Electronic Supplementary Information

For

Signal Transduction and Amplification through Enzyme-Triggered

Ligand Release and Accelerated Catalysis

Sean Goggins^a, Barrie J. Marsh^b, Anneke Lubben^a and Christopher G. Frost^a*

^a Department of Chemistry, University of Bath, Bath, BA2 7AY, UK

^b Atlas, Derby Court, Epsom Square, White Horse Business Park, Trowbridge, Wiltshire, BA14 0XG, UK

* Corresponding author. C.G.Frost@bath.ac.uk

Table	of	Contents
-------	----	----------

General information:
Materials:
Electrochemical Analysis:
Voltammogramatic Overlays
Real-time Mass Spectrometry Experiments
Mass Spectra acquired before ALP addition, 6.3-9.4 and 29.5-31.5 minutes after ALP addition
Individual traces acquired over time
Ligand Screen7
LOD Calibration Curve
General Procedures
General procedure for the synthesis of mono-N-sulfonated ethylenediamines (L1–L10)9
Procedure for the synthesis of both N- and N'-methyl-N-sulfonated ethylenediamines (L16–L17)
General procedure for the synthesis of N-dimethyl mono-N-sulfonated ethylenediamines (L18–L19)
Procedure for the synthesis of <i>tert</i> -butyl (2-((2,4,6-trimethylphenyl)sulfonamido)ethyl)carbamate (L20) 15
Procedure for the synthesis of benzyl (2-((2,4,6-trimethylphenyl)sulfonamido)ethyl)carbamate (L21)16
Procedure for the synthesis of 4-methoxybenzyl (2-((2,4,6-trimethylphenyl)sulfonamido)ethyl)carbamate (L22)
Procedure for the synthesis of diallyl (4-(hydroxymethyl)phenyl) phosphate (5)
Procedure for the synthesis of 4-((bis(allyloxy)phosphoryl)oxy)benzyl (2-((2,4,6-trimethylphenyl)sulfonamido)ethyl)carbamate (6)
Procedure for the synthesis of 4-((((2-((2,4,6- trimethylphenyl)sulfonamido)ethyl)carbamoyl)oxy)methyl)phenyl phosphate (PL1)
General procedures for the enzyme-triggered transfer hydrogenation of aldehydes to alcohols
General Procedure for the ³¹ P NMR Experiment
General Procedure for the Mass Spectrometry Experiment
References:
NMR Spectra:

General information:

Proton, carbon, fluorine and phosphorus nuclear magnetic resonance (NMR) spectra were recorded on a Bruker Avance 300 or 400 MHz spectrometer, or an Agilent Technologies 500 MHz spectrometer (¹H NMR at 300 or 400 MHz, ^{13}C NMR at 75.5 or 101 MHz, ^{31}P NMR at 121.5 MHz and ^{19}F NMR at 376.5 or 470.5 MHz). Chemical shifts for protons are reported downfield from tetramethylsilane and are referenced,¹ to residual protium in the solvent (¹H NMR: CHCl₃ at 7.26 ppm, C_6H_6 at 7.16 ppm, H_2O at 4.79 ppm, DMSO at 2.50 ppm). Chemical shifts for carbons are reported in parts per million downfield from tetramethylsilane and are referenced¹ to the carbon resonances of the solvent peak (13 C NMR: CDCl₃ at 77.0 ppm, C₆D₆ at 128.1 ppm, d₆-DMSO at 39.5). Chemical shifts for fluorine resonances are reported in parts per million referenced to CFCl₃. Chemical shifts for phosphorus are reported in parts per million referenced to 85% phosphoric acid. NMR data are represented as follows: chemical shift (integration, multiplicity [s = singlet, bs = broad singlet, d = double,dd = doublet of doublet, t = triplet, q = quartet, sept = septet, m = multiplet], coupling constants (Hz)). IR spectra were recorded on a Perkin-Elmer 1600 FT IR spectrophotometer, with absorbencies quoted as v in cm⁻¹. High resolution mass spectrometry was performed on a Bruker Daltonik Electrospray Time-of-Flight mass spectrometery (ESI-UHR-TOF MS, negative ion mode). Melting points were obtained on a Bibby-Sterilin SMP10 melting point machine. Analytical thin layer chromatography (TLC) were performed using aluminiumbacked plates coated with Alugram[®] SIL G/UV₂₅₄ purchased from Macherey-Nagel and visualised by UV light (254 nm) and/or KMnO₄, 2,4-DNPH or ninhydrin staining. Silica gel column chromatography was carried out using 60 Å, 200–400 mesh particle size silica gel purchased from Sigma-Aldrich. Reverse phase (C18) silica gel column chromatography was carried out using VersaPak[®] 30g C18 cartridges (23 mm × 110 mm) preloaded with 20-45 µm spherical C18 bonded silica purchased from Sigma-Aldrich.

Materials:

All reactions were carried out under an atmosphere of nitrogen, in oven-dried glassware unless otherwise stated. Acetonitrile, dichloromethane, tetrahydrofuran and toluene were dried and degassed by passing through anhydrous alumina columns using an Innovative Technology Inc. PS–400–7 solvent purification system and stored under an atmosphere of argon prior to use. Dichloro(pentamethylcyclopentadienyl)iridium(III) dimer was purchased from Alfa Aesar and used as received. All other chemicals were purchased from Sigma-Aldrich. *N*-Chlorosuccinimide (NCS) and triethylamine (TEA) were purified by standard published methods prior to use.² All other chemicals were used as received. Alkaline phosphatase was purchased as a lyophilised solid from Sigma-Aldrich and stored in a -20 °C freezer. Prior to use, a stock solution of the enzyme was made up using 0.05 M pH 9.8 CO₃^{2–} buffer and stored at 4 °C until immediate use.

Electrochemical Analysis:

Electrochemical analysis was performed on a Metrohm Autolab PGSTAT30 potentiostat using General Purpose Electrochemical System (GPES) software in differential pulse mode (modulation = 0.04 s, interval = 0.1 s, initial voltage = -200 mV, end voltage = 400 mV, step potential = 3 mV, modulation amplitude 49.95 mV).

Typically, each reaction was performed at a ferrocene concentration of 0.25 M and at the required interval, a 1 μ L sample was taken from the reaction mixture and diluted into a 999 μ L solution of 0.05 M pH 9.8 CO₃²⁻ buffer. After shaking, a 100 μ L sample of this solution was diluted into 900 μ L 0.05 M pH 9.8 CO₃²⁻ buffer to give a 25 μ M ferrocene concentration. After shaking again, a 20 μ L sample of this twice-diluted solution was applied to a screen printed electrochemical cell (GM Nameplate) consisting of carbon working and counter electrodes and a silver (pseudo Ag/AgCl) reference electrode. Post scan, the 'peak search' function was performed and the peak integrals that correspond to the appropriate ferrocene signal were input into the following equation to calculate reaction conversion:

Conversion (%) =
$$\left(\frac{\int \mathbf{2}}{(\int \mathbf{2} + \int \mathbf{1})}\right) \times 100$$

Voltammogramatic Overlays

Fig S1 Typical voltammograms obtained and overlayed from a positive reaction (ALP + PL1) sampled every 3 minutes and analysed by differential pulse voltammetry. As seen, peak heights can vary tremendously due to errors accumulated during sampling and dilution, and also through the use of disposable screen-printed electrodes as electrode areas can vary from one cell to the next. This highlights the benefit of using ratiometric sensing to accurately obtain reaction conversions.

Real-time Mass Spectrometry Experiments

Mass Spectra acquired before ALP addition, 6.3–9.4 and 29.5–31.5 minutes after ALP addition

Fig. S2 Individual spectra acquired before and after enzyme additions

Fig. S3 Traces acquired over time

Table S1 Initial ligand screen

O H	0.5 mol% [(cp*lrCl ₂) ₂] 1 mol% L1-10 5 eq. NaOOCH	ОН
Fe 1	H ₂ O 1:1 EtOH rt, 9 mins	Fe 2
H ₂ N N H	L1, R = H L2, R = 4-Me L3, R = 4- ^t Bu L4, R = 2,4,6-Me L5, R = 2,4,6- ^j Pr	L6, R = F L7, R = Br L8, R = 4-OMe L9, R = 4-NO ₂ L10, R = 4-CF ₃
Entry	Ligand	Conversion ^a
1	None	1%
2	L1	22%
3	L2	40%
4	L3	39%
5	L4	43%
6	L5	3%
7	L6	39%
8	L7	18%
9	L8	18%
10	L9	25%
11	110	32%

 $^{\it a}$ Determined by ratiometric electrochemical analysis

LOD Calibration Curve

Fig. S4 Conversion of ferrocenecarboxaldehyde 1 to ferrocenemethanol 2 observed after 3 minutes at different enzyme concentration.

