10	20,96	12,9	14,5
LA(pyridine)	-485,20575	-485,00816	-484,99342	-485,05464	-10,0	-8,9	-8,6	2,9	11,5	-2,8
TS-A(pyridine)	-485,13139	-484,93759	-484,92278	-484,98180	36,7	35,4	35,7	48,6	12,9	42,2
TS-B1(pyridine)	-485,16999	-484,97550	-484,96067	-485,02412	12,4	11,6	11,95	22,1	10,1	17,0
TS-B1(² H)(pyridine)	-485,16999	-484,98037	-484,96494	-485,02966	12,4	12,0	12,35	21,7		
TS-B1(NMe₃)	-411,34865	-411,12140	-411,10533	-411,16902	5,2	5,0	5,4	15,8	10,4	10,6

Scheme 1-SI Molecular entities of the PhSnH₃ model system that was computationally investigated.

The considerations have to be seen with some caution, since the transition state enthalpies for DMAP may be defective due to a small imaginary frequency for the DMAP transition state.

A rough and only approximating correction of the computed $\Delta G^{\dagger}_{TS-B1}$ in terms of a potentially overestimated entropic contribution apply an experimentally approximated scaling factor of 0.5 toward the $T\Delta S^{\dagger}_{TS-B1}$ term.²⁰ This "semiempiric" approach has been applied earlier for similar problems²¹ but also critized recently.²²

$$-T\Delta S = \Delta G - \Delta H$$

$$\Delta G$$
 (corr) = ΔH - 0.5T ΔS

PhSnH₃				DMAP			
Sn	1.569715000	-0.000195000	-0.000009000	Ν	0.032139000	-2.689550000	0.000000000
С	-0.589311000	-0.014918000	0.000026000	Ν	-0.084329000	1.558372000	0.000000000
С	-1.323651000	-1.219982000	0.000034000	С	0.018181000	-1.960408000	1.139033000
С	-2.725936000	-1.207425000	0.000035000	Н	0.035163000	-2.533500000	2.068368000
С	-3.417549000	0.012734000	0.000027000	С	-0.011258000	-0.569044000	1.204790000
С	-2.703513000	1.218993000	0.000018000	Н	-0.012834000	-0.082184000	2.176082000
С	-1.300636000	1.203276000	0.000020000	С	-0.035704000	0.185277000	0.000000000
Н	2.189113000	-0.790498000	1.410852000	С	0.018181000	2.288749000	1.263220000
Н	2.188505000	-0.822215000	-1.393079000	Н	-0.070408000	3.358506000	1.057911000
Н	2.087039000	1.650550000	-0.017852000	Н	0.980581000	2.104268000	1.766553000
Н	-4.506703000	0.022715000	0.000027000	Н	-0.793346000	2.000420000	1.945576000
Н	-3.236142000	2.169369000	-0.000022000	С	0.018181000	2.288749000	-1.263220000
Н	-0.760646000	2.151068000	-0.000318000	Н	-0.793346000	2.000420000	-1.945576000
Н	-0.806187000	-2.180155000	-0.000207000	Н	0.980581000	2.104268000	-1.766553000
Н	-3.277157000	-2.147144000	0.000075000	Н	-0.070408000	3.358506000	-1.057911000
Pyridine				с	-0.011258000	-0.569044000	-1.204790000
С	0.000000000	-1.148660000	0.723564000	Н	-0.012834000	-0.082184000	-2.176082000
Ν	0.000000000	0.000000000	1.431673000	С	0.018181000	-1.960408000	-1.139033000
С	0.000000000	1.148660000	0.723564000	Н	0.035163000	-2.533500000	-2.068368000
с	0.000000000	1.203732000	-0.676373000	NMe ₃			
С	0.000000000	0.000000000	-1.392231000	N	0.000000000	0.000000000	0.397816000
С	0.000000000	-1.203732000	-0.676373000	С	0.000000000	1.390368000	-0.065414000
Н	0.000000000	0.000000000	-2.480935000	Н	-0.891497000	1.903342000	0.318749000
Н	0.000000000	2.164491000	-1.187511000	Н	0.891497000	1.903342000	0.318749000
Н	0.000000000	2.068314000	1.310667000	Н	0.000000000	1.477893000	-1.173248000
Н	0.000000000	-2.068314000	1.310667000	С	1.204094000	-0.695184000	-0.065414000
Н	0.000000000	-2.164491000	-1.187511000	Н	2.094091000	-0.179612000	0.318749000
				Н	1.202594000	-1.723730000	0.318749000
				Н	1.279893000	-0.738947000	-1.173248000
				С	-1.204094000	-0.695184000	-0.065414000
				н	-1.202594000	-1.723730000	0.318749000
				Н	-2.094091000	-0.179612000	0.318749000
				н	-1.279893000	-0.738947000	-1.173248000

Cartesian coordinates of the optimized structure of PhSnH_3 , DMAP, Pyridine, NMe_3

Cartesian coordinates of the optimized structure of LA, LA(py), TS-A, TS-A(py), TS-B1(DMAP), TS-B1(Py), TS-B1(NMe₃)

Lewis-adduct PhSnH3(DMAP) (LA)					PhSnH3(DM	AP)-dehydrogenatio	on (TS-A)
с	-2.636255000	-0.058455000	1.217698000	с	1.714952000	1.341273000	1.055667000
с	-3.383359000	0.080700000	0.012335000	с	2.373598000	0.494431000	0.142415000
с	-2.697468000	-0.243030000	-1.193813000	с	3.409262000	1.034817000	-0.645615000
с	-1.375097000	-0.660490000	-1.136549000	с	3.783048000	2.380416000	-0.520247000
N	-0.668001000	-0.786471000	0.009920000	с	3.121441000	3.211191000	0.396875000
с	-1.317213000	-0.485196000	1.158237000	с	2.087048000	2.688560000	1.185450000
Sn	1.842995000	-1.540469000	0.015629000	Sn	1.734039000	-1.563091000	-0.137347000
с	2.325997000	0.581932000	-0.022784000	N	-0.615975000	-0.700358000	-0.064608000
с	3.694584000	0.918174000	0.059685000	с	-1.008582000	0.393038000	-0.763572000
с	4.120046000	2.255227000	0.044888000	с	-2.315643000	0.849323000	-0.804379000
с	3.177403000	3.287639000	-0.056607000	с	-3.329432000	0.152025000	-0.083393000
с	1.813428000	2.973510000	-0.142733000	с	-2.906611000	-0.997201000	0.646430000
с	1.393679000	1.634866000	-0.125027000	с	-1.572328000	-1.371269000	0.620172000
н	3.517301000	-2.155033000	0.025489000	н	3.098637000	-2.426541000	-0.851308000
н	1.218493000	-2.245320000	-1.442669000	н	3.728011000	-2.148006000	0.459207000
н	1.231892000	-2.180807000	1.509110000	Н	1.308954000	-2.458188000	1.284303000

