Supporting Information

Genome Mining and Molecular Characterization of the Biosynthetic Gene Cluster of a Diterpenic Meroterpenoid, 15-Deoxyoxalicine B, in *Penicillium canescens*

Junko Yaegashi, Jillian Romsdahl, Yi-Ming Chiang, Clay C.C. Wang

Correspondence should be addressed to C. C. C. W (clayw@usc.edu)

Table of Contents

Supplemental Methods	S2
Spectral Data of compounds	S2
Table S1. Primers used in this study	S 5
Table S2. P. canescens strains used in this study	S8
Table S3. ¹ H-NMR data for compounds 1, 2 and 3	S9
Table S4. ¹ H-NMR data for compounds 4, 5 and 6	S10
Table S5. ¹ H-NMR data for compounds 7 and 8	S11
Table S6. 13C-NMR data for compounds 7 and 8	S12
Figure S1. Key gHMBC correlations of compounds 7 and 8	S13
Figure S2. Selective 1D NOESY correlations of compound 8	S13
Figure S3. UV-Vis and ESIMS spectra of compounds 1 to 8	S14
Figure S4. Results of diagnostic PCR for all the gene deletion strains	S16
Figure S5. Result of RT-PCR analysis for <i>olcC</i>	S17
Figure S6-S20. NMR spectra of compounds 7 and 8	S18-S32

Supplemental Methods

Isolation and identification of secondary metabolites

All strains were cultivated at 26°C for 6 days on ~200 CZA plates at 10×10^{6} spores per 10 cm plate. Similar to the method described above, the agar was chopped and sonicated in MeOH, followed by 1:1 CH₂Cl₂/MeOH. The organic material was evaporated and extracted twice with an equal volume of EtOAc. All EtOAc layers were combined and evaporated *in vacuo*.

For isolation of 15-deoxyoxalicine B and its biosynthetic intermediates, the crude extract in the EtOAc layer (~150 mg) was coated on 2.3 g C₁₈ silica gel (Cosomil 75C₁₈-OPN, Nacalai Tesque), which was then suspended in MeOH and applied to a silica gel column (32 x 50 mm). After equilibrating the column to the starting solvent system of 1:9 MeOH-H₂O, the extract was eluted with MeOH-H₂O mixtures of decreasing polarity (fraction A, 1:9, 150 mL; fraction B, 1:1, 150 mL; fraction C, 3:1, 150 mL; fraction D, 1:0, 150 mL). All fractions were analyzed by HPLC-DAD-MS. Fraction C was subjected to semi-preparative reverse phase HPLC (Phenomenex Luna 5 μ m C18 (2), 250 x 10 mm) with a flow rate of 5.0 ml/min and monitored by a UV detector at 235 nm. The gradient system was MeCN (solvent B) in 5% MeCN/H₂O (solvent A): 30 to 100% solvent B from 0 to 35 min, maintained at 100% from 35 to 38 min, 100 to 30% solvent B from 38 to 39 min, and re-equilibration with 30% solvent B from 39 to 43 min. Compounds **1** (1.8 mg), **2** (0.9 mg), **3** (1.2 mg), **4** (0.9 mg), **5** (0.8 mg), **6** (1.0 mg), **7** (1.8 mg), and **8** (0.8 mg) eluted at 9 min, 19 min, 8 min, 15 min, 22 min, 20 min, and 14 min, respectively.

RT-PCR analysis of the expression of *olcC*

The *P. canescens* wild type and the *olcC* deletant strain were cultivated on LCMM agar at 26 °C for 6 days for mRNA extraction. The β -tubulin gene (protein ID 352267) was used as a control and quantification standard. Total mRNA was extracted by using the Qiagen RNeasy Plant Mini Kit. The total mRNA was digested by Recombinant DNase I (Ambion) to remove DNA contamination. The cDNA library was made from the same amount of total mRNA by using TaqMan reverse transcription reagents (Applied Biosystems) and the oligo dT primer. The cDNA was then used as the template for PCR amplification with specific primer sets listed in Table S1. Amplification products were analyzed by electrophoresis in 1% agarose gels stained with ethidium bromide.