Curve fit equation $y = A2 + (A1 - A2) / (1 + (x / x^{0}) ^{p})$

 $R^2 = 0.99105$

When enzyme concentrations are in units of UL^{-1} , A2 = 84.9, A1 = 2.8, x^0 352.1 and p = 0.7. The mean conversion of 3 background runs after 3 minutes is 3.67%. LOD = mean + 3 * StDev = 8% conversion. Entering this into the curve fit equation gives an enzyme concentration LOD of 7 UL^{-1} Using 6500 Umg⁻¹ ALP, this approximates to a 7 pM concentration ALP.

General Procedures

General procedure for the synthesis of mono-N-sulfonated ethylenediamines (L1-L10)

A solution of the sulfonyl chloride (10 mmol) in anhydrous dichloromethane (25 mL) was added, *via* a dropping funnel, to a stirring solution of ethylenediamine (100 mmol, 6.7 mL) in anhydrous dichloromethane (25 mL) at 0 °C. After complete addition, the reaction mixture was allowed to warm to room temperature and stirred for 1 hour. The reaction was then quenched with water (50 mL) and the organics separated. The aqueous layer was then extracted with further dichloromethane (2×25 mL). The combined organics were then washed with water (50 mL) followed by brine (50 mL), then dried over MgSO₄ and concentrated. The crude residue was then purified by silica gel column chromatography (dichloromethane 9:1 methanol + 1% triethylamine).

N-(2-aminoethyl)benzenesulfonamide (L1)

Benzenesulfonyl chloride (1.28 mL, 10 mmol) was reacted according to the general procedure to give the title compound as an off-white waxy solid (0.49 g, 25%). ¹H NMR (300 MHz, d_6 -DMSO); δ 7.79 (2H, m), 7.59 (3H, m), 3.90 (2H, br s), 2.73 (2H, t, J = 6.4 Hz), 2.52 (2H, m). ¹³C NMR (75.5 MHz, d_6 -DMSO); δ 140.6, 132.3, 129.2, 126.4, 46.0, 41.3. NMR data in accordance with literature precedent.³

N-(2-aminoethyl)benzenesulfonamide (L2)

4-methylbenzenesulfonyl chloride (1.77 g, 10 mmol) was reacted according to the general procedure to give the title compound as a white solid (1.06 g, 49%). ¹**H NMR** (300 MHz, d_6 -DMSO); δ 7.66 (2H, d, J = 8.2 Hz), 7.37 (2H, d, J = 8.2 Hz), 3.37 (2H, br s), 2.68 (2H, t, J = 6.5 Hz), 2.49 (2H, t, J = 6.5 Hz), 2.36 (3H, s). ¹³C NMR (75.5 MHz, d_6 -DMSO); δ 142.8, 138.1, 130.0, 126.9, 46.6, 41.7, 21.3. NMR data in accordance with literature precedent.³

N-(2-aminoethyl)-4-(tert-butyl)benzenesulfonamide (L3)

4-(*tert*-butyl)benzenesulfonyl chloride (2.33 g, 10 mmol) was reacted according to the general procedure to give the title compound as a white solid (1.87 g, 77%). ¹**H** NMR (300 MHz, d_6 -DMSO); δ 7.70 (2H, d, J = 8.7 Hz), 7.59 (2H, d, J = 8.7 Hz), 3.36 (2H, br s), 2.69 (2H, t, J = 6.4 Hz), 2.50 (2H, m), 1.29 (9H, s). ¹³**C** NMR (75.5 MHz, d_6 -DMSO); δ 155.2, 137.7, 126.3, 126.0, 46.2, 41.4, 34.8, 30.8. NMR data in accordance with literature precedent.³

N-(2-aminoethyl)-2,4,6-trimethylbenzenesulfonamide (L4)

2,4,6-trimethylbenzenesulfonyl chloride (2.19 g, 10 mmol) was reacted according to the general procedure to give the title compound as a white solid (1.87 g, 77%). ¹**H NMR** (300 MHz, d_6 -DMSO); δ 7.01 (2H, s), 3.31 (2H, br s), 2.68 (2H, t, J = 6.5 Hz), 2.54 (6H, s), 2.47 (2H, t, J = 6.5 Hz), 2.24 (3H, s). ¹³**C NMR** (75.5 MHz, d_6 -DMSO); δ 141.6, 138.6, 134.9, 132.0, 45.7, 41.6, 22.9, 20.7. NMR data in accordance with literature precedent.³

N-(2-aminoethyl)-2,4,6-triisopropylbenzenesulfonamide (L5)

2,4,6-triisopropylbenzenesulfonyl chloride (3.03 g, 10 mmol) was reacted according to the general procedure to give the title compound as a white solid (2.52 g, 77%). ¹H NMR (300 MHz, d_6 -DMSO); δ 7.21 (2H, s), 4.13 (2H, sept, J = 6.7 Hz), 3.39 (2H, br s), 2.89 (1H, sept, J = 6.9 Hz), 2.78 (2H, t, J = 6.4 Hz), 2.53 (2H, t, J = 6.4 Hz), 2.49 (1H, t, J = 1.8 Hz), 1.20-1.17 (18H, m). ¹³C NMR (75.5 MHz, d_6 -DMSO); δ 152.2, 149.9, 133.6, 123.8, 45.7, 41.7, 33.7, 29.1, 25.1, 23.8. NMR data in accordance with literature precedent.³

N-(2-aminoethyl)-4-fluorobenzenesulfonamide (L6)

4-fluorobenzenesulfonyl chloride (2.45 g, 10 mmol) was reacted according to the general procedure to give the title compound as a white solid (0.46 g, 21%). ¹**H NMR** (400 MHz, d_6 -DMSO); δ 7.86 (2H, m), 7.43 (2H, m), 3.50 (2H, br s), 2.73 (2H, t, J = 6.4 Hz), 2.52 (2H, m). ¹³**C NMR** (101 MHz, d_6 -DMSO); δ 164.1 (d, ¹ $J_{C-F} = 251$ Hz), 137.0 (d, ⁴ $J_{C-F} = 3$ Hz), 129.5 (d, ³ $J_{C-F} = 9$ Hz), 116.3 (d, ² $J_{C-F} = 23$ Hz), 46.2, 41.3. ¹⁹**F NMR** (376.5 MHz, d_6 -DMSO); δ -107.2. **IR** (film, cm⁻¹); v 3349, 3298, 3068, 2951, 2897, 2854, 2591, 2161, 2029, 1658, 1590, 1512, 1490, 1404, 1315, 1286, 1234, 1155, 1143, 1088, 1063, 1013, 967, 832, 819, 797, 707, 661. **HRMS** (ESI); calc'd for C₈H₁₂FN₂Q₂S [M+H]⁺ : *m*/z 219.0598, found 219.0547.

N-(2-aminoethyl)-4-bromobenzenesulfonamide (L7)

4-bromobenzenesulfonyl chloride (2.56 g, 10 mmol) was reacted according to the general procedure to give the title compound as a white solid (1.84 g, 66%). ¹**H NMR** (300 MHz, d_6 -DMSO); δ 7.81 (2H, d, J = 8.7 Hz), 7.72 (2H, d, J = 8.7 Hz), 3.48 (2H, br s), 2.73 (2H, t, J = 6.5 Hz), 2.50 (2H, m). ¹³**C NMR** (75.5 MHz, d_6 -DMSO); δ 139.9, 132.3, 128.5, 126.1, 46.2, 41.3. **IR** (film, cm⁻¹); v 3401, 3350, 3299, 3056, 2951, 2861, 2582, 2162, 2026, 1591, 1574, 1491, 1469, 1388, 1316, 1294, 1235, 1145, 1089, 1065, 1008, 968, 926, 817, 779, 736, 702, 662. **HRMS** (ESI); calc'd for C₈H₁₂BrN₂O₂S [M+H]⁺ : *m/z* 278.9797, found 278.9715.