Н	3,502457000	4.327492000	-0.069334000	н	3,410069000	4.257064000	0.494855000
н	5.182488000	2.488917000	0.111492000	н	1.569323000	3.327260000	1.900938000
н	4.440345000	0.124930000	0.135609000	н	0.901772000	0.954146000	1.669985000
н	0.330885000	1.413511000	-0.191786000	н	3.935063000	0.401770000	-1.362140000
н	1.074881000	3.771170000	-0.223593000	н	4.587265000	2.780240000	-1.137563000
N	-4.683909000	0.499341000	0.013449000	N	-4.629930000	0.562689000	-0.090867000
н	-3.188475000	-0.171513000	-2.159510000	н	-3.608407000	-1.588319000	1.226294000
н	-0.837101000	-0.912879000	-2.050379000	н	-1.230853000	-2.245752000	1.173310000
н	-0.733493000	-0.597745000	2.071859000	н	-0.220117000	0.920269000	-1.297787000
н	-3.078450000	0.160988000	2.184672000	н	-2.545040000	1.737725000	-1.384372000
с	-5.351255000	0.816593000	1.278086000	с	-5.637206000	-0.174808000	0.676981000
с	-5.416189000	0.621384000	-1.249137000	с	-5.021062000	1.750811000	-0.854792000
н	-6.429176000	0.968657000	-1.034255000	н	-6.604395000	0.315069000	0.546345000
н	-4.932003000	1.346819000	-1.918647000	н	-5.719228000	-1.212975000	0.325207000
н	-5.479952000	-0.347287000	-1.765618000	н	-5.389354000	-0.182097000	1.747911000
н	-6.374517000	1.132940000	1.064228000	Н	-6.096946000	1.900092000	-0.742368000
н	-5.386634000	-0.061490000	1.939066000	н	-4.501564000	2.646917000	-0.486294000
н	-4.835102000	1.632887000	1.803554000	н	-4.794697000	1.623935000	-1.922782000

Bro	onsted-Deprotonation	n TS-B1(DMAP)		Bronsted-Deprotonation TS-B1(Pyridin)			
Sn	-1.871240000	-1.494201000	-0.089367000				
				Sn	-0.526217000	-1.435173000	-0.133243000
С	-3.115785000	0.331226000	-0.023079000				
				С	-2.129974000	0.087758000	-0.028982000
С	-4.349170000	0.376657000	0.662772000				
				С	-3.320383000	-0.121187000	0.701271000
С	-5.114013000	1.552528000	0.718640000				
				С	-4.315272000	0.866217000	0.780655000
С	-4.658744000	2.717557000	0.083979000				
				С	-4.140966000	2.093814000	0.125013000
С	-3.435801000	2.698731000	-0.602215000				
				С	-2.966450000	2.326993000	-0.605165000
С	-2.676546000	1.519095000	-0.647963000				
				С	-1.975801000	1.335081000	-0.673422000
н	-2.655912000	-2.440482000	1.187416000				
				Н	-1.122055000	-2.562539000	1.101985000
н	0.105471000	-1.101156000	-0.036657000				
				н	1.381070000	-0.630073000	-0.035244000
н	-2.535485000	-2.330840000	-1.508414000				
				н	-1.011072000	-2.345043000	-1.583318000
н	-5.250258000	3.631817000	0.125685000				
	c. 0.07070000	1.50000000	1.255652000	н	-4.911704000	2.861885000	0.184366000
н	-6.062979000	1.560313000	1.255653000				
	4 70000000	0.540605000	1.1.0000000	н	-5.224967000	0.678300000	1.351793000
н	-4.722009000	-0.518605000	1.163309000				
	4 734065000	4 530044000	4 400074000	н	-3.476790000	-1.069668000	1.217874000
н	-1.724065000	1.529814000	-1.183374000				
	2 074424000	2 000024000	1.007011000	н	-1.066701000	1.542183000	-1.243389000
н	-3.074124000	3.600624000	-1.09/011000			2 270176006	4.446744000
6	1 00000	0.000	0.014990000	н	-2.822321000	3.279176000	-1.116711000
C	1.099510000	0.655485000	0.014886000		2 525 405000	1 204057000	0.020622000
6	2 406720000	1 526228000	0.006338000	L	2.535485000	1.304957000	0.038622000
C	2.490/29000	-1.520328000	0.000338000		2 725177000	0 653395000	0 112211000
6	2 070016000	1 191201000	0.042828000	L	3.725177000	-0.053385000	0.112311000
C	2.373310000	1.101201000	0.043626000	С	3,712829000	2,109389000	0.120800000

н	0.819530000	1.299084000	0.006180000	ы	1 547005000	1 917592000	0.025675000
С	3.814267000	-1.099995000	0.034901000	н	1.347005000	1.01/383000	-0.025075000
	2 242000000	2 505646000	0.000400000	с	4.943209000	0.022830000	0.196588000
Н	2.243900000	-2.585646000	-0.009498000	н	3.648150000	-1.738917000	0.104200000
С	4.101551000	0.298316000	0.055225000	6	4 000074000	1 425007000	0 200921000
Н	3.110099000	2.258617000	0.057749000	C	4.933974000	1.425007000	0.200821000
	4 600102000	1 828027000	0.041410000	н	3.672755000	3.195350000	0.122440000
н	4.609192000	-1.838937000	0.041410000	н	5.873439000	-0.535697000	0.257546000
Ν	1.452132000	-0.671147000	-0.003628000	N	2 562562000	0.020442000	0.025571000
Ν	5.381303000	0.766327000	0.084133000		2.303302000	0.020442000	0.033371000
C	5,636320000	2,209991000	0.105103000	Н	5.868120000	1.978169000	0.266236000
_							
Н	6.715690000	2.373359000	0.128013000				
Н	5.226719000	2.695825000	-0.791674000	-			
н	5.191724000	2.675763000	0.995842000				
С	6.507910000	-0.171876000	0.094118000				
Н	6.470666000	-0.822741000	0.978965000				
Н	6.506927000	-0.798953000	-0.808600000				
н	7.437785000	0.399820000	0.120645000				
Bro	nsted-Deprotonation T	S-B1(NMe3)		1			
Sn	0.211851000	-1.223327000	-0.173359000				
С	-1.678313000	-0.088731000	-0.055066000				
с	-2.809062000	-0.586626000	0.628389000				
с	-3.995157000	0.158413000	0.722102000				
с	-4.076702000	1.426715000	0.128932000				
с	-2.966064000	1.944286000	-0.553448000				
с	-1.783005000	1.193896000	-0.636900000				
н	-0.137129000	-2.520367000	0.981142000				
н	1.842555000	-0.065542000	0.034278000				
н	0.006765000	-2.121493000	-1.690327000				
н	-4.996188000	2.007191000	0.199731000				
н	-4.854063000	-0.249570000	1.255703000				
н	-2.766858000	-1.571827000	1.095879000				
н	-0.928367000	1.620702000	-1.167024000				
н	-3.020963000	2.930322000	-1.015679000				
Ν	2.922005000	0.854665000	0.185543000				
с	2.426552000	2.124816000	-0.380223000				
н	1.525861000	2.423941000	0.167653000				
н	3.184473000	2.917524000	-0.304873000	1			
н	2.168557000	1.962707000	-1.432891000]			
	2 102 10 1000	0 9/3712000	1.635655000	1			
С	3.182404000	0.545712000	1.00000000				
С Н	3.182404000	1.662114000	1.852407000				
С Н Н	3.985945000 2.261392000	1.662114000 1.261469000	1.852407000 2.137279000				