Spectral data of Compounds

For compound structure elucidation, ¹H and ¹³C spectra were collected on nuclear magnetic resonance (NMR) Varian VNMRS-600 and Varian Mercury Plus 400 spectrometers. High-resolution electrospray ionization mass spectrum (HRESI-MS) was obtained with an Agilent Technologies 6210 time of flight mass spectrometer. Optical rotations were measured with a JascoP-2000 polarimeter operating on the sodium D-line (589 nm), using a 100 mm path-length and are reported as $[\alpha]_{\rm D}^{\rm T}$ (concentration in g/100 mL, solvent).

15-deoxyoxalicine B (1)

White amorphous powder; $[\alpha]_D^{25}$: + 47.3 (*c* 0.15, CH₂Cl₂). UV/Vis λ_{max} (MeOH)_{max}: 238, 269, 331 nm. ¹H NMR: Table S3. HRESI-MS, $[M + H]^+ m/z$ found 504.2374 calc. for C₃₀H₃₃NO₆: 504.2381.

15-deoxyoxalicine A (2)

White amorphous powder. UV/Vis λ_{max} (MeOH)_{max}: 238, 269, 331 nm. ¹H NMR: Table S3. HRESI-MS, $[M + H]^+ m/z$ found 488.2434 calc. for C₃₀H₃₃NO₅: 488.2431.

Decaturin A (3)

White amorphous powder; $[\alpha]_{D}^{25}$: + 73.0 (*c* 0.10, CH₂Cl₂). UV/Vis λ_{max} (MeOH)_{max}: 238, 269, 333 nm. ¹H NMR: Table S3. HRESI-MS, $[M + H]^+ m/z$ found 506.2546 calc. for C₃₀H₃₅NO₆: 506.2537.

Decaturin C (4)

White amorphous powder; $[\alpha]_{D}^{25}$: + 86.7 (*c* 0.08, CH₂Cl₂). UV/Vis λ_{max} (MeOH)_{max}: 238, 264, 331 nm. ¹H NMR: Table S4. HRESI-MS, $[M + H]^+ m/z$ found 490.2591 calc. for C₃₀H₃₅NO₅: 490.2588.

Decaturin D (5)

White amorphous powder; $[\alpha]_{D}^{25}$: + 85.1 (*c* 0.07, CH₂Cl₂). UV/Vis λ_{max} (MeOH)_{max}: 236, 264, 331 nm. ¹H NMR: Table S4. HRESI-MS, $[M + H]^+ m/z$ found 474.2617 calc. for C₃₀H₃₅NO₄: 474.2639.

Decaturin F (6)

White amorphous powder; $[\alpha]_{D}^{25}$: + 92.8 (*c* 0.08, MeOH). UV/Vis λ_{max} (MeOH)_{max}: 238, 269, 331 nm. ¹H NMR: Table S4. HRESI-MS, $[M + H]^+ m/z$ found 492.2752 calc. for C₃₀H₃₇NO₅: 492.2751.

Predecaturin E (7)

White amorphous powder; $[\alpha]_{D}^{25}$: - 48.7 (*c* 0.15, MeOH). UV/Vis λ_{max} (MeOH)_{max}: 235, 331 nm. ¹H NMR: Table S5 and Figure S6; ¹³C NMR: Table S6 and Figure S7. HRESI-MS, $[M + H]^+ m/z$ found 478.2962 calc. for C₃₀H₃₉NO4: 478.2952.

Decaturin G (8)

White amorphous powder. UV/Vis λ_{max} (MeOH)_{max}: 238, 269, 333 nm. ¹H NMR: Table S5 and Figure S14; ¹³C NMR: Table S6 and Figure S15. HRESI-MS, $[M + H]^+ m/z$ found 490.2568 calc. for C₃₀H₃₅NO₅: 490.2588.