N-(2-aminoethyl)-4-methoxybenzenesulfonamide (L8)

4-methoxybenzenesulfonyl chloride (2.07 g, 10 mmol) was reacted according to the general procedure to give the title compound as a white crystalline solid (0.84 g, 37%). ¹H NMR (300 MHz, d_6 -DMSO); δ 7.71 (2H, d, J = 8.9 Hz), 7.09 (2H, d, J = 8.9 Hz), 3.82 (3H, s), 3.36 (2H, br s), 2.67 (2H, t, J = 6.5 Hz), 2.49 (2H, t, J = 6.5 Hz). ¹³C NMR (75.5 MHz, d_6 -DMSO); δ 162.4, 132.6, 129.0, 114.6, 56.0, 46.5, 41.7. IR (film, cm⁻¹); v 3367, 3056, 2944, 2839, 2603, 2161, 2039, 1595, 1577, 1495, 1459, 1442, 1412, 1319, 1296, 1254, 1180, 1143, 1092, 1025, 927, 832, 806, 763, 661, 627. HRMS (ESI); calc'd for C₉H₁₄N₂O₃S [M+H]⁺ : *m/z* 231.0803, found 231.0785.

N-(2-aminoethyl)-4-nitrobenzenesulfonamide (L9)

4-nitrobenzenesulfonyl chloride (2.22 g, 10 mmol) was reacted according to the general procedure to give the title compound as a pale-yellow crystalline solid (0.71 g, 29%). ¹**H NMR** (300 MHz, d_6 -DMSO); δ 8.40 (2H, d, J = 8.9 Hz), 8.03 (2H, d, J = 8.9 Hz), 3.67 (2H, br s), 2.78 (2H, t, J = 6.5 Hz), 2.51 (2H, t, J = 6.5 Hz). ¹³**C NMR** (75.5 MHz, d_6 -DMSO); δ 149.9, 146.7, 128.4, 124.9, 46.4, 41.7. **IR** (film, cm⁻¹); v 3362, 3274, 3111, 2931, 2868, 2162, 2032, 1602, 1528, 1469, 1441, 1401, 1349, 1297, 1154, 1111, 1090, 1055, 1009, 959, 854, 830, 776, 737, 698, 681, 640, 606. **HRMS** (ESI); calc'd for C₈H₁₂N₃O₄S [M+H]⁺ : *m/z* 246.0543, found 246.0482.

N-(2-aminoethyl)-4-(trifluoromethyl)benzenesulfonamide (L10)

4-(trifluoromethyl)benzenesulfonyl chloride (2.45 g, 10 mmol) was reacted according to the general procedure to give the title compound as a white crystalline solid (1.58 g, 59%). ¹H NMR (400 MHz, d_6 -DMSO); δ 8.03-8.00 (4H, m), 3.59 (2H, br s), 2.77 (2H, t, J = 6.0 Hz), 2.53 (2H, t, J = 6.0 Hz). ¹³C NMR (101 MHz, d_6 -DMSO); δ 145.1, 132.6 (q, ${}^{2}J_{C-F} = 32$ Hz), 127.9, 126.9 (q, ${}^{3}J_{C-F} = 4$ Hz), 124.0 (q, ${}^{1}J_{C-F} = 273$ Hz), 46.6, 41.8. ¹⁹F NMR (376.5 MHz, d_6 -DMSO); δ -61.6. NMR data in accordance with literature precedent.³

Procedure for the synthesis of both N- and N'-methyl-N-sulfonated ethylenediamines (L16-L17)

A solution of mesitylsulfonyl chloride (3.82 mmol, 836 mg) in anhydrous dichloromethane (10 mL) was added, *via* a dropping funnel, to a stirring solution of *N*-methylethylenediamine (11.47 mmol, 1.0 mL) in anhydrous dichloromethane (1 mL) at 0 °C. After complete addition, the reaction mixture was allowed to warm to room temperature and stirred for 3 hours. The reaction was then quenched with water (10 mL) and the organics separated. The aqueous layer was then extracted with further dichloromethane (2×10 mL). The combined organics were then washed with water (30 mL) followed by brine (30 mL), then dried over MgSO₄ and concentrated. The crude residue contained a mixture of both compounds which were purified by silica gel column chromatography (chloroform 9:1 methanol + 1% triethylamine) to give **L16** as a waxy pale-yellow solid (0.18 g, 7%) and **L17** as a waxy dark-yellow solid (0.55 g, 22%).

2,4,6-trimethyl-N-(2-(methylamino)ethyl)benzenesulfonamide (L16)

¹**H NMR** (300 MHz, CDCl₃); δ 6.92 (2H, s), 3.95 (2H, br s), 2.94-2.91 (2H, m), 2.69-2.65 (2H, m), 2.61 (6H, s), 2.31 (3H, s), 2.26 (2H, s). ¹³**C NMR** (75.5 MHz, CDCl₃); δ 142.1, 139.1, 133.5, 131.9, 49.8, 41.1, 35.4, 22.9, 20.9. **IR** (film, cm⁻¹); v 3318, 2975, 2935, 2846, 2162, 1977, 1664, 1603, 1563, 1454, 1404, 1382, 1310, 1262, 1186, 1146, 1118, 1098, 1056, 1035, 966, 933, 845, 796, 757, 718. **HRMS** (ESI); calc'd for C₁₂H₂₁N₂O₂S [**M**+**H**]⁺: *m/z* 257.1324, found 257.1357.

N-(2-aminomethyl)-N,2,4,6-tetramethylbenzenesulfonamide (L17)

¹**H NMR** (300 MHz, CDCl₃); δ 6.84 (2H, s), 3.11 (2H, t, J = 6.2 Hz), 2.74 (2H, t, J = 6.2 Hz), 2.62 (3H, s), 2.50 (6H, s), 2.19 (3H, s), 1.27 (2H, br s). ¹³**C NMR** (75.5 MHz, CDCl₃); δ 142.3, 140.0, 132.1, 131.8, 51.9, 39.3, 32.9, 22.6, 20.7. **IR** (film, cm⁻¹); v 3357, 2975, 2935, 2161, 2024, 1603, 1563, 1457, 1401, 1380, 1309, 1256, 1208, 1143, 1104, 1076, 1053, 1039, 999, 950, 852, 749, 713, 644. **HRMS** (ESI); calc'd for C₁₂H₂₁N₂O₂S [M+H]⁺ : m/z 257.1324, found 257.1363.

General procedure for the synthesis of N-dimethyl mono-N-sulfonated ethylenediamines (L18–L19)

A solution of mesitylsulfonyl chloride (10 mmol, 2.19 g) in anhydrous dichloromethane (25 mL) was added, *via* a dropping funnel, to a stirring solution of the *N*-dimethylethylenediamine (10 mmol) in anhydrous dichloromethane (25 mL) at 0 °C. After complete addition, the reaction mixture was allowed to warm to room temperature and stirred for 1 hour. The reaction was then quenched with water (50 mL) and the organics separated. The aqueous layer was then extracted with further dichloromethane (2×25 mL). The combined organics were then washed with water (50 mL) followed by brine (50 mL), then dried over MgSO₄ and concentrated. The crude residue was then purified by silica gel column chromatography (dichloromethane 9:1 methanol + 1% triethylamine).

N-(2-(dimethylamino)ethyl)-2,4,6-trimethylbenzenesulfonamide (L18)

N,*N*-dimethylethylenediamine (10 mmol, 1.1 mL) was reacted according to the general procedure to give the title compound as an amorphous crystalline solid (2.20g, 81%). ¹H NMR (300 MHz, CDCl₃); δ 6.95 (2H, s), 5.45 (1H, br s), 2.95-2.91 (2H, m), 2.64 (6H, s), 2.39-2.35 (2H, m), 2.29 (3H, s), 2.15 (6H, s). ¹³C NMR (75.5 MHz, CDCl₃); δ 142.1, 139.2, 133.5, 131.9, 57.0, 44.7, 39.4, 22.8, 20.9. **IR** (film, cm⁻¹); v 3303, 2943, 2862, 2824, 2775, 2160, 2026, 1604, 1564, 1457, 1384, 1319, 1232, 1186, 1152, 1091, 1152, 1091, 1039, 958, 851, 759, 653. **HRMS** (ESI); calc'd for C₁₃H₂₃N₂O₂S [M+H]⁺ : *m*/*z* 271.1480, found 271.1504.