	1	1	
н	3.468146000	-0.048076000	2.002800000
с	4.064137000	0.301566000	-0.568116000
н	4.318667000	-0.678559000	-0.150054000
н	3.766824000	0.180041000	-1.615629000
н	4.939071000	0.964867000	-0.509192000

LA(py)				TS-A(py)			
Sn	-0.511013000	-1.692447000	-0.015867000	С	-1.632831000	1.114510000	-0.837715000
Н	-1.886840000	-2.806993000	-0.014362000	N	-1.660905000	-0.006002000	-0.084866000
Н	0.414675000	-2.168403000	1.366969000	С	-2.787720000	-0.306433000	0.592600000
Н	0.244747000	-2.025284000	-1.537936000	С	-3.927716000	0.501094000	0.549335000
С	-2.966747000	2.653769000	0.236485000	С	-3.897004000	1.663149000	-0.232019000
С	-3.464549000	1.582720000	-0.518971000	С	-2.728069000	1.975388000	-0.939057000
С	-2.753202000	0.374459000	-0.573777000	Sn	0.343203000	-1.663266000	-0.048378000
С	-1.528011000	0.217415000	0.107664000	С	1.572754000	0.118482000	0.123036000
С	-1.044758000	1.304646000	0.864089000	С	2.677151000	0.313437000	-0.729506000
С	-1.757775000	2.510702000	0.932777000	С	3.433485000	1.492829000	-0.666713000
Н	-3.518422000	3.591931000	0.285004000	С	3.090479000	2.500050000	0.247572000
Н	-4.404487000	1.685950000	-1.060577000	С	1.990828000	2.320930000	1.098521000
Н	-3.163866000	-0.453453000	-1.154663000	С	1.236837000	1.138990000	1.034351000
Н	-0.101156000	1.214901000	1.400823000	Н	1.361820000	-2.976936000	-0.641046000
Н	-1.369743000	3.337581000	1.527293000	Н	1.998406000	-2.779812000	0.668967000
С	4.025211000	1.478193000	-0.255394000	Н	-0.386863000	-2.235195000	1.414310000
С	3.915717000	0.474179000	0.714649000	Н	3.675589000	3.417602000	0.295330000
С	2.728283000	-0.263045000	0.782515000	Н	1.719628000	3.098497000	1.812248000
Ν	1.684967000	-0.048238000	-0.042379000	Н	0.381004000	1.019133000	1.699043000
С	1.796924000	0.921070000	-0.973993000	Н	2.955824000	-0.459045000	-1.447715000
С	2.944467000	1.706154000	-1.117950000	Н	4.286012000	1.626532000	-1.332112000
Н	4.933618000	2.071775000	-0.337687000	Н	-4.767041000	2.313983000	-0.288358000
Н	4.729096000	0.264189000	1.405354000	Н	-4.813191000	0.223035000	1.115548000
Н	2.592337000	-1.055699000	1.518161000	Н	-2.755963000	-1.220379000	1.184492000
Н	0.926097000	1.065876000	-1.612035000	Н	-0.696376000	1.314724000	-1.354900000
Н	2.986468000	2.476096000	-1.884903000	Н	-2.661845000	2.868637000	-1.555294000

Cartesian coordinates of the optimized structures of Ar*SnH₃, Ar*SnH, μ -bridged (Ar*SnH)₂, Ar*SnH(DMAP), Ar*SnH(py), Ar*SnH(NMe₃)

Ar*SnH3				Ar*SnH			
С	0.025940000	0.413055000	0.791450000	Sn	0.023014000	-0.205398000	-1.199413000
С	-1.204935000	0.645143000	1.436131000	с	0.021278000	0.300376000	0.985953000
С	-1.220518000	1.140503000	2.748092000	с	-1.202194000	0.375152000	1.666995000
с	-0.024222000	1.391416000	3.422819000	с	-1.220062000	0.634526000	3.043056000
с	1.197391000	1.142447000	2.794094000	с	-0.012887000	0.822733000	3.728408000
с	1.232097000	0.653079000	1.480233000	с	1.210399000	0.749002000	3.052078000
с	2.517203000	0.365094000	0.780477000	с	1.228533000	0.481691000	1.675792000
с	2.948982000	-0.977139000	0.648956000	с	2.453250000	0.354684000	0.828514000
с	4.072513000	-1.247378000	-0.137349000	с	3.188084000	-0.854294000	0.815845000
с	4.774360000	-0.230528000	-0.795069000	с	4.205372000	-1.018279000	-0.130492000
с	4.343048000	1.087749000	-0.628363000	с	4.510472000	-0.028228000	-1.070542000
с	3.227198000	1.410755000	0.154009000	с	3.785555000	1.166391000	-1.032725000
с	2.743260000	2.851958000	0.258469000	с	2.764809000	1.388323000	-0.096313000
с	3.886267000	3.875619000	0.283394000	с	2.079214000	2.745368000	0.010991000
н	3.488987000	4.878797000	0.497958000	с	2.751350000	3.567824000	1.127557000