410805-P1 410805-P2 410805-P3 410805-P4 410805-P5 410805-P6	TTGGCTGGATCGGTGATT AGCGGACGATTTTTGCTG CGAAGAGGGTGAAGAGCATTGCAGCGCATAAACGCATTG CAGTGCCTCCTCTCAGACAGCCTAAACACCACGCAAAGG TGTGGCATCACAGCAAGG ATCCTGGGCGATTGAGG
<i>olcA</i> deletion 400488-P1 400488-P2 400488-P3 400488-P4 400488-P5 400488-P6	AACGACCCGCATACTGGA CTCAGGCCACGAATACGC CGAAGAGGGTGAAGAGCATTGACGGAACTGGTGGGGGAAC CAGTGCCTCCTCTCAGACAGTCAAGCCCACTTCCAAGG CCCAGAGTTGTCCGATGC GGTTGTCCCATCGTCCAG
<i>olcB</i> deletion 333321-P1 333321-P2 333321-P3 333321-P4 333321-P5 333321-P6	CGCATGTGGCTGTACTCG CGTTTATGCGCTGGCTTT CGAAGAGGGTGAAGAGCATTGTCGGAGCCTGAAGTCGTC CAGTGCCTCCTCTCAGACAGTATGGAACACCCCGCAGT GTCCGACCGAGGAGGAAT AAGGGTCAGGGCATGGAT
<i>olcC</i> deletion 351326-P1 351326-P2 351326-P3 351326-P4 351326-P5 351326-P6	GGATGGTTGGGTAGCTCGT ACATTGTGGGCAAACATGG CGAAGAGGGTGAAGAGCATTGAACTGCGATCCGCATCAT CAGTGCCTCCTCTCAGACAGCCCATCCTTTGCATGGTC CATTCCGCCCAGAGTCAG GCATGAGTCCCGATACGC
<i>olcD</i> deletion 437321-P1 437321-P2 437321-P3 437321-P3 437321-P4 437321-P5 437321-P6	TTGGATTCCCGCTGTTTG TCAGAATTGCTGCGGATG CGAAGAGGGTGAAGAGCATTGAAGGTGAAGGGCCGACTC CAGTGCCTCCTCTCAGACAGCGAGCTACCCAACCATCC TCGCCACATTTCTGTTCG GCACAGCAGCAGAAATGC
<i>olcE</i> deletion 351329-P1 351329-P2 351329-P3 351329-P4	TTCTGCACTGCGATTTGC CTTGCTGTCGGGTTCTGG CGAAGAGGGTGAAGAGCATTGGTAAAAGCCGGGTTGTGG CAGTGCCTCCTCTCAGACAGACAGTTCGACGTAGCCTTGG

Table S1. Primers used in this study $(5' \rightarrow 3')$

351329-P5	GGCAAGCATGGTTTGATAGG
351329-P6	CCGCAAGTAAGTCCATACCC

<i>olcF</i> deletion	
367480-P1	CGATCTTGCGAGCTTTCC
367480-P2	CTCGGAAGGCAAGGACTG
367480-P3	CGAAGAGGGTGAAGAGCATTG CGGCTCGGATCGAAGTAG
367480-P4	CAGTGCCTCCTCAGACAGATCACCGCCCTGTTTGAC
367480-P5	AGGGCCAGGTTGGATCTC
367480-P6	ACCAAGCCTCACGTCTCG

olcG deletion

393266-P1	CTTTGATCGGAGGCCAAG
393266-P2	TGCCTCGTGATCGAATTG
393266-P3	CGAAGAGGGTGAAGAGCATTGGCCCGCAGGTGAAGTATG
393266-P4	CAGTGCCTCCTCTCAGACAGCCAGCACAGGGAAGAACC
393266-P5	ACCCAGTCGTTCCACACC
393266-P6	TGTACGCGCCACTTTGG

olcH deletion

410812-P1	CCTCGGCTAACCAGTGGA
410812-P2	GCCATTTACCCCGATCCT
410812-P3	CGAAGAGGGTGAAGAGCATTGTTGGCGGAGAATTGGAAA
410812-P4	CAGTGCCTCCTCTCAGACAGAAATGGGGATGGCTCGAT
410812-P5	CCAAGGCACCACATCCTT
410812-P6	CGCGTACTGGGGAGTGAA

olcI deletion

437327-P1	ACGCCATTTCTGGACACC
437327-P2	GGACTGGACCGCATCAAA
437327-P3	CGAAGAGGGTGAAGAGCATTGTGATCCGCTCAGCATGAA
437327-P4	CAGTGCCTCCTCTCAGACAGTCCGATTTTGGGGGGAAAC
437327-P5	CGCCATTCACAACGAC
437327-P6	CTACTGGGCGGTTCATCG

olcJ deletion

TCCATCCTCCCGTCTCTG
GCCGGGTGCGTAGTTATG
CGAAGAGGGTGAAGAGCATTG GGGCGCATCAATCATTTC
CAGTGCCTCCTCTCAGACAGTTGTTTCCCCCCAAAATCG
AGCGATGCCAGAAGTTGC
AGTCCACCCTCCCTGTCC