N,2,4,6-tetramethyl-N-(2-(methylamino)ethyl)benzenesulfonamide (L19)

N,N[']-dimethylethylenediamine (10 mmol, 1.1 mL) was reacted according to the general procedure to give the title compound as a yellow oil (0.20 g, 7%). ¹**H NMR** (300 MHz, CDCl₃); δ 6.90 (2H, s), 3.22 (2H, t, *J* = 6.4 Hz), 2.74-2.69 (5H, m), 2.56 (6H, s), 2.32 (3H, s), 2.25 (3H, s), 1.56 (1H, br s). ¹³**C NMR** (75.5 MHz, CDCl₃); δ 142.5, 140.3, 132.1, 132.0, 48.9, 48.2, 36.0, 33.3, 22.8, 20.9. **IR** (film, cm⁻¹); v 2937, 2161, 2031, 1603, 1564, 1454, 1403, 1382, 1312, 1187, 1148, 1054, 1035, 956, 889, 853, 743, 727, 702, 645. **HRMS** (ESI); calc'd for C₁₃H₂₃N₂O₂S [M+H]⁺ : *m/z* 271.1480, found 271.1517.

Procedure for the synthesis of tert-butyl (2-((2,4,6-trimethylphenyl)sulfonamido)ethyl)carbamate (L20)

Di-*tert*-butyl dicarbonate (2 mmol, 436 mg) dissolved in chloroform (10 mL) was added dropwise to a stirring solution of ethylenediamine (10 mmol, 0.67 mL) in chloroform (50 mL) at 0 °C. The reaction mixture was left to warm to room temperature and left to stir overnight. The reaction was then quenched with NaHCO_{3 (sat.)} and the organics separated. The organic layer was then washed with brine before being dried over Na₂SO₄ and concentrated. The residue was then taken up in anhydrous dichloromethane (5 mL) and cooled to 0 °C. A solution of 2,4,6-trimethylbenzenesulfonyl chloride **L4** (2 mmol, 437 mg) in anhydrous dichloromethane (45 mL) was then added dropwise. After complete addition, the reaction mixture was allowed to warm to room temperature and stirred for 3 hours. The reaction was then quenched with water (25 mL) and the organics separated. The aqueous layer was then extracted further with dichloromethane (2×25 mL) before the combined organics were dried over Na₂SO₄ and concentrated. The residue was then purified by silica gel column chromatography (hexane 8:2 ethyl acetate) to give the title compound as a colourless oil which solidifies to a white solid upon standing (137 mg, 20%).

¹**H NMR** (300 MHz, CDCl₃); δ 6.92 (2H, s), 5.57 (1H, br s), 5.04 (1H, br s), 3.20-3.19 (2H, m), 3.00-2.94 (2H, m), 2.60 (6H, s), 2.27 (3H, s), 1.39 (9H, s).

¹³C NMR (75.5 MHz, CDCl₃); δ 156.5, 142.2, 139.1, 133.5, 132.0, 79.7, 43.0, 40.3, 28.3, 22.9, 20.9.

NMR data in accordance with literature precedent.⁴

Procedure for the synthesis of benzyl (2-((2,4,6-trimethylphenyl)sulfonamido)ethyl)carbamate (L21)

To a stirring solution of 1,1'-carbonyldiimidazole (5 mmol, 0.81 g) in anhydrous acetonitrile (20 mL) was added a solution of benzyl alcohol (5 mmol, 0.52 mL) in anhydrous acetonitrile (20 mL) dropwise at room temperature. The reaction mixture was left to stir for 2 hours before the portionwise addition of *N*-(2aminoethyl)-2,4,6-trimethylbenzenesulfonamide **L4** (5 mmol, 1.21 g). The reaction mixture was left to stir overnight before being concentrated. The residue was then taken up in ethyl acetate (20 mL) and washed with water (3 × 20 mL), then brine (20 mL), dried over Na₂SO₄ and concentrated. The residue was purified by silica gel column chromatography (hexane 7:3 ethyl acetate) to give the title compound a white solid (0.95 g, 50%).

¹**H NMR** (300 MHz, CDCl₃); δ 7.34-7.29 (5H, m), 6.92 (2H, s), 5.47 (1H, br s), 5.34 (1H, br s), 3.30-3.24 (2H, m), 3.01-2.99 (2H, m), 2.60 (6H, s), 2.28 (3H, s).

¹³C NMR (75.5 MHz, CDCl₃); δ 157.0, 142.4, 139.1, 136.4, 133.4, 132.1, 128.6, 128.2, 128.1, 66.9, 42.7, 40.8, 23.0, 21.0.

IR (film, cm⁻¹); v 3435, 3200, 2956, 2164, 1978, 1680, 1604, 1506, 1456, 1439, 1402, 1385, 1311, 1261, 1217, 1149, 1118, 1094, 1046, 990, 966, 916, 861, 833, 780, 755, 706, 653.

HRMS (ESI); calc'd for $C_{19}H_{24}N_2O_4SNa [M+Na]^+$: m/z 399.1354, found 399.1322.

Procedure for the synthesis of 4-methoxybenzyl (2-((2,4,6-trimethylphenyl)sulfonamido)ethyl)carbamate (L22)

To a stirring solution of 1,1'-carbonyldiimidazole (1.3 mmol, 211 mg) in anhydrous acetonitrile (7.5 mL) was added a solution of 4-methoxybenzyl alcohol (5 mmol, 0.52 mL) in anhydrous acetonitrile (20 mL) dropwise at room temperature and the reaction mixture was left to stir overnight. The reaction was then concentrated, quenched with water (10 mL) and extracted with chloroform (3 \times 10 mL). The combined organics were then washed with water (15 mL), then brine (15 mL) before being dried over Na₂SO₄ and concentrated. The residue was then taken up in anhydrous tetrahydropyran (15 mL) and N-(2-aminoethyl)-2,4,6trimethylbenzenesulfonamide L4 (1 mmol, 242 mg) was added. The reaction mixture was left to stir overnight before being concentrated. The residue was taken up in ethyl acetate (15 mL), washed with water (15 mL), then brine (15 mL), dried over Na₂SO₄ and concentrated. The residue was purified by silica gel column chromatography (hexane 7:3 ethyl acetate) to give the title compound a white crystalline solid (283 mg, 72%).

¹**H NMR** (300 MHz, CDCl₃); δ 7.27 (2H, d, *J* = 8.6 Hz), 6.93 (2H, d, *J* = 8.6 Hz), 5.21 (1H, br t, *J* = 5.4 Hz), 5.10 (1H, br t, *J* = 5.7 Hz), 5.00 (2H, s), 3.80 (3H, s), 3.29-3.24 (2H, m), 3.04-2.98 (2H, m), 2.60 (6H, s), 2.29 (3H, s).

¹³C NMR (75.5 MHz, CDCl₃); δ 159.7, 157.1, 142.4, 139.2, 133.5, 132.2, 130.1, 128.4, 114.0, 66.9, 55.4, 42.9, 40.9, 23.0, 21.1.

IR (film, cm⁻¹); v 3328, 2939, 2161, 2032, 1682, 1616, 1532, 1445, 1397, 1329, 1303, 1268, 1242, 1157, 1077, 1027, 976, 911, 849, 826, 806, 779, 652.

HRMS (ESI); calc'd for $C_{20}H_{26}N_2O_5SNa [M+Na]^+$: m/z 429.1460, found 429.1455.

Procedure for the synthesis of diallyl (4-(hydroxymethyl)phenyl) phosphate (5)

Phosphorus trichloride (8.7 mL, 100 mmol, 2 eq.), allyl alcohol (13.6 mL, 200 mmol, 4 eq.), anhydrous TEA (31 mL, 220 mmol, 4.4 eq.), *N*-chlorosuccinimide (11.7 g, 87.5 mmol, 1.75 eq.), 4-hydroxybenzaldehyde (6.1 g, 50 mmol, 1 eq.), anhydrous TEA (10.5 mL, 75 mmol, 1.5 eq.) and sodium borohydride (3.8 g, 100 mmol, 2 eq.) were reacted together in a telescoped manner according to a previously reported literature procedure.⁵ The crude colourless oil was then purified by silica gel column chromatography (ethyl acetate 1:1 hexane ($R_f = 0.20$, UV₂₅₄ nm & KMnO₄)) gave the title compound as a colourless liquid (4.0 g, 28%).

¹**H NMR** (300 MHz, CDCl₃); δ 7.22 (2H, d, *J* = 8.6 Hz), 7.08 (2H, d, *J* = 8.6 Hz), 5.89-5.80 (2H, m), 5.29 (2H, ddd, *J* = 17.1, 2.6, 1.5 Hz), 5.18 (2H, ddd, *J* = 10.4, 2.6, 1.1 Hz), 4.56-4.51 (6H, m), 2.90 (1H, br s).

¹³C NMR (75.5 MHz, CDCl₃); δ 149.7 (d, $J_{C-P} = 7$ Hz), 138.3 (d, $J_{C-P} = 1$ Hz), 132.0 (d, $J_{C-P} = 7$ Hz), 128.2, 119.9 (d, $J_{C-P} = 5$ Hz), 118.8, 68.9 (d, $J_{C-P} = 6$ Hz), 64.2.