1		4 600074000		1.05.4065000	۱		4 500500000	4 9 4 7 9 5 7 9 9 9
	н 	4.630374000	3.627867000	1.054365000	н	2.248457000	4.539522000	1.247257000
ŀ	H C	4.407121000	3.933021000	-0.684499000	н	2.707661000	3.039112000	2.089814000
ŀ	с 	1.744652000	3.175785000	-0.868053000	н	3.809674000	3.754670000	1.200612000
F	н	1.408955000	4.221940000	-0.801436000	ι.	2.039844000	3.534830000	-1.300613000
F	н	2.204632000	3.020070000	-1.855468000	н	1.437381000	4.445081000	-1.16/453000
ŀ	н	0.854128000	2.534440000	-0.803636000	н	3.043625000	3.852028000	-1.623485000
F	н	2.196803000	2.943540000	1.210197000	н	1.580/18000	2.944863000	-2.106/25000
ŀ	п С	4.892447000	0.540015000	1 676210000		1.037296000	1.040626000	1 752010000
ŀ	c c	7 102002000	1 214671000	-1.070310000		4.030600000	0.249020000	2 110168000
F	с ц	7.102302000	1 288804000	1 519044000	c	6 05080243000	0.512200000	1 481686000
F	 L	7.380783000	0.586600000	0.020/16000	L L	7 725285000	0.615276000	2 256008000
ŀ		6 782201000	2 188240000	0.476280000	 L	7.735285000	0.205700000	0.807565000
ŀ	 C	5 556069000	-1 /1/581000	-2 879862000	н	6 9/9667000	-1 444087000	-0.89/102000
ŀ	ц ц	4 759376000	-0.928339000	-3.460812000	Ċ	5 193872000	-1 379649000	-3.08502000
ŀ	: н	6 414073000	-1 592954000	-3.545909000	ч	4 221283000	-1 178326000	-3.556746000
F	 н	5 1779/3000	-2 393696000	-2 547948000	н	5 9/7359000	-1.495188000	-3.8789/8000
F	н	6 347716000	0.411223000	-2.064800000	н	5 115552000	-2 339869000	-2 552306000
F	н Н	4 405248000	-2 280857000	-0.249019000	н	5 659389000	0 684790000	-2 704538000
F	c	2 231476000	-2.096198000	1 394256000	н	4 761240000	-1 958407000	-0 149130000
-	c c	2 786663000	-2 211232000	2 826253000	Ċ	2 824324000	-1 997073000	1 753327000
F	н	2.700003000	-1 262619000	3 370030000	c	4 052558000	-2 678729000	2 372102000
F	н	2 254474000	-2 993406000	3 389077000	н	4 706367000	-1 947841000	2.869836000
F	н	3 856809000	-2 469354000	2 803587000	н	3 737123000	-3 422904000	3 118549000
F	c	2.278251000	-3.450829000	0.678304000	н	4.652105000	-3.208788000	1.616414000
-	H	1.634533000	-4.173049000	1.201502000	С	1.929415000	-3.015683000	1.025286000
	н	1.923164000	-3.368347000	-0.358781000	н	1.627610000	-3.827729000	1.704345000
ľ	н	3.294857000	-3.872737000	0.662777000	н	1.018559000	-2.534683000	0.640134000
	н	1.171386000	-1.807412000	1.481382000	н	2.459001000	-3.459733000	0.168221000
ľ	н	2.136659000	1.325730000	3.320338000	н	2.229890000	-1.570876000	2.575105000
	н	-0.043932000	1.775263000	4.444558000	Н	2.147088000	0.896899000	3.595313000
ľ	н	-2.179329000	1.327476000	3.236018000	н	-0.026196000	1.028627000	4.800355000
ſ	С	-2.471189000	0.349102000	0.704023000	н	-2.169948000	0.690855000	3.579891000
ſ	с	-2.933606000	-0.987798000	0.621145000	с	-2.414325000	0.164607000	0.815930000
	С	-4.071432000	-1.257985000	-0.143964000	С	-2.822892000	-1.156319000	0.492217000
	с	-4.764778000	-0.247014000	-0.822261000	с	-3.893464000	-1.335630000	-0.392068000
	с	-4.291962000	1.062053000	-0.718930000	с	-4.563040000	-0.250826000	-0.968734000
	с	-3.150508000	1.381726000	0.027885000	С	-4.130928000	1.040388000	-0.651694000
	С	-2.650444000	2.818179000	0.068925000	С	-3.060239000	1.273753000	0.219729000
	с	-2.383054000	3.371544000	-1.340014000	С	-2.609259000	2.690698000	0.537451000
	н	-1.691236000	2.721420000	-1.894196000	С	-2.595168000	3.608678000	-0.691756000
	н	-3.311638000	3.447797000	-1.926072000	н	-1.993036000	3.164484000	-1.497471000
	н	-1.940846000	4.377444000	-1.280577000	н	-3.608931000	3.801117000	-1.075371000
	с	-3.622286000	3.718764000	0.849197000	н	-2.155306000	4.582436000	-0.429132000
	н	-3.769592000	3.346403000	1.873488000	с	-3.469185000	3.283987000	1.668064000
	н	-3.237652000	4.748461000	0.908301000	н	-3.423011000	2.659412000	2.571463000
	н	-4.608105000	3.752460000	0.359955000	н	-3.122170000	4.294943000	1.931095000

	1	1	1		1	1	1
н	-1.691882000	2.818577000	0.609502000	н	-4.523669000	3.353039000	1.358087000
н	-4.822147000	1.854901000	-1.253942000	н	-1.574126000	2.619964000	0.906904000
С	-5.987292000	-0.567796000	-1.663601000	н	-4.637124000	1.889495000	-1.117252000
С	-5.625286000	-1.481962000	-2.846666000	С	-5.708153000	-0.466619000	-1.942359000
н	-4.834257000	-1.033632000	-3.464715000	с	-5.218239000	-1.152332000	-3.229604000
н	-5.259857000	-2.457565000	-2.491003000	н	-4.411222000	-0.574717000	-3.702999000
н	-6.504268000	-1.663517000	-3.483879000	н	-4.828002000	-2.158705000	-3.013113000
с	-7.116004000	-1.178107000	-0.815991000	н	-6.040091000	-1.257810000	-3.954131000
н	-8.013647000	-1.352249000	-1.428674000	С	-6.863660000	-1.251794000	-1.300393000
н	-6.809112000	-2.145247000	-0.389033000	н	-7.706774000	-1.346592000	-2.001407000
н	-7.388816000	-0.514881000	0.017523000	н	-6.544539000	-2.267931000	-1.022245000
н	-6.353642000	0.388479000	-2.075522000	н	-7.224861000	-0.752374000	-0.389865000
н	-4.427506000	-2.287137000	-0.217815000	н	-6.089337000	0.532288000	-2.216181000
С	-2.233192000	-2.097404000	1.395526000	н	-4.209310000	-2.351027000	-0.639963000
С	-2.303852000	-3.469020000	0.714745000	С	-2.154512000	-2.353805000	1.152843000
н	-1.670824000	-4.188298000	1.254905000	с	-1.959986000	-3.543732000	0.205041000
н	-3.327284000	-3.874447000	0.712577000	н	-1.373016000	-4.330404000	0.701314000
н	-1.950286000	-3.417166000	-0.324767000	н	-2.918628000	-3.991877000	-0.097650000
С	-2.787174000	-2.168758000	2.830820000	н	-1.422262000	-3.241118000	-0.706477000
н	-2.662461000	-1.209533000	3.351950000	С	-2.939552000	-2.763180000	2.412261000
н	-3.860965000	-2.411818000	2.815908000	н	-3.013525000	-1.924330000	3.118906000
н	-2.265611000	-2.945084000	3.411442000	н	-3.961753000	-3.075871000	2.147991000
н	-1.168426000	-1.822405000	1.471286000	н	-2.443999000	-3.601995000	2.924464000
Sn	0.051232000	-0.378234000	-1.248730000	н	-1.156417000	-2.026795000	1.483851000
Н	-0.112259000	-2.108298000	-1.177824000	Н	-0.366212000	1.531478000	-1.646421000
н	-1.267807000	0.271180000	-2.171146000				
н	1 527281000	0.005455000	-2 074719000				