olcK deletion	
367485-P1	GTACGCCACAGCCATCG
367485-P2	GGCCACTATGGGGTGTAGG

367485-P3 367485-P4 367485-P5 367485-P6	CGAAGAGGGTGAAGAGCATTGTGGAGAAGCACGGAAAGG CAGTGCCTCCTCAGACAGAACCTTGGTCACCCATCG CCAACGTCTCCCAACGAG TAGGGAGCTGGGTGTTGC
olcL deletion	
351342-P1	AAGCTGTTCCGTGCCAAC
351342-P2	TTGATTCCGGCGAAAAAG
351342-P3	CGAAGAGGGTGAAGAGCATTGGGACGGATTGTCCTGTCG
351342-P4	CAGTGCCTCCTCTCAGACAGCAATTGGCCGGATACAGG
351342-P5	TGGCCCGAGTTATCTAGTCG
351342-P6	GCCCACATCCCCTTACC
367486-P1	AAGTGCCTCGCATCCTGC
367486-P2	TAAGGGGATGTGGGCGGA
367486-P3	CGAAGAGGGTGAAGAGCATTG GGGTCCGCTCAGGGTAGA
367486-P4	CAGTGCCTCCTCTCAGACAGCAGATGTTCGCCCGGGTT
367486-P5	CGAACCGTGCAGGTGGAA
367486-P6	GCCTCACACGTGCTCA
olcC RT-PCR	
351326-Fw	GGTCAGGGCATGGATCTCTA
351326-Rev	CCTCGGACTTCTGTTTCAGG

 β -tubulin RT-PCR

352267-Fw	ATGGGCACACTCCTGATCTC
352267-Rev	CGACCATGAAGAAGTGCAGA

Blue and red sequences are tails that anneal to the *P. canescens* pyrG fragment (PcanpyrG) during fusion PCR.

Label	Genotype
Control	ku70::hph
ku70 Δ , pyrG Δ	ku70::hph; pyrG-
410805Δ	ku70::hph; pyrG-, ProteinID410805::PcanpyrG
$olcA\Delta$	ku70::hph; pyrG-, ProteinID400488::PcanpyrG
$olcB\Delta$	ku70::hph; pyrG-, ProteinID333321::PcanpyrG
$olcC\Delta$	ku70::hph; pyrG-, ProteinID351326::PcanpyrG
$olcD\Delta$	ku70::hph; pyrG-, ProteinID437321::PcanpyrG
$olcE\Delta$	ku70::hph; pyrG-, ProteinID351329::PcanpyrG
$olcF\Delta$	ku70::hph; pyrG-, ProteinID367480::PcanpyrG
$olcG\Delta$	ku70::hph; pyrG-, ProteinID393266::PcanpyrG
$\mathit{olcH}\Delta$	ku70::hph; pyrG-, ProteinID410812::PcanpyrG
$olcI\Delta$	ku70::hph; pyrG-, ProteinID437327::PcanpyrG
$olcJ\Delta$	ku70::hph; pyrG-, ProteinID333335::PcanpyrG
$olcK\Delta$	ku70::hph; pyrG-, ProteinID367485::PcanpyrG
$olcL\Delta$	ku70::hph; pyrG-, ProteinID351342::PcanpyrG
367486Δ	ku70::hph; pyrG-, ProteinID367486::PcanpyrG

Table S2. Penicillium canescens strains used in this study.

Table 55. II-INVIK data for compounds $1, 2$, and 5 (000 MHZ in CDCI3	Table S3.	¹ H-NMR	data for o	compounds 1	1 , 2 , and	3 (600) MHz in	CDCl ₃) ^a
---	-----------	--------------------	------------	-------------	---------------------------	---------------	----------	-------------------	----------------