³¹**P NMR** (121.5 MHz, CDCl₃); δ – 5.52.

IR (film, cm⁻¹); v 3419, 2881, 1651, 1608, 1506, 1459, 1425, 1365, 1267, 1210, 1164, 1097, 1013, 988, 931, 874, 824, 733, 693, 638.

HRMS (ESI); calc'd for $C_{13}H_{17}O_5P [M+Na]^+$: m/z 307.0706, found 307.0760.

Procedure for the synthesis of 4-((bis(allyloxy)phosphoryl)oxy)benzyl (2-((2,4,6trimethylphenyl)sulfonamido)ethyl)carbamate (6)

To a stirring solution of 1,1'-carbonyldiimidazole (8.4 mmol, 1.36 g) in anhydrous acetonitrile (25 mL), was added a solution of diallyl (4-(hydroxymethyl)phenyl) phosphate **5** (6.5 mmol, 1.86 g) in anhydrous acetonitrile (25 mL) slowly *via* a dropping funnel. After complete addition, the reaction mixture was allowed to stir overnight before concentrated under reduced pressure. The residue was taken up in chloroform (50 mL) and washed with water (50 mL). The organics were separated and the aqueous layer extracted with chloroform (2 × 50 mL). The combined organics were washed with water (3 × 50 mL), dried over MgSO₄ and concentrated. The residue was taken up in anhydrous acetonitrile (50 mL) and *N*-(2-aminoethyl)-2,4,6-trimethylbenzenesulfonamide **L4** (8.4 mmol, 2.71 g) was added. The reaction mixture was then allowed to stir at room temperature for 4 hours before being concentrated under reduced pressure. The residue was taken up in chloroform (2 × 50 mL) and washed with water (50 mL) and washed with water (50 mL). The combined organics were ten washed under reduced pressure. The residue was taken up in chloroform (50 mL) and washed with water (50 mL). The organics were separated and the aqueous layer extracted with chloroform (2 × 50 mL). The combined organics were then washed with water (2 × 50 mL) and brine (50 mL) before dried over MgSO₄ and concentrated under reduced pressure to obtain the crude product. The product was then purified by silica gel column chromatography (hexane 1:1 ethyl acetate) to give the title compound as a colourless oil (2.71 g, 76%).

¹**H NMR** (300 MHz, CDCl₃); δ 7.03 (2H, d, J = 8.3 Hz), 6.91 (2H, d, J = 8.3 Hz), 6.66 (2H, s), 5.64 (4H, m), 5.12 (2H, dq, J = 17.2, 1.3 Hz), 5.01 (2H, ap dd, J = 10.4, 1.3 Hz), 4.74 (2H, s), 4.38 (4H, ddd, J = 8.4, 5.7, 1.3 Hz), 2.97 (2H, ap dd, J = 10.9, 5.5 Hz), 2.71 (2H, ap dd, J = 10.9, 5.5 Hz), 2.33 (6H, s), 2.02 (3H, s).

¹³**C NMR** (75.5 MHz, CDCl₃); δ 156.8, 150.2 (d, *J*_{C-P} = 7 Hz), 142.1, 139.0, 133.6, 132.0, 132.0, 131.9, 129.6, 121.1 (d, *J*_{C-P} = 5 Hz), 118.8, 69.0 (d, *J*_{C-P} = 5 Hz), 65.9, 42.5, 40.7, 22.9, 20.9.

³¹**P NMR** (121.5 MHz, CDCl₃); δ –5.65.

IR (film, cm⁻¹); v 3299, 2942, 1707, 1605, 1508, 1456, 1425, 1382, 1324, 1255, 1218, 1153, 1095, 1015, 989, 936, 853, 828, 776, 734, 654.

HRMS (ESI); calc'd for $C_{25}H_{33}N_2O_8PS [M+H]^+$: m/z 553.1773, found 553.1765.

Procedure for the synthesis of

4-((((2-((2,4,6-trimethylphenyl)sulfonamido)ethyl)carbamoyl)oxy)methyl)phenyl phosphate (PL1)

To a stirring solution of 4-((bis(allyloxy)phosphoryl)oxy)benzyl (2-((2,4,6-trimethylphenyl)sulfonamido)ethyl) carbamate **7** (276 mg, 0.5 mmol) in anhydrous tetrahydrofuran (5 mL), was sequentially added polymer-bound tetrakis(triphenylphosphine)palladium (14 mg, 0.01 mmol), formic acid (0.3 mL, 7.5 mmol) and triethylamine (0.7 mL, 5 mmol) at 0 °C. The reaction mixture was allowed to warm to room temperature and left to stir overnight. The reaction mixture was then filtered through filter paper and washed through with tetrahydrofuran (15 mL). The filtrate was concentrated under reduced pressure with the excess formic acid being removed *via* its hexane azeotrope. The residue was then cooled to 0 °C and 1M NaOH (6 mL, 6 mmol) was added dropwise. The reaction mixture was allowed to warm to room temperature and stirred for 1 hour. The reaction mixture was then concentrated under reduced pressure with the excess triethylamine removed *via* its toluene azeotrope to obtain the crude product. The product was then purified by reverse phase (C18) silica gel column chromatography (water) to give the title compound as a white powder (257 mg, *quant*.).

¹**H NMR** (300 MHz, D₂O/NaOD); δ 7.23 (2H, d, *J* = 8.2 Hz), 7.12 (2H, d, *J* = 8.2 Hz), 6.92 (2H, s), 4.79 (2H, s), 2.93 (2H, m), 2.78 (2H, s), 2.49 (6H, s), 2.16 (3H, s).

³¹**P NMR** (121.5 MHz, D₂O/NaOD); δ 1.05.

IR (solid, cm⁻¹); v 3299, 1707, 1605, 1508, 1456, 1425, 1382, 1324, 1255, 1218, 1153, 1095, 1015, 989, 936, 853, 828, 776, 734, 654.

HRMS (ESI); calc'd for $C_{19}H_{24}N_2O_8PS [M-H]^-$: m/z 471.0991, found 471.1025.

General procedures for the enzyme-triggered transfer hydrogenation of aldehydes to alcohols

Procedure A:

$$R \xrightarrow{0.25 \text{ mol}\% [(cp*IrCl_2)_2]}{0.50 \text{ mol}\% PL1}$$

$$25 \text{ UmL}^{-1} \text{ ALP}$$

$$5 \text{ eq. NaOOCH}$$

$$PH 9.8 \text{ CO}_3^{2^2} \text{ buffer}$$

$$1:1 \text{ EtOH}$$

$$37 ^{\circ}\text{C}, 30 \text{ mins}$$

To a medium screw-top vial equipped with a magnetic flea was added dichloro(pentamethylcyclopentadienyl)iridium(III) dimer (1 mg, 0.00125 mmol), 4-((((2-((2,4,6-trimethylphenyl)sulfonamido)ethyl)carbamoyl)oxy) methyl)phenyl phosphate **PL1** (1.3 mg, 0.0025 mmol) and sodium formate (170 mg, 2.5 mmol) and dissolved in pH 9.8 0.05M sodium carbonate buffer (1 mL). Alkaline phosphatase (2.5 mg, 10 Umg⁻¹) was then added. Immediately thereafter, a solution of the aldehyde (0.5 mmol) in ethanol (1 mL) was added. The vial was then secured into a DrySyn vial holder upon a stirrer hotplate and stirred at 1000 rpm for 30 minutes at 37 °C. The reaction was then poured into a 100 mL conical flask containing water (20 mL) and ethyl acetate (20 mL). The organics were extracted and the aqueous layer was extracted further with ethyl acetate (2 × 20 mL). The combined organics were dried over MgSO₄ and concentrated under reduced pressure. The crude residue was then analysed by ¹H NMR to obtain conversions. To confirm the diagnostic peaks used to calculate conversions corresponded with those of the product; analytically pure samples of the product were obtained through purification of the crude material by flash silica gel column chromatography (hexane 9:1 ethyl acetate).