Hydride-bridged (ArSnH)2				Ar*SnH(DMAP)			
Sn	-0.000001000	-1.337839000	0.942568000	Ν	-1.318599000	1.527844000	-0.853834000
с	0.000000000	-2.664265000	-0.886351000	Ν	-4.809323000	3.860045000	-0.842208000
с	-1.211900000	-3.175820000	-1.393832000	Sn	0.719937000	0.311385000	-1.153336000
с	-1.204776000	-4.148988000	-2.406354000	с	-2.507121000	1.015344000	-1.235540000
с	0.000000000	-4.630663000	-2.917963000	н	-2.508177000	-0.037317000	-1.523540000
с	1.204775000	-4.148989000	-2.406354000	с	-3.679550000	1.746573000	-1.252160000
с	1.211900000	-3.175820000	-1.393832000	н	-4.599141000	1.245224000	-1.543604000
с	2.535165000	-2.772649000	-0.824610000	с	-3.668630000	3.108798000	-0.862161000
с	3.082459000	-3.514566000	0.246902000	с	-6.087901000	3.245312000	-1.168847000
с	4.388749000	-3.235837000	0.669470000	н	-6.875920000	4.002688000	-1.100458000
с	5.156458000	-2.232530000	0.071967000	н	-6.334976000	2.423309000	-0.475040000
с	4.569202000	-1.467067000	-0.941524000	н	-6.088666000	2.841788000	-2.194622000
с	3.274445000	-1.718201000	-1.407354000	с	-4.767718000	5.237820000	-0.374585000
с	-2.535166000	-2.772649000	-0.824609000	н	-4.076022000	5.845133000	-0.980711000
с	-3.082460000	-3.514565000	0.246903000	н	-4.451995000	5.303278000	0.681092000
с	-4.388750000	-3.235836000	0.669470000	н	-5.768128000	5.674678000	-0.462365000
с	-5.156458000	-2.232530000	0.071967000	с	-2.410632000	3.640333000	-0.476202000
С	-4.569202000	-1.467066000	-0.941524000	н	-2.304805000	4.672633000	-0.149515000

С	-3.274445000	-1.718201000	-1.407354000	С	-1.291239000	2.826776000	-0.482862000
С	-2.690511000	-0.910482000	-2.555274000	Н	-0.312082000	3.200201000	-0.178120000
С	-3.119889000	0.558542000	-2.530123000	С	0.764033000	-0.653567000	0.918575000
С	-3.039645000	-1.545246000	-3.913671000	С	-0.286507000	-1.367700000	1.532951000
С	-6.610702000	-2.008429000	0.449904000	С	-1.637793000	-1.471463000	0.900766000
С	-6.840610000	-1.880537000	1.961793000	С	-2.744667000	-0.792921000	1.453875000
С	-7.489142000	-3.125137000	-0.144109000	С	-2.597652000	0.096495000	2.680133000
С	-2.295203000	-4.634506000	0.914179000	Н	-1.520413000	0.214670000	2.870012000
С	-2.169731000	-4.426600000	2.431145000	С	-3.186534000	1.498528000	2.468837000
С	-2.903455000	-6.007175000	0.583113000	Н	-3.034689000	2.113854000	3.368969000
С	2.295203000	-4.634506000	0.914178000	Н	-4.269242000	1.461087000	2.271481000
с	2.903456000	-6.007176000	0.583114000	н	-2.706075000	2.007024000	1.624121000
С	2.169728000	-4.426599000	2.431144000	С	-3.223511000	-0.575559000	3.915008000
С	6.610701000	-2.008429000	0.449905000	Н	-3.076797000	0.044921000	4.812461000
С	7.489142000	-3.125136000	-0.144110000	н	-2.774851000	-1.561049000	4.102441000
с	6.840609000	-1.880539000	1.961794000	н	-4.306200000	-0.721514000	3.774585000
С	2.690511000	-0.910482000	-2.555274000	С	-4.009411000	-0.964228000	0.874045000
С	3.039644000	-1.545246000	-3.913671000	Н	-4.868331000	-0.435973000	1.298092000
С	3.119890000	0.558542000	-2.530123000	С	-4.210400000	-1.780142000	-0.239856000
н	-1.210230000	0.000000000	0.000000000	С	-5.597679000	-1.957803000	-0.832209000
Н	-2.155286000	-4.544147000	-2.771779000	Н	-6.258227000	-1.232832000	-0.324063000
Н	-0.000001000	-5.394890000	-3.697493000	С	-6.141032000	-3.368703000	-0.544460000
н	2.155285000	-4.544148000	-2.771779000	н	-6.147450000	-3.575450000	0.535230000
Н	4.817577000	-3.827704000	1.481822000	Н	-5.511627000	-4.131678000	-1.027741000
Н	5.150493000	-0.657204000	-1.386302000	Н	-7.167057000	-3.482785000	-0.927157000
н	-4.817578000	-3.827703000	1.481823000	С	-5.634314000	-1.655865000	-2.338896000
н	-5.150494000	-0.657204000	-1.386302000	Н	-6.661092000	-1.731591000	-2.727931000
н	-1.593023000	-0.947100000	-2.445380000	н	-5.011778000	-2.367381000	-2.901752000
Н	-3.001312000	1.002252000	-1.532045000	Н	-5.257856000	-0.645618000	-2.557919000
Н	-4.175248000	0.680545000	-2.813718000	С	-3.100358000	-2.445388000	-0.776333000
н	-2.523941000	1.142999000	-3.246253000	Н	-3.237036000	-3.098540000	-1.640514000
н	-2.657027000	-2.571564000	-3.988091000	С	-1.819725000	-2.312890000	-0.227217000
Н	-2.603821000	-0.957074000	-4.735951000	С	-0.667027000	-3.145144000	-0.773396000
Н	-4.131617000	-1.573990000	-4.053315000	Н	0.263195000	-2.609640000	-0.533684000
Н	-6.918058000	-1.058244000	-0.020200000	С	-0.703632000	-3.331638000	-2.293744000
н	-6.255323000	-1.054778000	2.390424000	н	-1.558415000	-3.945515000	-2.618017000
н	-6.554772000	-2.801961000	2.491075000	н	0.210826000	-3.842365000	-2.629196000
Н	-7.903215000	-1.691090000	2.175679000	Н	-0.752604000	-2.360335000	-2.807677000
н	-8.554391000	-2.940366000	0.063728000	С	-0.610379000	-4.499515000	-0.043437000
н	-7.220559000	-4.100342000	0.290699000	Н	-0.502045000	-4.356153000	1.040914000
Н	-7.353968000	-3.195350000	-1.232911000	Н	0.245555000	-5.094083000	-0.398090000
н	-1.277984000	-4.617667000	0.494205000	н	-1.530304000	-5.077793000	-0.223563000
н	-1.560192000	-5.225192000	2.880194000	С	-0.068628000	-2.062330000	2.736349000
н	-3.152777000	-4.434506000	2.925910000	н	-0.895264000	-2.615591000	3.188710000
н	-1.688742000	-3.463228000	2.659515000	С	1.187519000	-2.068032000	3.342049000
н	-2.937411000	-6.167566000	-0.504115000	н	1.344814000	-2.609746000	4.276734000
н	-3.931779000	-6.087014000	0.968357000	С	2.248416000	-1.404552000	2.723132000