position	1	2	3
2	8.99 (1H, d, 1.8)	9.00 (1H, d, 1.8)	9.00 (1H, d, 1.8)
4	8.11 (1H, dt, 8.4, 1.8)	8.12 (1H, dt, 8.4, 1.8)	8.10 (1H, dt, 8.4, 1.8)
5	7.39 (1H, dd, 8.4, 4.8)	7.40 (1H, dd, 8.4, 4.8)	7.39 (1H, dd, 8.4, 4.8)
6	8.66 (1H, dd, 4.8, 1.8)	8.67 (1H, dd, 4.8, 1.8)	8.67 (1H, dd, 4.8, 1.8)
12	6.64 (1H, s)	6.62 (1H, s)	6.61 (1H, s)
15	2.97 (1H, d, 16.8)	2.96 (1H, d, 16.2)	2.94 (1H, d, 16.2)
	3.10 (1H, d, 16.8)	3.09 (1H, d, 16.2)	3.08 (1H, d, 16.2)
17	5.72 (1H, br s)	5.72 (1H, br s)	5.69 (1H, br d, 5.4)
18	2.21 (2H, m)	2.25 (2H, m)	1.87 (1H, m)
			2.06 (1H, m)
19	2.67 (1H, dd, 11.4, 6)	1.99 (1H, m)	2.24 (1H, dd, 12.6, 4.8)
21	1.49 (1H, dt, 14.4, 3.6, H _{eq})	1.56 (2H, m)	1.29 (1H, dt, 13.8, 3.6, H _{eq})
	2.30 (1H, m, H _{ax})		1.84 (1H, td; 13.8, 3.6, H _{ax})
22	1.30 (1H, dt, 13, 3.6, H _{eq})	1.56 (1H, m)	1.48 (1H, dt, 14.4, 3.6, H _{eq})
	2.05 (1H, td, 13, 4.2, H _{ax})	1.76 (1H, m)	2.10 (1H, td, 14.4, 3.6, H _{ax})
23		2.01 (1H, br s)	
25	1.62 (1H, m)	1.76 (1H, m)	1.72 (1H, m, H _β)
	2.49 (1H, m)	2.25 (1H, m)	1.93 (1H, td, 12, 7.2, H_{α})
26	2.33 (1H, m)	2.40 (1H; m)	1.65 (1H, m)
	2.43 (1H, m)	2.44 (1H, m)	2.22 (1H, m)
29	4.37 (1H, d, 12.9)	4.37 (1H, d, 12)	3.93 (1H, d, 9.6)
	4.45 (1H, d, 12.9)	4.53 (1H, d, 12)	4.12 (1H, dd, 9.6, 2.4)
30	1.70 (3H, s)	1.70 (3H, s)	1.67 (3H, s)
31	0.92 (3H, s)	0.95 (3H, s)	0.87 (3H, s)
32			1.00 (3H, s)
33	5.07 (1H, s)	4.76 (1H, s)	1.07 (3H, s)
	5.17 (1H, s)	4.96 (1H, s)	
34	1.89 (3H, s)	1.80 (3H, s)	

^a Figures in parentheses are multiplicities, and coupling constants (*J*) in Hz

Table S4. ¹H-NMR data for compounds **4**, **5** (600 MHz in CDCl₃), and **6** (600 MHz in DMSO- d_6)^a

position	4	5	6	
2	9.00 (1H, d, 1.8)	9.01 (1H, d, 1.8)	9.07 (1H, d, 1.8)	
4	8.12 (1H, dt, 8.4, 1.8)	8.12 (1H, dt, 8.4, 1.8)	8.24 (1H, dt, 8.4, 1.8)	
5	7.39 (1H, dd, 8.4, 4.8)	7.39 (1H, dd, 8.4, 4.8)	7.54 (1H, dd, 8.4, 4.8)	
6	8.67 (1H, dd, 4.8, 1.8)	8.66 (1H, dd, 4.8, 1.8)	8.67 (1H, 4.8, 1.8)	
12	6.60 (1H, s)	6.63 (1H, s)	7.36 (1H, s)	
15	2.92 (1H, d, 16.2)	2.95 (1H, d, 16.2)	2.88 (1H, d, 16.2)	
	3.08 (1H, d, 16.2)	3.10 (1H, d, 16.2)	3.04 (1H, d, 16.2)	
17	5.70 (1H, br d, 5.4)	5.71 (1H, br s)	5.65 (1H, br d, 4.8)	
18	1.80 (1H, m)	2.07 (2H, m)	2.06 (1H, m)	
	2.14 (1H, m)		2.63 (1H, m)	
19	1.80 (1H, m)	1.77 (1H, dd, 10.2, 6.6)	1.58 (1H, m)	
21	1.35 (1H, m)	1.41-1.46 (1H, m)	1.35 (1H, dd, 12.6, 4.2)	
	1.53 (1H, m)	1.50-1.60 (1H, m)	1.59 (1H, m)	
22	1.56 (2H, m)	1.50-1.60 (1H, m)	1.42-1.46 (2H, m)	
23	1.29 (1H, m)	1.41-1.46 (1H, m)	0.78 (1H, dd, 13.8, 2.4)	
25	1.27 (1H, m)	1.50-1.60 (1H, m)	0.68 (1H, 13.2, 3.0)	
	2.16 (1H, m)	1.93 (1H, m)	2.24 (1H, 13.2, 3.0)	
26	1.73 (1H, m)	2.42 (1H, m)	1.42-1.46 (1H, m)	
	2.20 (1H, m)	2.55 (1H, m)	1.56 (1H, m)	
27			3.02 (1H, dd, 12, 4.8)	
29	3.89 (1H, dd, 9, 1.8)	1.071 (3H, s)	3.79 (1H, d, 12)	
	4.20 (1H, dd, 9, 3)		3.76 (1H, d, 12)	
30	1.66 (3H, br s)	1.69 (3H, br d, 1.8)	1.61 (3H, s)	
31	0.87 (3H, s)	0.97 (3H, s)	1.02 (3H, s)	
32	0.97 (3H, s)	1.05 (3H, s)	0.71 (3H, s)	
33	1.03 (3H, s)	1.074 (3H, s)	0.89 (3H, s)	