Procedure B:

$$R \xrightarrow{O}_{H} H \xrightarrow{0.125 \text{ mol\%} [(cp^* \text{IrCl}_2)_2]}{0.25 \text{ mol\%} PL1} R \xrightarrow{O}_{F} H \xrightarrow{25 \text{ UmL}^{-1} \text{ ALP}}{5 \text{ eq. NaOOCH}} R \xrightarrow{O}_{F} H \xrightarrow{PH 9.8 \text{ CO}_3^{2-} \text{ buffer}}{1:1 \text{ EtOH}} R \xrightarrow{O}_{F} OH$$

To a medium screw-top vial equipped with a magnetic flea was added dichloro(pentamethylcyclopentadienyl)iridium(III) dimer (1 mg, 0.00125 mmol), 4-((((2-((2,4,6-trimethylphenyl)sulfonamido)ethyl)carbamoyl)oxy) methyl)phenyl phosphate **PL1** (1.3 mg, 0.0025 mmol) and sodium formate (340 mg, 5 mmol) and dissolved in pH 9.8 0.05M sodium carbonate buffer (2 mL). Alkaline phosphatase (2.5 mg, 10 Umg⁻¹) was then added. Immediately thereafter, a solution of the aldehyde (1 mmol) in ethanol (2 mL) was added. The vial was then secured into a DrySyn vial holder upon a stirrer hotplate and stirred at 1000 rpm for 30 minutes at 37 °C. The reaction was then poured into a 100 mL conical flask containing water (20 mL) and ethyl acetate (20 mL). The organics were extracted and the aqueous layer was extracted further with ethyl acetate (2 × 20 mL). The combined organics were dried over MgSO₄ and concentrated under reduced pressure. The crude residue was then analysed by ¹H NMR to obtain conversions. To confirm the diagnostic peaks used to calculate conversions corresponded with those of the product; analytically pure samples of the product were obtained through purification of the crude material by flash silica gel column chromatography (hexane 9:1 ethyl acetate).

Naphthalen-1-ylmethanol (7)

1-Naphthaldehyde (68 µL, 0.5 mmol) was reacted according to general procedure **A** to give the title compound as a colourless oil (>99% conversion by ¹H NMR). ¹H NMR (300 MHz, CDCl₃); δ 8.13-8.10 (1H, m), 7.91-7.88 (1H, m), 7.84-7.81 (1H, m), 7.59-7.42 (4H, m), 5.13 (2H, s), 1.95 (1H, br s). ¹³C NMR (75.5 MHz, CDCl₃); δ 136.3, 133.9, 131.3, 128.8, 128.7, 126.5, 126.0, 125.5, 125.4, 123.8, 63.8. NMR data in accordance with literature precedent.⁶

Anthracen-9-ylmethanol (8)

Anthracene-9-carboxaldehyde (103 mg, 0.5 mmol) was reacted according to general procedure **A** to give the title compound as a pale yellow crystalline solid (77% conversion by ¹H NMR). ¹H NMR (300 MHz, CDCl₃); δ 8.44 (1H, s), 8.37 (2H, d, *J* = 8.7 Hz), 8.02 (2H, d, *J* = 8.2 Hz), 7.58-7.46 (4H, m), 5.61 (2H, s), 1.87 (1H, br s). ¹³C NMR (75.5 MHz, CDCl₃); δ 131.6, 131.1, 130.2, 129.3, 128.5, 126.6, 125.2, 124.0, 57.5. NMR data in accordance with literature precedent.⁷

Pyren-1-ylmethanol (9)

Pyrene-1-carboxaldehyde (115 mg, 0.5 mmol) was reacted according to general procedure **A** to give the title compound as a pale yellow crystalline solid (95% conversion by ¹H NMR). ¹H NMR (300 MHz, CDCl₃); δ 8.26 (1H, d, *J* = 9.2 Hz), 8.17 (2H, d, *J* = 7.6 Hz), 8.09-7.94 (6H, m), 5.31 (2H, s), 2.02 (1H, br s). ¹³C NMR (75.5 MHz, CDCl₃); δ 133.8, 131.29, 131.26, 130.8, 128.8, 127.9, 127.49, 127.45, 126.04, 126.01, 125.35, 125.33, 124.9, 124.8, 123.0, 63.8. NMR data in accordance with literature precedent.⁸

4-Fluorobenzyl alcohol (10)

4-Fluorobenzaldehyde (94 µL, 1 mmol) was reacted according to general procedure **B** to give the title compound as a colourless oil (>99% conversion by ¹H NMR). ¹H NMR (300 MHz, CDCl₃); δ 7.35-7.29 (2H, m), 7.08-7.00 (2H, m), 4.64 (2H, s), 1.97 (1H, br s). ¹³C NMR (75.5 MHz, CDCl₃); δ 162.4 (d, ¹*J*_{C-F} = 246 Hz), 136.7 (d, ⁴*J*_{C-F} = 3 Hz), 128.9 (d, ³*J*_{C-F} = 8 Hz), 115.5 (d, ²*J*_{C-F} = 21 Hz), 64.7. ¹⁹F NMR (470.5 MHz, CDCl₃); δ -114.9.⁹

4-(Trifluoromethyl)benzyl alcohol (11)

4-(Trifluoromethyl)benzaldehyde (136 µL, 1 mmol) was reacted according to general procedure **B** to give the title compound as a colourless oil (>99% conversion by ¹H NMR). ¹H NMR (300 MHz, CDCl₃); δ 7.57 (2H, d, J = 8.1 Hz), 7.39 (2H, d, J = 8.1 Hz), 4.65 (2H, s), 3.24 (1H, br s). ¹³C NMR (75.5 MHz, CDCl₃); δ 144.8 (q, ⁴ $J_{C-F} = 1$ Hz), 129.8 (q, ² $J_{C-F} = 32$ Hz), 126.9, 125.5 (q, ³ $J_{C-F} = 32$ Hz), 124.3 (q, ¹ $J_{C-F} = 272$ Hz), 64.3. ¹⁹F NMR (470.5 MHz, CDCl₃); δ -62.5. NMR data in accordance with literature precedent.¹⁰

4-Nitrobenzyl alcohol (12)

4-Nitrobenzaldehyde (76 mg, 0.5 mmol) was reacted according to general procedure **B** to give the title compound as a white solid (>99% conversion by ¹H NMR). ¹H NMR (300 MHz, CDCl₃); δ 8.18 (2H, d, J = 8.2 Hz), 7.51 (2H, d, J = 8.2 Hz), 4.82 (2H, s), 2.29 (1H, br s). ¹³C NMR (75.5 MHz, CDCl₃); δ 148.4, 147.3, 127.1, 123.8, 64.0. NMR data in accordance with literature precedent.¹¹

4-Methoxybenzyl alcohol (13)

p-Anisaldehyde (61 µL, 0.5 mmol) was reacted according to general procedure **A** to give the title compound as a colourless oil (>99% conversion by ¹H NMR). ¹H NMR (300 MHz, CDCl₃); δ 7.20 (2H, d, *J* = 8.7 Hz), 6.81 (2H, d, *J* = 8.7 Hz), 4.51 (2H, s), 3.72 (3H, s), 1.89 (1H, br s). ¹³C NMR (75.5 MHz, CDCl₃); δ 159.3, 133.2, 128.8, 114.0, 65.1, 55.4. NMR data in accordance with literature precedent.¹²

2-Hydroxybenzyl alcohol (14)

Salicylaldehyde (53 µL, 0.5 mmol) was reacted according to general procedure **A** to give the title compound as a white crystalline solid (>99% conversion by ¹H NMR). ¹H NMR (300 MHz, CDCl₃); δ 7.34 (1H, br s), 7.24-7.18 (1H, m), 7.04 (1H, dd, J = 7.4, 1.3 Hz), 4.85 (2H, s), 2.46 (1H, br s). ¹³C NMR (75.5 MHz, CDCl₃); δ 156.1, 129.7, 128.0, 124.8, 120.3, 116.6, 64.7. NMR data in accordance with literature precedent.¹³

4-Isopropylbenzyl alcohol (15)

Cuminaldehyde (76 µL, 0.5 mmol) was reacted according to general procedure **A** to give the title compound as a colourless oil (>99% conversion by ¹H NMR). ¹H NMR (300 MHz, CDCl₃); δ 7.31 (2H, d, *J* = 8.2 Hz), 7.24 (2H, d, *J* = 8.2 Hz), 4.66 (2H, s), 2.92 (1H, hept, *J* = 6.9 Hz), 1.71 (1H, br s), 1.26 (6H, d, *J* = 6.9 Hz). ¹³C NMR (75.5 MHz, CDCl₃); δ 148.5, 138.3, 127.2, 126.7, 65.3, 33.9, 24.1. NMR data in accordance with literature precedent.¹⁴

4-(Hydroxymethyl)benzaldehyde (16)