н	-2.307845000	-6.816452000	1.032494000	н	3.249451000	-1.436267000	3.159992000
Н	1.277984000	-4.617669000	0.494203000	с	2.043601000	-0.718630000	1.518027000
Н	2.937414000	-6.167567000	-0.504114000	с	3.207683000	-0.119051000	0.794159000
Н	2.307846000	-6.816453000	1.032495000	с	3.646061000	1.190293000	1.087291000
Н	3.931779000	-6.087014000	0.968359000	с	4.724334000	1.718813000	0.369760000
н	1.560190000	-5.225192000	2.880193000	н	5.069901000	2.732798000	0.586731000
н	1.688738000	-3.463228000	2.659513000	с	5.359660000	1.000743000	-0.647836000
н	3.152774000	-4.434504000	2.925910000	с	6.502961000	1.618589000	-1.433646000
н	6.918057000	-1.058243000	-0.020199000	н	6.695014000	2.612390000	-0.993012000
н	8.554390000	-2.940365000	0.063728000	с	6.115291000	1.825015000	-2.908076000
н	7.353968000	-3.195348000	-1.232913000	н	5.205349000	2.435975000	-2.994534000
н	7.220559000	-4.100342000	0.290697000	н	5.917025000	0.859778000	-3.398935000
н	6.255321000	-1.054781000	2.390425000	н	6.925539000	2.325164000	-3.460950000
н	7.903214000	-1.691091000	2.175679000	с	7.793913000	0.792453000	-1.310559000
н	6.554772000	-2.801964000	2.491074000	н	7.664274000	-0.208753000	-1.749455000
н	1.593023000	-0.947099000	-2.445379000	н	8.081348000	0.661722000	-0.257262000
н	2.603820000	-0.957074000	-4.735951000	н	8.625148000	1.284442000	-1.838780000
н	2.657026000	-2.571564000	-3.988091000	с	4.898260000	-0.287096000	-0.937796000
н	4.131616000	-1.573990000	-4.053316000	н	5.379171000	-0.860295000	-1.733570000
н	2.523941000	1.142999000	-3.246253000	с	3.834614000	-0.865225000	-0.233694000
Н	4.175248000	0.680545000	-2.813718000	с	3.414687000	-2.300911000	-0.524713000
Н	3.001313000	1.002252000	-1.532045000	н	2.403053000	-2.435620000	-0.112144000
Sn	0.000001000	1.337839000	-0.942568000	с	4.340755000	-3.280542000	0.217894000
С	0.000000000	2.664265000	0.886351000	н	5.379540000	-3.173929000	-0.131932000
С	1.211900000	3.175820000	1.393833000	н	4.024947000	-4.321487000	0.047809000
С	1.204776000	4.148988000	2.406355000	н	4.325971000	-3.089245000	1.300330000
С	0.000001000	4.630663000	2.917964000	с	3.346628000	-2.625030000	-2.022620000
С	-1.204775000	4.148988000	2.406355000	н	2.688069000	-1.917341000	-2.548376000
С	-1.211900000	3.175820000	1.393832000	н	2.947675000	-3.639849000	-2.171590000
С	-2.535165000	2.772649000	0.824609000	н	4.338990000	-2.590802000	-2.497867000
С	-3.082459000	3.514566000	-0.246903000	С	2.951658000	2.009270000	2.163915000
С	-4.388748000	3.235837000	-0.669470000	н	1.950889000	1.568565000	2.297176000
С	-5.156458000	2.232531000	-0.071968000	С	2.759177000	3.478610000	1.764229000
С	-4.569202000	1.467067000	0.941524000	н	2.276390000	3.544799000	0.778374000
С	-3.274445000	1.718201000	1.407354000	н	3.716013000	4.021529000	1.718584000
С	-2.690511000	0.910482000	2.555274000	н	2.126127000	3.993577000	2.503119000
С	-3.039645000	1.545246000	3.913671000	С	3.699710000	1.894754000	3.503971000
Н	-2.603822000	0.957074000	4.735951000	н	4.722838000	2.291947000	3.411423000
Н	-2.657027000	2.571564000	3.988091000	н	3.771709000	0.847617000	3.829646000
Н	-4.131618000	1.573990000	4.053315000	н	3.181135000	2.463931000	4.291356000
С	-3.119890000	-0.558541000	2.530123000	н	1.414425000	1.883776000	-0.561339000
Н	-2.523943000	-1.142999000	3.246254000				
н	-4.175249000	-0.680544000	2.813717000	Ar*	SnH(NMe3)		-
н	-3.001313000	-1.002252000	1.532045000	Ν	-1.056822000	1.037250000	-2.554878000
Н	-1.593023000	0.947100000	2.445380000	Sn	0.459863000	-0.463428000	-1.270447000
н	-5.150493000	0.657204000	1.386301000	с	0.108671000	0.408411000	0.830551000
С	-6.610701000	2.008430000	-0.449905000	С	-1.109112000	0.496515000	1.547469000

С	-7.489141000	3.125138000	0.144108000	С	-2.424327000	0.142647000	0.925661000
н	-8.554390000	2.940368000	-0.063730000	С	-3.436967000	1.114877000	0.736842000
н	-7.353967000	3.195351000	1.232910000	С	-3.260003000	2.569499000	1.157947000
н	-7.220558000	4.100343000	-0.290700000	н	-2.182305000	2.742796000	1.307583000
С	-6.840608000	1.880538000	-1.961794000	с	-3.771827000	3.572643000	0.108950000
Н	-6.255321000	1.054779000	-2.390425000	н	-3.470558000	4.594167000	0.384921000
н	-7.903214000	1.691092000	-2.175680000	н	-4.870470000	3.563389000	0.047322000
н	-6.554770000	2.801962000	-2.491076000	н	-3.380484000	3.359174000	-0.893827000
н	-6.918058000	1.058245000	0.020199000	С	-3.973217000	2.840255000	2.497042000
н	-4.817577000	3.827704000	-1.481823000	н	-3.818340000	3.882696000	2.814961000
С	-2.295202000	4.634506000	-0.914179000	н	-3.609635000	2.181733000	3.295826000
С	-2.903454000	6.007176000	-0.583113000	н	-5.056363000	2.672505000	2.391631000
Н	-2.937410000	6.167566000	0.504115000	с	-4.659119000	0.725189000	0.167824000
н	-2.307844000	6.816453000	-1.032494000	н	-5.438705000	1.474995000	0.010971000
н	-3.931777000	6.087015000	-0.968357000	с	-4.910658000	-0.588422000	-0.227549000
С	-2.169728000	4.426600000	-2.431144000	с	-6.221766000	-0.964433000	-0.893749000
н	-1.560189000	5.225192000	-2.880193000	н	-6.857979000	-0.062372000	-0.883986000
н	-1.688739000	3.463228000	-2.659514000	С	-6.962480000	-2.071015000	-0.125608000
Н	-3.152774000	4.434506000	-2.925910000	н	-7.134066000	-1.779736000	0.920567000
Н	-1.277983000	4.617668000	-0.494204000	н	-6.383695000	-3.007180000	-0.123107000
н	-2.155285000	4.544148000	2.771779000	н	-7.937085000	-2.282737000	-0.590951000
Н	0.000001000	5.394889000	3.697494000	с	-5.996053000	-1.365358000	-2.362150000
Н	2.155286000	4.544147000	2.771780000	н	-6.950678000	-1.600331000	-2.857236000
С	2.535165000	2.772648000	0.824610000	н	-5.351841000	-2.255579000	-2.428671000
С	3.082460000	3.514565000	-0.246902000	н	-5.507612000	-0.554746000	-2.922391000
С	4.388749000	3.235836000	-0.669470000	С	-3.911554000	-1.542930000	-0.002648000
С	5.156458000	2.232530000	-0.071967000	н	-4.099852000	-2.582311000	-0.276905000
С	4.569202000	1.467066000	0.941524000	С	-2.686359000	-1.212563000	0.583533000
С	3.274445000	1.718200000	1.407354000	С	-1.714919000	-2.321057000	0.971063000
С	2.690511000	0.910481000	2.555274000	н	-0.700632000	-1.898531000	0.946162000
С	3.119889000	-0.558543000	2.530123000	С	-1.728278000	-3.526841000	0.026894000
н	3.001312000	-1.002253000	1.532045000	Н	-2.675304000	-4.086050000	0.079593000
н	4.175248000	-0.680546000	2.813717000	Н	-0.923158000	-4.223297000	0.302333000
н	2.523941000	-1.143000000	3.246253000	Н	-1.560473000	-3.215340000	-1.014467000
С	3.039645000	1.545245000	3.913671000	С	-1.983670000	-2.751241000	2.425492000
Н	2.657027000	2.571562000	3.988092000	н	-1.889074000	-1.898233000	3.111990000
Н	2.603821000	0.957072000	4.735951000	н	-1.264223000	-3.523889000	2.737444000
Н	4.131617000	1.573988000	4.053316000	н	-2.999506000	-3.163975000	2.527302000
Н	1.593023000	0.947099000	2.445380000	С	-1.102456000	0.840679000	2.911455000
н	5.150494000	0.657203000	1.386302000	Н	-2.047674000	0.865907000	3.456126000
С	6.610702000	2.008429000	-0.449905000	С	0.087487000	1.114255000	3.583560000
С	6.840609000	1.880536000	-1.961793000	н	0.071967000	1.383174000	4.641424000
н	6.255322000	1.054777000	-2.390423000	С	1.297566000	0.999010000	2.900219000
н	6.554770000	2.801960000	-2.491076000	н	2.244621000	1.162638000	3.419730000
н	7.903214000	1.691089000	-2.175679000	С	1.309438000	0.627093000	1.548778000
С	7.489142000	3.125138000	0.144108000	С	2.618043000	0.350900000	0.877976000
н	8.554390000	2.940367000	-0.063730000	С	3.360945000	1.392107000	0.281524000