^a Figures in parentheses are multiplicities and coupling constants (*J*) in Hz

Table S5. ¹H-NMR Data for Compounds **7** and **8** (600 MHz in CD₃OD) compared to previously published data of structurally related Decaturin E (600 MHz in DMSO- d_6)^{a, b}

position	Decaturin E	7	8
2	9.07 (1H, d, 1.9)	8.98 (1H, d, 1.8)	9.06 (1H, dd, 1.8, 0.9)
4	8.23 (1H, ddd, 8.2, 1.9,	8.23 (1H, dt, 8.4, 1,8)	8.30 (1H, dt, 8.4, 1.8)
	1.4)		
5	7.54 (1H, dd, 8.2, 4.7)	7.54 (1H, dd, 8.4, 4.8)	7.57 (1H, dd, 8.4, 4.8)
6	8.67 (1H, dd, 4.7, 1.4)	8.59 (1H, dd, 4.8, 1.8)	8.64 (1H, dd, 4.8, 1.8)
12	7.36 (1H, s)	6.65 (1H, s)	7.05 (1H, s)
15	2.85 (1H, d, 16.1)	3.25 (1H, d, 16.2)	3.07 (1H, d, 16.2)
	3.01 (1H, d, 16.1)	3.24 (1H, d, 16.2)	3.13 (1H, d, 16.2)
17	5.66 (1H, br s)	2.01-2.12 (2H, m)	5.75 (1H, br d, 4.8)
18	1.98 (2H, m)	1.46-1.51 (1H, m)	4.46 (1H, br t, 4.8)
		1.50-1.60 (1H, m)	
19	1.58 (1H, m)	1.11 (1H, dd, 12.6, 1.8)	1.70 (1H, d, 4.8)
21	1.28 (1H, m)	1.34 (1H, td, 13.2, 3.6), H _{ax}	1.51-1.67 (2H, m)
	1.56 (1H, m)	2.01-2.12 (1H, m), H _{eq}	
22	1.41 (1H, m)	1.43 (1H, td, 13.2, 1.8), H _{ax}	1.51-1.67 (2H, m)
	1.52 (1H, m)	1.50 -1.60 (1H, m), H _{eq}	
23	0.70 (1H, m)	0.78 (1H, dd, 12.0, 1.8)	1.36 (1H, br d, 12)
25	0.91 (1H, m)	0.96 (1H, td, 13.2, 3.6), H _{ax}	1.51-1.67 (1H, m)
	1.60 (1H, m)	1.78 (1H, dt, 13.2, 3.6), H _{eq}	2.37 (1H, m)
26	1.48 (2H, m)	1.59-1.63 (1H, m)	2.37 (1H, m)
		1.63-1.69 (1H, m)	2.75 (1H, m)
27	2.98 (1H, m)	3.13 (1H, dd, 12, 4.8)	
29	0.89 (3H, s)	0.87 (3H, s)	1.56 (3H, s)
30	1.62 (3H, s)	1.66 (3H, s)	1.78 (3H, s)
31	0.87 (3H, s)	1.03 (3H, s)	1.30 (3H, s)
32	0.68 (3H, s)	0.76 (3H, s)	1.10 (3H, s)
33	0.86 (3H, s)	0.93 (3H, s)	1.05 (3H, s)

^a Figures in parentheses are multiplicities and coupling constants (J) in Hz

^b Ref: Wang, P.-l.; Li, D.-y.; Xie, L.-r.; Wu, X.; Hua, H.-m.; Li, Z.-l. *Nat. Prod. Commun.* **2013**, *8*, 1397-1398.