Terephthalaldehyde (67 mg, 0.5 mmol) was reacted according to general procedure **A** to give the title compound as a white solid (>99% conversion by ¹H NMR). ¹H NMR (300 MHz, $CDCl_3$); δ 9.98 (1H, s), 7.85 (2H, d, J = 8.1 Hz), 7.51 (2H, d, J = 8.1 Hz), 4.79 (2H, s), 2.28 (1H, br s). ¹³C NMR (75.5 MHz, $CDCl_3$); δ 192.2, 148.0, 135.8, 130.1, 127.1, 64.6. NMR data in accordance with literature precedent.¹⁵

1-Octanol (17)

~ (∽___Он

Octanal (79 µL, 0.5 mmol) was reacted according to general procedure **A** to give the title compound as a colourless oil (>99% conversion by ¹H NMR). ¹H NMR (300 MHz, CDCl₃); δ 3.64 (2H, t, *J* = 6.6 Hz), 1.61-1.52 (2H, m), 1.39-1.28 (11H, m), 0.88 (3H, t, *J* = 6.8 Hz). ¹³C NMR (75.5 MHz, CDCl₃); δ 63.2, 33.0, 29.5, 29.4, 25.9, 22.8, 14.2. NMR data in accordance with literature precedent.⁹

2-Methoxycinnamyl alcohol (18)

2-Methoxycinnamaldehyde (81 mg, 0.5 mmol) was reacted according to general procedure **A** to give the title compound as a colourless oil (75% conversion by ¹H NMR). ¹H NMR (300 MHz, CDCl₃); δ 7.44 (1H, dd, J = 7.6, 1.7 Hz), 7.27-7.21 (1H, m), 6.96-6.86 (3H, m), 6.38 (1H, dt, J = 16.0, 5.9 Hz), 4.32 (2H, d, J = 5.0 Hz), 3.84 (3H, s), 1.81 (1H, br s). ¹³C NMR (75.5 MHz, CDCl₃); δ 156.8, 129.4, 128.9, 127.1, 126.2, 125.8, 120.8, 110.9, 64.3, 55.5. NMR data in accordance with literature precedent.¹⁶

General Procedure for the ³¹P NMR Experiment

13 mg of **PL1** was dissolved in 400 μ L of pH 9.8 CO₃²⁻ buffer and to this solution was added 100 μ L of 2.5 mg of ALP in 1 mL of pH 9.8 CO₃² buffer to give an overall reaction concentration of 50 mM **PL1** and 5 UmL⁻¹ ALP. The mixture was then spiked with a small amount of D₂O for NMR locking and analysed. At regular intervals, the NMR tube was inverted and return to its upright position to induce reagent mixing before being reanalysed. This was repeated until complete consumption of **PL1** was observed.

General Procedure for the Mass Spectrometry Experiment

1.3 mg of **PL1** was dissolve in 900 μ L of water and to this solution was added 100 μ L of a solution containing 2.5 mg of 10 Umg⁻¹ ALP in 1 mL of μ L of pH 9.8 CO₃²⁻ buffer. The reaction mixture was then taken up in a micro-syringe and injected at 3 μ Lmin⁻¹ directly into an Electrospray Time-of-Flight Mass Spectrometer (ESI-UHR-TOF MS, negative ion mode). Injection was stopped after complete consumption of **PL1** was observed.

References:

- 1. H.E. Gottlieb, V. Kotlyar and A. Nudelman, J. Org. Chem., 1997, 62, 7512.
- Purification of Laboratory Chemicals 3rd ed., C. L. L. Chai and W. L. F. Amarego, Pergamon Press, Oxford, 1988.
- 3. J. Tan, W. Tang, Y. Sun, Z. Jiang, F. Chen, L. Xu, Q. Fan and J. Xiao, Tetrahedron, 67, 6206.
- D. G. Batt, J. J. Petraitis, G. C. Houghton, D. P. Modi, G. A. Cain, M. H. Corjay, S. A. Mousa, P. J. Bouchard, M. S. Forsythe, P. B. Harlow, F. A. Barbera, S. M. Spitz, R. R. Wexler and P. K. Jadhav, J. *Med. Chem.*, 2000, 43, 41.
- 5. S. Goggins, C. Naz, B. J. Marsh and C. G. Frost, Chem. Commun., 2015, 51, 561.
- 6. U. Ragnarsson, L. Grehn, L. S. Monteiro and H. L. S. Maia, Synlett, 2013, 15, 2386.
- 7. N. Mase, T. Ando, F. Shibagaki, A. Sugita, T. Narumi, M. Toda, N. Watanabe and F. Tanaka, *Tetrahedron Lett.*, 2014, **55**, 1946.
- 8. S. Chen, L. Wang, N. E. Fahmi, S. J. Benkovic and S. M. Hecht, J. Am. Chem. Soc., 2012, 134, 18883.
- 9. N. S. Shaikh, K. Junge and M. Beller, Org. Lett., 2007, 9, 5429.
- 10. A. P. Dieskau, J.-M. Begouin and B. Plietker, Eur. J. Org. Chem., 2011, 2011, 5291.
- 11. N. Murai, M. Yonaga and K. Tanaka, Org. Lett., 2012, 14, 1278.
- 12. R. Cano, M. Yus and D. J. Ramón, Tetrahedron, 2011, 67, 8079.
- 13. Y. Zhou, G. Gao, H. Li and J. Qu, Tetrahedron Lett., 2008, 49, 3260.
- 14. B. Basu, B. Mandal, S. Das, P. Das and A. K. Nanda, Beilstein J. Org. Chem., 2008, 4, 53.
- E. Kawabata, K. Kikuchi, Y. Urano, H. Kojima, A. Odani and T. Nagano, J. Am. Chem. Soc., 2005, 127, 818.
- 16. C. Morrill and R. H. Grubbs, J. Am. Chem. Soc., 2005, 127, 2842.

Parameter Title	Value Jul11-2013-eg1	42.318 39.963	32.055								1.854	9.254	2.910	2,629	8770			O Me ∥O
Comment	SG 203 2 - 25	テデ	27								S	ñ	m	20		H ₂ N	~_N^	
Owner	prover bioaper onion	1.5	Y								1	11	1	1	8			
Sportromotor	3,600																Me	
Solvert	0003																	
Township	0000																L1	7
Duise Secure	290.0																	
Number of Sease	299935																	
Pounder of Scarts	45704																	
Receiver Gain	16364																	
Relaxation Delay	2.0000																	
Huise Width	7.5000																	
Acquisition Time	1.6122																	
Acquisition Date	2013-07-11T09:05:00																	
Modification Date	2013-07-11T08:05:47																	
GtoG	1.00000000																	
Echo Delay	0.0000																	
Gradient Duration	0.0000																	
Spectrometer Frequence	cy 75.49																	
Spectral Width	20325.2																	
Lowest Frequency	-1519.8																	
Nucleus	13C																	
Acquired Size	32768	1																
Spectral Size	65536																	
			1															
	1 , 1 180 170	 	 130	, j 120	110	100 fl (ppm	90	N 80	1 70	60		l 40		لىلىيىتى 	1 1	10	-, 	- -10

ni handan tara	ĸĨĨĨĨĸĸĦġĸĸŧġġġſĬĸĊĬĸĬĊĬŶĹĬĸŎĸĿĿĸĿĿġĹŎĸŎſŔŎŎĹŔġ	estajopiti jentitus inopuninto	Antonia and a sub-	nirasildad ¹⁴ ildsiyasinad filibid	₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩	tayyah waayaanayahaa waxahada waxaa waxaa waxaa daga tayahada ayo
Acquired Size Spectral Size	32768 66536					
Spectrometer Frequen Spectral Wildth Lowest Frequency Nucleus	roy 75.49 20325.2 -1509.9 13C			85 1	1	
Gradient Duration	0.0000				ř	
G to G' Echo Delay	1.00000000					
Modification Date	2012-11-29T12:03:43					
Acquisition Time	1.6122					
Pulse Width	7.5000		Ť			
Receiver Gain	18390					
remperature Pulse Sequence Number of Scans	293.6 zgpg30 256					
Spectrometer Solvent	a/300 CDCl3					
Owner	nmr	Y	YYY	AL	¥ (5
Comment	SG 155: 18 - 36	14		177	8 8 3	Ö V
tie	Nov29-2012-6g1	0.6	833 83 82 83 83 83 83 83 83 83 83 83 83 83 83 83	8.7.8	18 82	