н	7.220558000	4.100342000	-0.290701000	с	4.565652000	1.083071000	-0.357485000
н	7.353968000	3.195351000	1.232910000	н	5.146519000	1.881485000	-0.826355000
н	6.918059000	1.058244000	0.020201000	с	5.037618000	-0.229828000	-0.452746000
Н	4.817578000	3.827703000	-1.481822000	с	6.326277000	-0.537335000	-1.194868000
С	2.295203000	4.634506000	-0.914178000	н	6.746428000	0.429367000	-1.522698000
С	2.169729000	4.426600000	-2.431144000	с	6.053005000	-1.381788000	-2.451537000
н	1.560191000	5.225192000	-2.880193000	н	5.329552000	-0.882768000	-3.112135000
н	3.152775000	4.434505000	-2.925909000	н	5.635263000	-2.363362000	-2.179584000
н	1.688740000	3.463228000	-2.659514000	н	6.981199000	-1.554681000	-3.017758000
С	2.903456000	6.007175000	-0.583113000	с	7.363314000	-1.216379000	-0.285186000
н	2.937412000	6.167566000	0.504115000	н	7.002956000	-2.197616000	0.059939000
н	3.931779000	6.087014000	-0.968357000	н	7.571544000	-0.604047000	0.604056000
н	2.307846000	6.816452000	-1.032494000	н	8.309340000	-1.378250000	-0.824223000
Н	1.277984000	4.617668000	-0.494204000	с	4.281157000	-1.250115000	0.131818000
н	1.210230000	0.000000000	0.000000000	н	4.635833000	-2.281130000	0.068318000
				с	3.081472000	-0.986057000	0.805706000
Ar*	SnH(Pyridine)			с	2.343549000	-2.111446000	1.521942000
N	-1.312427000	1.799972000	-1.421867000	н	1.312453000	-1.768914000	1.698845000
Sn	0.508847000	0.201414000	-1.252960000	с	2.979607000	-2.357289000	2.901979000
С	-2.553671000	1.403324000	-1.759666000	н	4.027573000	-2.677977000	2.794718000
н	-2.738203000	0.327766000	-1.746146000	н	2.433305000	-3.140956000	3.449116000
С	-3.553469000	2.309608000	-2.103818000	н	2.965593000	-1.440806000	3.508726000
н	-4.547918000	1.941187000	-2.353626000	с	2.265102000	-3.409178000	0.707852000
С	-3.257735000	3.672950000	-2.113604000	н	1.817591000	-3.228753000	-0.281421000
С	-1.971043000	4.083889000	-1.757561000	н	1.643505000	-4.148468000	1.235068000
н	-1.696779000	5.138733000	-1.737704000	н	3.256613000	-3.863133000	0.558429000
С	-1.028817000	3.118901000	-1.410477000	с	2.849103000	2.823137000	0.323220000
н	-0.008452000	3.370119000	-1.115972000	н	1.769834000	2.765198000	0.536757000
С	0.308850000	-0.216740000	0.977703000	с	3.017901000	3.553151000	-1.016741000
С	-0.873104000	-0.563528000	1.663717000	н	2.597702000	2.950912000	-1.835576000
С	-2.198469000	-0.584096000	0.972310000	н	4.076252000	3.752008000	-1.245453000
С	-3.171184000	0.399061000	1.252851000	н	2.501556000	4.524944000	-0.989814000
С	-2.892285000	1.531442000	2.230584000	с	3.512439000	3.608462000	1.468251000
н	-1.817566000	1.502890000	2.464710000	н	4.602202000	3.663747000	1.319283000
С	-3.201822000	2.914435000	1.640173000	н	3.328498000	3.126302000	2.438610000
Н	-2.955074000	3.702246000	2.368011000	н	3.120821000	4.636521000	1.516039000
н	-4.267097000	3.021482000	1.384527000	н	1.574987000	0.881262000	-1.771852000
н	-2.616145000	3.098315000	0.730907000	С	-2.429916000	0.506536000	-2.637757000
С	-3.666418000	1.315926000	3.543171000	н	-3.062337000	1.152957000	-3.275255000
Н	-3.429969000	2.108876000	4.269097000	н	-2.402340000	-0.503967000	-3.065584000
Н	-3.415828000	0.347884000	3.998916000	н	-2.867915000	0.454604000	-1.636773000
н	-4.752907000	1.330984000	3.363612000	с	-1.030264000	2.361536000	-1.910720000
С	-4.426982000	0.311893000	0.635266000	н	0.008267000	2.710853000	-1.862976000
н	-5.182519000	1.073393000	0.848738000	н	-1.643808000	3.088923000	-2.476329000
с	-4.746327000	-0.715366000	-0.254590000	н	-1.413920000	2.273022000	-0.888770000
С	-6.127457000	-0.798451000	-0.881087000	с	-0.459992000	1.113642000	-3.900681000
н	-6.645358000	0.147352000	-0.643012000	н	-0.455082000	0.113694000	-4.355853000