8: $R_1 = O$; $R_2 = OH$ Decaturin E: $R_1 = \beta$ -OH, α-H; $R_2 = H$

Table S6. ¹³C-NMR data for compounds **7** and **8** (150 MHz in CD₃OD) compared to previously published data of structurally related Decaturin E (150 MHz in DMSO- d_6)^a

position	Decaturin E	7	8	
2	146.7	147.1	147.8	
3	127.2	129.8	129.2	
4	133.1	134.8	135.3	
5	124.0	125.6	125.6	
6	151.4	151.5	152.2	
7	159.5	155.9	161.6	
9	170.0	167.2	172.8	
10	101.2	102.7	103.4	
11	159.6	179.7	163.0	
12	94.2	106.0	95.8	
14	100.1	138.3	102.3	
15	27.8	24.0	29.8	
16	130.9	129.2	133.5	
17	128.1	35.7	132.1	
18	22.5	19.4	65.3	
19	47.4	57.9	52.0	
20	40.3	40.7	41.9	
21	31.7	39.7 ^b	33.5	
22	17.5	19.8	20.6	
23	54.5	56.9	57.5	
24	36.4	38.5	39.0	
25	37.9	39.9 ^b	39.6 ^c	
26	26.9	28.2	35.1	
27	76.8	79.9	218.5	
28	38.4	40.1	39.5 ^c	
29	15.4	17.2	17.6	
30	18.1	21.0	19.0	
31	15.9	22.0	19.7	
32	16.0	16.2	22.4	
33	28.2	28.7	26.9	

^a Ref: Wang, P.-l.; Li, D.-y.; Xie, L.-r.; Wu, X.; Hua, H.-m.; Li, Z.-l. *Nat. Prod. Commun.* **2013**, *8*, 1397-1398.

^{b, c} These assignments may be interchanged.

Figure S1. Key gHMBC correlations $(C \rightarrow H)$ of (a) predecaturin E (7) and (b) decaturin G (8).

Figure S2. Selective 1D NOESY correlations of decaturin G (8).

Figure S3. UV-Vis and ESI-MS spectra of compounds isolated from this study.

Figure S3 (continued). UV-Vis and ESI-MS spectra of compounds isolated from this study.

Figure S4. Results of diagnostic PCR for deletion strains.

Figure S5. Result of RT-PCR analysis for *olcC*.

Figure S6. ¹H-NMR spectrum of compound 7 in CD₃OD

Figure S7. ¹³C-NMR spectrum of compound 7 CD₃OD

Figure S8. ¹H-¹³C gHMBC spectrum of compound 7 in CD₃OD

Figure S9. ¹H-¹³C gHMBC spectrum of compound 7 in CD₃OD with labeled signals (Part 1/3)

Figure S10. ¹H-¹³C gHMBC spectrum of compound 7 in CD₃OD with labeled signals (Part 2/3)

Figure S11. ¹H-¹³C gHMBC spectrum of compound 7 in CD₃OD with labeled signals (Part 3/3)

Figure S12. ¹H-¹³C gHSQC spectrum of compound 7 in CD₃OD

Figure S13. ¹H-¹H gCOSY spectrum of compound 7 in CD₃OD

Figure S14. ¹H-NMR spectrum of compound **8** in CD₃OD. Peaks labeled with * were determined to be impurities based on 2D NMR spectral data which showed that they do not correlate with any other part of **8**. Both signals were also originally present in **7** and we were able to remove them by HPLC with 0.05 % of TFA in mobile phase. However, purification with TFA resulted in degradation of the compound **8**.

Figure S15. ¹³C-NMR spectrum of compound 8 in CD₃OD

Figure S16. ¹H-¹³C gHMBC spectrum of compound 8 in CD₃OD

Figure S17. ¹H-¹³C gHMBC spectrum of compound 8 in CD₃OD with labeled signals (Part 1/2)

Figure S18. ¹H-¹³C gHMBC spectrum of compound 8 in CD₃OD with labeled signals (Part 2/2)

Figure S19. ¹H-¹³C gHSQC spectrum of compound 8 in CD₃OD

Figure S20. ¹H-¹H gCOSY spectrum of compound 8 in CD₃OD