-	1000	o l	
Parameter	Value	23	
Comment	SC 155 18 - 36	2	Г Г Г ОН
Oticin	Bruker BioSpin GmbH	E. C.	0 🔍
Owner	nmr		5
Spectrometer	av300		-
Solvent	CDCI3		
Temperature	673.2		
Pulse Sequence	zgpg30		
Number of Scans	32		
Receiver Gain	5161		
Relaxation Delay	2.0000		
Pulse Width	14.5000		
Acquisition Time	0.6734		
Acquisition Date	2012-11-29T11:45:00		
Modification Date	2012-11-29T11:45:58		
G to G'	1.00000000		
Echo Delay	0.0000		
Gradient Duration	0.0000		
Spectrometer Frequen	ncy 121.53		
Spectral Width	48661.8		
Lowest Frequency	-30465.9		
Nucleus	31P		
Acquired Size	32768		
Spectral Size	65536		

. J.	es" addres	- soliter	1. 1. 1.	1 J.J.S. 1	the states	A Sheet	C. Aller	the films of	Salara	And Shares	a start	the state of the second se	·	- 10 m	- 40mm ²	and the second second	· 10 · 1	·		* als -	W Siles	·	" Shee	All Share	6440	All sheet	1000	A COLOR
14(130	120	110	100	90	80	70	60	50	40	30	20	10	0 fl (ppm)	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140

Parameter	Value	\overline{Y} O
Title	Mar22-2013-sg1	
Comment	SG 186 : 32 - 66	
Origin	Bruker BloSpin GmbH	
Owner	nmr	6 O Me Me
Spectrometer	av300	
Solvent	CDCI3	
Temperature	673.2	
Pulse Sequence	zgpg30	
Number of Scans	32	
Receiver Gain	5161	
Relaxation Delay	2.0000	
Pulse Width	14.5000	
Acquisition Time	0.6734	
Acquisition Date	2013-03-22T12:15:00	
Modification Date	2013-03-22T12:15:49	
G to G'	1.00000000	
Echo Delay	0.0000	
Gradient Duration	0.0000	
Spectrometer Frequence	cy 121.53	
Spectral Width	48661.8	
Lowest Frequency	-30465.9	
Nucleus	31P	
Acquired Size	32768	
Spectral Size	65536	
11		
		-A
10 WI 117		

. J.	estine the	salar.	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	1.11	a litera i	Sec.	C. Alam	All Charters	Same -	All plans	the states	And the second second	1	- 10 m	40m²	 A state 	· 1.	·		V 343 -	W Siles	·	A Steel	ALC: SHORE	6400	5 5 5 5 5	1.00	ALC: NO.
14() 130	120	110	100	90	80	70	60	50	40	30	20	10	0 fl (ppm)	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140

met Not2015ap1 μ <	Parameter	Value							5					N	a [∓] ⁻0	<u> </u>			ц		
Armetti Bd-Pedgeb Bdry def ormetti Bd-Pedgeb Bdry def G C Med Med werd werd werd Med Med Med werd am 000 PL1 Med werd am 1800 Bud Med Med werd am 1800 Bud Bud Med werd am 1000 Bud Bud Bud <t< td=""><td>Title</td><td>Nov25-2013-sg1</td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>1</td><td></td><td></td><td></td><td></td><td></td><td>P</td><td>1´ </td><td>C</td><td>), "Ň、</td><td>\sim</td><td>S<^</td></t<>	Title	Nov25-2013-sg1							-	1						P	1´	C), "Ň、	\sim	S<^
right Bart Right Romet O Me weise mer mer O Me Me second mer SO PL1 Me PL1 second mer SO SO PL1 Me Me second mer SO SO PL1 Me Me Me second mer SO SO SO Me	Comment	SG Pro-ligand EtOH ppt														ö		\checkmark	\sim	\sim	
met met 0 0 Mé sett SO PL1 setter SO PL1 <	brigiln	Bruker BloSpin GmbH																			
Bit Bit PL1 experiation 813 Second	wner	nmr																	0		Me
over D0 use Sequed: Supplit use Seque: Supplit	pectrometer	av300																	PL1		
sports 342 under of same 32 under of same 32 seaded Del 300 under of same 301 seaded Del 301 sparts Del 071+3715140 soft Same 000000 soft Same 000000 soft Same 0000001 soft Same 000001 soft Same 000001 <t< td=""><td>olvent</td><td>D20</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	olvent	D20																			
ide Bogue 3pp01 weeder Gam 3000 weeder Gam 3000 weeder Gam 5000 geston The 6734 spatial Del 19 6734 spatial Del 19 6734 spatial Del 10 6734 spatial Del 10 6744 spatial Del 10 6744 <td< td=""><td>emperature</td><td>294.2</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	emperature	294.2																			
unter d Su 2 search Dis Su unter d Su Su usatch Dis 200 opdist Dis 071-0771300 usch Dis 071-07713100 usch Dis 0000000 volongen Progen 0301	uise Sequence	zgpg30																			
exemer 2m SSD sexetDr 2m SOD use Ward Dity 14303 operator Time ST4 operator Time ST4 operator Time SOD to Cime 10000000 to Cime 10000000 to Cime 0000 sectOrtime 0000 sectOrtim	lumber of Scans	32																			
stanto Day 2000 stanto Tay 6154 soutine Stanto Day 2014-15712510 soutine Stanto Day 2014-15712510 soutine Stanto Day 2000 soutine Stanto Day 2000 soutine Stanto Day 2014-15712510 soutine Stanto Day 2000 soutine Stanto Day 2000 soutine Stanto Day 2001 soutine Stanto Day 2014-15712510 soutine Stanto Day 2001 spectrum Stanto Day 2014-15712510 soutine Stanto Day 2014-15712510 spectrum Stanto Day 2014-157120 spectrum Stanto Day 2014-157120 spectrum Stanto Day 2014-157120 spectrum Stanto Day 2014-157120<	ecelver Galn	18390																			
dis Wag 14 500 optimum Trais 6754 optimum Trais 0101-157123103 ob Gimmano Taba 0101-157123103 ob Gimmano Taba 0000 radier Turation 0000	elaxation Delay	2.0000																			
cupulato Tube 0.6734 cupulato Tube 2015-H-3712514 tubo Tube 2015-H-3712514 tubo Cupulato Tube 0.0000 cupulato	ulse Wildth	14.5000																			
Digetaba 2015-17:251:03 Dischare Due 2015-17:251:03 Disc 2000000 Disc 2010-11-251:1251-1251 Disc 2000000 Disc 2010-1251 Disc 2010-1251	cquisition Time	0.6734																			
000000000000000000000000000000000000	oquisition Date	2013-11-25712.51.00																			
No G ¹ 10000 radet Durdio 0000 radet Durdio 2000 radet Durdio 2000 sectored Frequency 21.5 optimiser 2016 sectored Frequency 2017 optimiser 2016 sectored Frequency 21.5 optimiser 50.5	Indiffication Date	2013-11-25T12:51:48																			
correction 0.000 requester Durgeno 0.000 requester Durgeno 12.13 spectral with 4065.0 oppinger Frequency 0.04.7.6 voltes 32.76 spectral with 6.500	to G'	1.00000000																			
nader Duraton 0.000 gestronder Frequero: 121 53 gestronder 3 0 vester languages vester languages vester languages gestral State 6536	cho Delay	0.0000																			
pedral WOD 40618 wedral WOD 40618 WIDE 31P gedral Star 2768 yedral Star 6536	radient Duration	0.0000																			
petral Wohi 6466 1.6 Dived Frequency	pectrometer Frequen	cy 121.53																			
veet Frequency -0447.6 uoleae 3P gedral Stare 6556	pectral Width	48661.8																			
	owest Frequency	-30447.6																			
	lucieus	31P																			
	oquired Size	32768																			
	pectral Size	65536																			
and a start of the second strength of the start of the st																					
	فيعدا والمعاق	had and also problem at the ord	Jah Manusiru	فريبا ورامر	ف سر بدال	ار مصادر ر	Lines	11 mile		ومدر وليابلا	والاجا بداده	مدر بارار بر	ha a	Le Le Mer	الد الرجلة	و معطول			و المراد	ما الدال	lle en en de
	2.1.5.211.44	5 5 7 1 6 4 50	11.000.007.00.0	1.000			51 J. (2.4)		ee.	0.000000	The second		08 780000	Control F actor		tata dar			50,02,000		
contrary to find on a fight of the fit of the state. All of the boundary to the fit of the fit of the state o																					
	1 1 1		1 1 1	1 1		1.	1 .	1. '	1 '	1 1	1	·,	1. 1	1. *	1, 1, 1	1 15	1 1	1 1	·	-1. "	1 1