с	-6.939705000	-1.947764000	-0.257435000	н	-1.039191000	1.799210000	-4.546963000
н	-7.009720000	-1.834089000	0.833756000	н	0.574476000	1.469588000	-3.815136000
н	-6.459594000	-2.916798000	-0.463450000				
н	-7.959740000	-1.979037000	-0.670281000				
с	-6.073114000	-0.936204000	-2.410726000				
н	-7.086687000	-0.926118000	-2.838948000				
н	-5.595963000	-1.881726000	-2.709030000				
н	-5.499534000	-0.117878000	-2.870598000				
с	-3.766138000	-1.678917000	-0.525429000				
н	-3.997954000	-2.496354000	-1.210883000				
с	-2.500523000	-1.637802000	0.071371000				
с	-1.509293000	-2.769037000	-0.167600000				
н	-0.502947000	-2.363948000	0.013533000				
С	-1.527897000	-3.315663000	-1.598977000				
н	-2.472317000	-3.829378000	-1.836639000				
н	-0.716935000	-4.046838000	-1.730094000				
н	-1.373554000	-2.508764000	-2.330517000				
С	-1.737894000	-3.889123000	0.863646000				
н	-1.642190000	-3.504023000	1.888640000				
н	-0.999618000	-4.694524000	0.729381000				
н	-2.744444000	-4.321847000	0.751784000				
с	-0.821097000	-0.964570000	3.010559000				
н	-1.747867000	-1.236456000	3.521441000				
С	0.395669000	-1.036749000	3.688542000				
н	0.423855000	-1.348448000	4.734362000				
С	1.578679000	-0.741203000	3.008512000				
н	2.543497000	-0.836447000	3.512240000				
С	1.538150000	-0.349998000	1.663394000				
С	2.807092000	-0.155473000	0.895074000				
с	3.474435000	1.088632000	0.901796000				
с	4.639497000	1.234689000	0.141473000				
н	5.162043000	2.194609000	0.137076000				
С	5.144573000	0.196433000	-0.647030000				
С	6.389323000	0.401413000	-1.492421000				
н	6.755961000	1.421113000	-1.281890000				
С	6.059435000	0.320713000	-2.992960000				
н	5.278135000	1.045014000	-3.264528000				
н	5.692091000	-0.682366000	-3.259101000				
н	6.952728000	0.526180000	-3.602792000				
С	7.505735000	-0.586624000	-1.116258000				
Н	7.199803000	-1.624020000	-1.321262000				
н	7.754141000	-0.515468000	-0.047465000				
Н	8.417981000	-0.385608000	-1.698655000				
С	4.460256000	-1.023079000	-0.655049000				
н	4.839114000	-1.843975000	-1.267753000				
С	3.301088000	-1.223456000	0.105148000				
С	2.636651000	-2.594529000	0.141270000				

н	1.608262000	-2.450817000	0.506808000
С	3.355679000	-3.498088000	1.159011000
н	4.404301000	-3.657949000	0.863235000
н	2.862631000	-4.480184000	1.225549000
Н	3.350893000	-3.042473000	2.159385000
С	2.546060000	-3.267629000	-1.234095000
н	2.039154000	-2.614436000	-1.960299000
Н	1.973902000	-4.204580000	-1.158652000
н	3.538884000	-3.522745000	-1.635115000
С	2.929907000	2.248376000	1.720477000
Н	1.864840000	2.033233000	1.901767000
С	3.010526000	3.590612000	0.980254000
Н	2.558135000	3.503533000	-0.018308000
н	4.050185000	3.932401000	0.860037000
н	2.473968000	4.368654000	1.544476000
С	3.633696000	2.328297000	3.086817000
н	4.712295000	2.508978000	2.956646000
н	3.513573000	1.392580000	3.650520000
н	3.219438000	3.149287000	3.692564000
н	1.432474000	1.745565000	-1.000222000
н	-4.019921000	4.405414000	-2.383740000

Literature

- 1. B. Schiemenz and P. P. Power, *Organometallics*, 1996, 15, 958-964.
- 2. B. E. Eichler, L. Pu, M. Stender and P. P. Power, *Polyhedron*, 2001, 20, 551-556.
- 3. M. Saito, H. Hashimoto, T. Tajima and M. Ikeda, J. Organomet. Chem., 2007, 692, 2729-2735.
- 4. P. Jutzi, T. Heidemann, B. Neumann and H. G. Stammler, *Synthesis*, 1992, 1992, 1096-1098.
- 5. SAINT, APEX2, Bruker AXS Inc.: Madison, WI.
- 6. G. M. Sheldrick, University of Göttingen, Göttingen, Germany, 1997.
- 7. G. M. Sheldrick, SADABS, 2008 University of Göttingen, Göttingen, Germany.
- 8. C. B. Hübschle, G. M. Sheldrick and B. Dittrich, J. Appl. Crystallogr., 2011, 44, 1281-1284.
- 9. L. J. Farrugia, J. Appl. Crystallogr., 1999, 32, 837-838.
- 10. B. P. Johnson, S. Almstätter, F. Dielmann, M. Bodensteiner and M. Scheer, *Z. Anorg. Allg. Chem.*, 2010, 636, 1275-1285.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador,

J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian, Inc., Wallingford, CT, USA, 2009.

- 12. A. D. Becke Phys. Rev. A, 1988, 38, 3098
- 13. J. P. Perdew, Phys. Rev. B, 1986, 33, 8822-24.
- 14. F. Weigend and R. Ahlrichs, *Phys. Chem. Chem. Phys.*, 2005, 7, 3297-3305.
- 15. F. Weigend, *Phys. Chem. Chem. Phys.*, 2006, 8, 1057-1065.
- 16. S. Grimme, S. Ehrlich and L. Goerigk, *J. Comput. Chem.*, 2011, 32, 1456-1465.
- 17. C. P. Sindlinger and L. Wesemann, *Chem. Sci.*, 2014, 5, 2739-2746.
- 18. J. M. Tao, J. P. Perdew, V. N. Staroverov, and G. E. Scuseria, Phys. Rev. Lett., 2003, 91, 146401.
- 19. M. M. Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley, D. J. DeFrees, J. A. Pople, and M. S. Gordon, J. Chem. Phys., 1982, 77, 3654-65.
- 20. Y. Liang, S. Liu, Y. Xia, Y. Li and Z.-X. Yu, *Chem. Eur. J.*, 2008, 14, 4361-4373.
- 21. L. Zhao, F. Huang, G. Lu, Z.-X. Wang and P. v. R. Schleyer, *J. Am. Chem. Soc.*, 2012, 134, 8856-8868.
- 22. R. E. Plata and D. A. Singleton, J. Am. Chem. Soc., 2015, 137, 3811-3826.